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Abstract: Undesirable side effects and multidrug tolerance are the main holdbacks to the treatment of
cancer in conventional chemotherapy. Fortunately, targeted drug delivery can improve the enrichment
of drugs at the target site and reduce toxicity to normal tissues and cells. A targeted drug delivery
system is usually composed of a nanocarrier and a targeting component. The targeting component is
called a “ligand”. Aptamers have high target affinity and specificity, which are identified as attractive
and promising ligands. Therefore, aptamers have potential application in the development of smart
targeting systems. For instance, aptamers are able to efficiently recognize tumor markers such as
nucleolin, mucin, and epidermal growth factor receptor (EGFR). Besides, aptamers can also identify
glycoproteins on the surface of tumor cells. Thus, the aptamer-mediated targeted drug delivery
system has received extensive attention in the application of cancer therapy. This article reviews the
application of aptamers as smart ligands for targeted drug delivery in cancer therapy. Special interest
is focused on aptamers as smart ligands, aptamer—conjugated nanocarriers, aptamer targeting strategy
for tumor microenvironment (TME), and aptamers that are specified to crucial cancer biomarkers for
targeted drug delivery.
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1. Introduction

Cancer is one of the top threats to human health. It is estimated that 19 million
new cancer cases and 9.9 million cancer deaths occurred worldwide in 2020 [1,2]. Re-
cently, the treatment of cancer is hindered by the complexity and heterogeneity of tumor
biology [3-5]. In general, most conventional chemotherapeutics will result in nonspecific
systemic biodistribution of the drug, inducing cytotoxicity to healthy tissues [6,7]. In
addition to poor selectivity, inadequate drug concentration at tumor sites and multidrug
resistance generated unsatisfactory therapeutic outcomes. Hence, a targeted drug delivery
system is essential to overcome the limitations of current cancer treatment [8-10].

Targeted drug delivery systems have advantages over conventional chemotherapy
drugs, such as prolonging the circulating half-life of drugs and improving their bioavailabil-
ity, stability, and tumor accumulation of drugs [11-13]. These modifiable physicochemical
properties can be used in targeting protocols to ameliorate the biodistribution and target
site accumulation of conventional cancer drugs. A targeted drug delivery system usually
consists of a nanocarrier and a targeting element [12,14,15]. The targeting element is called
a “ligand”. Many ligand molecules, such as bile salts, vitamins, transferrin, saccharides,
lectins, antibodies, oligopeptides, and aptamers are currently available for the develop-
ment of a targeted drug delivery system [16-18]. In comparison with conventional small
molecule ligands, aptamers have the potential of facile synthesis, simple modification, and
exceedingly high specificity in cell-surface aptamer targets, which makes aptamers as an
excellent ligand for a targeted drug delivery system [19-21].
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Aptamers, short RNA or single-stranded DNA, are composed of 20-80 nucleotides,
which are considered to be chemical antibodies (Figure 1) [22,23]. Aptamers, acted as
pleiotropic ligands, have potential for application in the construction of intelligent targeting
systems [24]. The discovery and application of aptamers have been reviewed by previous
researchers. There are many reports and studies on aptamer synthesis, aptamer-mediated
therapy, and biomedical imaging as a biometric molecule [25-28]. In recent years, aptamers,
acted as targeting agents to modify and bind nanocarriers, have become a hotspot for
cancer drug administration and treatment. Some progress has also been made in the
research of aptamers that directly bind drugs for tumor targeting, but this review focuses
on the application of aptamer-modified nanocarriers as nano-drug delivery systems in
cancer therapy. Aptamers are able to efficiently recognize tumor markers such as nucleolin,
mucin, and EGFR [28-30]. Besides, aptamers can also identify glycoproteins on the surface
of tumor cells. Thus, the aptamer-mediated targeted drug delivery system has received
extensive attention in the application of cancer therapy [31,32]. This article includes a
review of the application of aptamers in targeted cancer therapy, aptamers as smart ligands,
aptamer-conjugated nanocarriers, aptamer targeting strategy for tumor microenvironment
(TME), and aptamers that are specified to crucial cancer biomarkers for targeted drug
delivery are discussed in this work [33,34].
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Figure 1. Structure of aptamers and the scheme of molecular recognition by aptamers.

2. Aptamers as Smart Ligands

Aptamers are specialized short segments of single-stranded DNA /RNA that have
been of increasing interest to researchers in applications since 1990 [35-38]. The Gold
and Szostak labs first described a nucleic acid molecular recognition element. For the
first time, the Gold lab described a process that is now known as systematic evolution
of ligands by exponential enrichment (SELEX), which identifies one or several molecular
recognition elements (MREs) with high affinity and specificity for the intended target [39].
These MREs were later named aptamers [40,41]. The SELEX process usually starts with a
chemically-synthesized random oligonucleotide library of different sequences (Figure 2). A
single nucleic acid aptamer consists of a specific sequence that evolved from the SELEX
program, flanked by two constant primer regions during polymerase chain reaction (PCR)
amplification [42,43]. The targets of selection are first incubated under specific ionic and
temperature conditions [44]. Molecules that bound to the target are retained and amplified
by PCR, while non-bound molecules are discarded.



Pharmaceutics 2022, 14, 2561 30f 19

Library

/ ‘Target

Incubate
/I/l/' SELEX
/\A/‘ (n cycles)
Recover
Select

Figure 2. SELEX technology in selection of aptamers.

An aptamer has many advantages. It can bind to specified targets, such as proteins,
small molecules, and cells. It also plays a significant role in the recognition of tumor
markers, inflammatory factors, and immune cells [45,46]. Compared with other molecular
recognizers, the biggest advantage of aptamers is that they have almost no immunogenicity,
so they have a very wide range of targeting recognition and binding spectrum. Aptamers
are easy to couple to nanocarriers and hardly increase the size of the composite nanocar-
riers. Aptamers are relatively easy to prepare and store. In comparison with monoclonal
antibodies, aptamers have efficient uptake in the presence of specific cell-surface aptamer
targets [47,48]. In addition, the establishment of cell-SELEX technology enables aptamers
to be used to construct highly targeted cancer nanocarriers (Figure 3) [49]. Cell-SELEX
technology was developed in 2003 and uses whole living cells to select aptamers, that are
targeted to the cell surface [50]. Cell-SELEX technology and its derivation methods can
screen aptamers that can effectively distinguish cancer cells from normal cells. Therefore,
aptamers can be used as smart ligands [51-54].
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Figure 3. Cell-SELEX technology in selection of aptamers.

3. Aptamer-Conjugated Nanocarrier Delivery

Nano-targeted drug delivery systems typically consist of a nanocarrier and a targeting
component. Nanocarriers have become a promising strategy for tumor-targeted drug deliv-
ery due to their unique physical and biological properties. Due to their size characteristics,
nano-carriers can enter the blood circulation of the human body. While nanocarriers was
loaded drugs (small molecule drugs, protein, genes, and other macromolecular drugs),
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nanocarriers can slow down drug degradation and renal clearance, increase the half-life of
drugs in the blood, and improve their efficacy [55,56]. Due to the increased permeability of
tumor neovascularization and its weak lymphatic drainage, nanocarriers can be enriched in
tumor tissue to achieve the effect of passive cancer targeting. The selection and preparation
of nanocarriers should meet the following requirements: good biocompatibility that in-
cludes tissue/blood compatibility and non-immunogenicity; certain mechanical strength as
well as be easy to process; and the rate of drug release is moderate and stable. Nanocarriers
can be divided into two major categories: inorganic and organic nanocarriers [57,58]. Inor-
ganic nanocarriers mainly include mesoporous silica and magnetic nanoparticles. Organic
nanocarriers mainly include polysaccharides, liposomes, and DNA tetrahedron nanos-
tructures (DTNs), which have the characteristics of good biocompatibility and high drug
loading rate. Combined with aptamers, nano-delivery systems can improve the specific
delivery and precise release of cancer drugs (Figure 4). The drug loading system without
aptamer modification only has passive targeting, but non-active targeting. Aptamers that
are modified on the surface of nanocarriers can be used as biological recognition molecules
for the active targeting of tumor cells. The aptamer-functionalized nanocarriers become
intelligent drug carriers with significant drug delivery and targeting properties. The com-
bination of aptamers and nanotechnology has enabled the further application of various
targeted drug delivery systems in clinical therapy and diagnosis. Aptamers can bind to
nanocarriers in covalent or non-covalent methods. Covalent binding is mainly through
the aptamer and the group on the surface of the drug carrier. Non-covalent binding has
high affinity and electrostatic interactions [59-61]. For instance, Lohiya et al. developed a
chitosan-coated (pH-responsive), doxorubicin (DOX)-loaded aptamer -MSNs bioconjugate
for the active targeting of breast cancer cells overexpressing epidermal growth factor re-
ceptor (EGFR/HER2) [59]. Most aptamer-modified nanocarriers adopt a covalent binding,
because they have no additional side effects such as cytotoxicity [62]. The application of
nanocarriers combined with aptamers in a targeted delivery system for tumor treatment
has attracted extensive attention.
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Figure 4. Aptamer-functionalized nanoparticles acting on a cancer cell.
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3.1. Inorganic Nanocarriers

Inorganic materials have the advantages of nontoxicity, biocompatibility, hydrophilic-
ity, and high stability, and are widely used in the field of drug delivery [63]. The main
inorganic nanocarriers include mesoporous silica nanoparticles (MSNs) and magnetic
nanoparticles (MNPs), which possess some unique characteristics in drug delivery, includ-
ing high specific surface area, controllable shape and size, and easy surface modification.
Inorganic nanocarriers also have the function of stimulus-responsive drug release [64].

Inorganic nanocarrier-conjugated aptamers are widely used in cancer diagnosis, imag-
ing, and treatment. For instance, DNA aptamer-coupled calcium-phosphosilicate nanopar-
ticles (known as NanoJackets, NJs) are used for the non-invasive detection of prostate and
pancreatic tumors [65]. MSNs have attracted much attention in drug delivery due to their
high specific surface area, large pore volume, adjustable pore structure, and high surface
modifiability [66-68]. Similar to other inorganic nanoparticles, MSNs can effectively bind
drugs and target drug delivery to the tumor site. As MSNs can protect the encapsulated
drug from being recognized by efflux transporters, the drug-carrying MSNs can transport
the drug to the cytoplasm after entering the cancer cells, and eventually kill the cancer
cells [69]. MSNs can bind the drug EPI and mucin 1 (MUC1) aptamer, demonstrating that
MSNs-MUC1-EPI has targeted delivery and a therapeutic effect on MUC1-positive breast
cancer cells [70]. The aptamer-MSNs-DOX delivery system is also performed by modifying
an aptamer targeting epithelial cell adhesion molecule (EpCAM) to DOX-loaded MSNEs.
Aptamer-MSN-DOX can be targeted to EpCAM-positive colon cancer cells, improve the
efficacy, and reduce toxic side effects [71]. Vivo-Llorca et al. modified MSNs with a MUC1
aptamer to overcome drug resistance for the targeted treatment of triple-negative breast
cancer (TNBC) [72]. Aptamer-functionalized MSNs for cancer targeted therapies are listed
in Table 1.

Table 1. Aptamer-functionalized MSNs for cancer targeted therapies.

Aptamers Payloads Cancers Reference
MUC1 Epirubicin (EPI) Breast cancer [70]
EpCAM DOX Colon cancer [71]
MUC1 Navitoclax TNBC [72]
MUC-1 Safranin O Breast cancer [73]
Colorectal cancer
EpCAM DM1 (CRC) [74]
HB-5 DOX Breast cancer [75]
Human acute
Sgc-8 DOX T-lymphocyte [76]
leukemia

AS1411 DOX MCF7 cells [77]
EpCAM DOX Human HT-29 tumors [78]
EpCAM miR-328 SW480 cells [79]
NCL-aptamer DOX Breast cancer [80]

MNPs are widely used nanomaterials [81,82], which were first proposed in the 1970s
for the clinical targeted treatment of cancer [81,83]. As tumor cells are sensitive to ris-
ing temperature, MNDPs can release heat through alternating magnetic field stimulation
after entering tumor cells, destroying the internal structure of tumor cells to kill cancer
cells [84-86]. A common strategy is coating poly(lactic-co-glycolic acid) (PLGA) nanoparti-
cles with MNPs. This MNPs system is loaded with a dual drug that is bound by aptamers,
which can effectively target the drug to the tumor cells for achieving the targeted therapy
effect [87]. Other statements are shown in Table 2.
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Table 2. Aptamer-functionalized MNPs for cancer targeted therapies.

Aptamers Payloads Targets Reference
AS1411 Curcurpm .and Pancreatic cancer [87]
gemcitabine
Aptamer-modified Ehrlich carcinoma
ASl4and AS42 Fe};G nanoparticles cells (58]
Lung
Sgc-8 DOX adenocarcinoma cells [89]
(A549)
Mucinl6 MUC16) Erlotinib Opvarian cancer cells [90]
Vascular endothelial
growth factor (VEGF)  VEGF DNA aptamer Opvarian cancer cells [91]
DNA

3.2. Organic Nanocarriers

Natural nanocarriers have higher biocompatibility and biodegradability, greater safety,
and physiological stability than inorganic nanocarriers. Organic nanocarriers with differ-
ent stimulation responses have been further applied and developed in the treatment of
cancer [64]. Therefore, it has been extensively and deeply studied. Organic nanocarriers
mainly include polysaccharides, liposomes, and synthetic polymer nanocarriers [92-94].

Polysaccharides are natural biopolymers that play different roles in microorganisms,
plants, and animals [95,96]. Polysaccharides are polymeric carbohydrates that are composed
of at least more than 10 monosaccharides bound by glycosidylic bonds. Polysaccharides
that are composed of the same monosaccharides are called isopolysaccharides, such as
starch, cellulose, and glycogen. Natural polysaccharides are excellent nanocarriers because
of their superior properties with availability, biocompatibility, and extraordinary biodegrad-
ability [97]. Due to these excellent properties, natural polysaccharides are widely used in
the design of nanocarriers and have a wide range of applications in the delivery and protec-
tion of biologically active compounds or drugs [98,99]. Chitosan is a representative kind of
matrix. In addition, natural polysaccharides can also be used as a targeted therapy through
mechanisms such as specific enzymatic hydrolysis, binding to receptors, pH triggering,
and mucosal adhesion [100]. For example, the MUC1 aptamer was used to functionalize
chitosan-coated human serum albumin nanoparticles to obtain a selective drug carrier for
tumors that were overexpressing MUCI. Besides, chitosan combined with aptamer-coated
nanoparticles have strong cytotoxicity and can be used as a potential target tumor drug
delivery system [101].

Liposomes are widely used in medicine as nanocarrier systems. Liposomes are vesi-
cles with an aqueous volume that is completely enclosed by a phospholipid membrane.
Liposomes range in size from 30 nm to a few microns and can be single or multilayered,
where each layer is a bilayer [102]. They play a unique role in combatting drug resistance
and improving drug stability [103]. Lipid-based systems include liposomes, solid lipid
nanoparticles (SLNs), and cationic liposomes (CLPs). Encapsulation or conjugation of
liposome nanocarriers can prolong the half-life of antitumor drugs in blood circulation
and significantly improve the stability of drugs in vivo. The aptamer AS1411 was coupled
to polyethylene glycolpegylated (PEGylated) CLPs and used as a targeting probe ASLP
(AS1411-PEG-CLPs). In addition, the novel siRNA delivery system targeting nucleolar
proteins by AS1411 is a potential therapeutic strategy for melanoma [104]. Representative
aptamer-functionalized liposomal nanocarriers for cancer targeted therapy are shown in
Table 3.



Pharmaceutics 2022, 14, 2561

7 of 19

Table 3. Aptamer-functionalized liposome nanocarriers for tumor targeted therapies.

Aptamers Nanocarriers Payloads Cancers References
Anti-BRAF
AS1411 PEGylated CLPs SiRNA (siBraf) Melanomas [104]
AS1411 PEGylated SLNs  Docetaxel (DTX) CRC [105]
Oxaliplatin Hepatocellular
Al5 PEGylated SLNs ( O)I() A) carcinoma [106]
(HCCO)
AS1411 PEGylated Paclitaxel (PTX)  Renal carcinoma [107]
liposome
PTX and S
A15 CLPs Survivin siRNA Brain glioma [108]

anti-CD44 and

EGER aptamers SLNs DOX Breast cancer [109]

Synthetic polymer nanocarriers mainly include semi-synthetic or synthetic polymers
PLGA-PEG, N-(2-hydroxypropyl) methylacrylamide (HPMA), polyacrylamide (PAM), and
polyetherimide (PEI), which also have the characteristics of biocompatibility, biodegrada-
tion and high drug loading. Polymer nanocarriers with different diameters and shapes can
be synthesized or self-assembled by some effective methods for the loading and delivery
of different anticancer drugs. There are many reports on the synthesis of polymers by
aptamer binding. The binding of polyethyleneimine to gold nanoparticles (AuNPs) that
were functionalized with aptamer AS1411 and DOX (PEI-g-PEG) is a promising polymer
composite strategy. The prepared AS1411-g-DOX-g-PEI-g-PEG@AuNPs nanoparticles have
a diameter of 39.9 nm and can stably exist in water and cellular media, which improves
the stability of DOX-AulNPs. In the cell experiment, the cancer cell (A549) can be elimi-
nated [110]. Other studies on aptamer functionalization of synthetic polymer nanocarriers
for cancer therapies are listed in Table 4.

Table 4. Aptamer-functionalized synthesis polymer nanocarriers for cancer therapies.

Aptamers Nanocarriers Payloads Cancers References
MUC1 PLA-PEG DOX Lung cancer [111]
Poly(amino Tanshinone II-A
EpCAM acid)s NPs (TSIIA) CRC [112]
AS1411 PA-Apt-CHO- PA Breast cancer [113]
PEG
anaplastic large
CD30 PEG-PLGA DOX cell lymphoma [114]
(ALCL)
Triplex forming
A10 PLGA oligonucleotides  Prostate cancer [115]
(TFO)
5-fluorouracil .
AS1411 PEI (5-FU) Gastric cancer [116]

3.3. DNA Nanostructures as Nanocarriers

DNA nanostructures, which can penetrate cell membranes, are an excellent strategy as
nanocarriers. DNA 3D tetrahedron nanostructures have recently generated interest in DNA
nanotechnology. DTNs combined with the AS1411 aptamer as capture probes can achieve
efficient capture of cancer cells, and this DTNs combined with fluorescent materials can be
used for the early diagnosis and clinical treatment of cancer [117]. Gong et al. designed a
bimolecular G-tetramer (G4) and adenosine triphosphate (ATP) aptamer as a logical control
unit to develop intelligent DNA nano-assembly controlled by YES-AND logical circuits,
which has great prospects for intelligent anticancer drug delivery [118]. Specific binding
of PD-L1 and Pcsk9 siRNA on well-defined TDNs by DNA hybridization can target the
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release of immune cells to colon cancer cells and contribute to the treatment of CRC [119].
Other aptamer-targeted cancer therapies that are based on DNA tetrahedral nanocarriers
are listed in Table 5.

Table 5. Aptamer-functionalized DNA tetrahedron nanocarriers for cancer therapies.

Aptamer Payloads Cancers References
Aptamer cluster DOX Breast cancer [120]
AS1411 DOX HelLa and 4T1 cells [121]
AS1411 Cy3 and Cy5 Breast cancer [122]
anti-HER2 Maytansine HER2-positive cancer [123]
anti-MUC1 DOX Breast cancer [124]
Gint4.T DOX Glioma [125]
Pegaptanib Pegaptanib Oral cancer cell [126]
AS1411 5-FU Bbreast cancer [127]
MUC1 and AS1411 DOX Breast cancer [128]
SL2B DOX CRC [129]
MUC1 DOX Breast cancer [130]

3.4. Disadvantages and Challenges of Nanocarriers

Despite the unique advantages of nanocarriers in the delivery of active anticancer
drugs, only a few studies have emerged. For instance, liposomes can improve drug stability
in vivo, but they are not stable enough in individual storage, their encapsulation rate is
low, and their drug load is small. PEI nanocarriers have made limited progress in clinical
practice due to their toxicity and in vivo instability. In inorganic nanocarriers, how to
improve the biodegradability of MSNs is an urgent problem to be solved. The preparation
process of MNPs is complicated and the particle morphology and structure are not easy
to control. In addition, they are vulnerable to oxidation and acid and alkali corrosion
during storage. In summary, how to simplify the preparation of nanocarriers, reduce the
difficulty of storage, and improve the drug loading rate and biodegradability is still a topic
of research in the field of nano-drug delivery systems.

4. Aptamer Targeting Strategy for Tumor Microenvironment

Compared with normal tissues, the internal tissues of tumors have a very complex and
highly heterogeneous microenvironment due to abnormal metabolism and proliferation at
the tumor site [131,132]. Its internal characteristics mainly include abnormal expression of
adenosine triphosphate (ATP), glutathione (GSH), and reactive oxygen species (ROS).

During the course of cancer development and progression, ATP, a major metabolite
adenosine, and possibly other nucleotides are actively secreted, passively released, or
generated in the extracellular environment and play key roles as extracellular messengers.
In healthy tissues, the extracellular accumulation of nucleotides and nucleosides is almost
negligible. In contrast, ATP and adenosine accumulate at high levels at sites of inflammation
and tumors. Thus, the overexpression of ATP can be used as a target that is recognized
by aptamers for tumor-targeted drug delivery [133]. For instance, using ATP and MUC1
aptamers that were immobilized on the surface of MSNs. The ATP aptamers leave the
surface of MSNs and start drug release after cancer cells have mediated endocytosis through
MUC1 receptors [134]. In addition, the AS1411-ATP aptamer chimera can be used as a
novel approach to selectively deliver DOX to cancer cells, a strategy that has the potential
to increase DOX efficacy and reduce toxicity to normal cells [135].

With respect to cancer, GSH has dual effects in its progression. Excessive reduced
glutathione promoted tumor progression, and elevated levels correlate with increased
metastasis [136,137]. Thus, glutathione levels can be used to detect cancer progression and
can also be used as a delivery target for antitumor drug delivery systems [138,139]. Experi-
ments on human breast cancer cells in vitro showed that glutathione binding RNA aptamer
is expected to develop into an effective anticancer and chemotherapy drug [140]. DOX was
inserted into an ATP aptamer DNA scaffold and then modified to obtain poly(oxyethylene)-
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imide (POEI)/DOX/ATP aptamer NPs targeting 3CDIT. The dual responsive release of
GSH and ATP made DOX enriched in tumor cells, thus ensuring the effectiveness and
safety of glioma chemotherapy [141]. The use of an MNP binding aptamer (MNP /SGc8-SP)
to detect glutathione content and expression is a promising and efficient targeted tumor
delivery system [142].

ROS are a series of molecules that are produced by intracellular oxidative metabolism,
including singlet oxygen (primary excited state), superoxide anion (single-electron state),
hydroxyl radical (three-electron state), and hydrogen peroxide (two-electron state) [143,144].
In the TME, a low levels of ROS play important roles in signaling, cell proliferation, and
revascularization. The gradual elevation of ROS can also promote tumor cell proliferation
and metastasis [145,146]. Over-expressed ROS can damage the DNA of cancer cells, leading
to apoptosis and tumor necrosis to a certain extent. Tumor cells have fast growth rate, strong
reproductive ability and strong metabolic capacity. Besides, their demand for nutrients is
higher than that of normal cells. Therefore, ROS are closely related to various stages of
tumors, and the expression level of ROS can be used as a target for aptamer nano-drug
delivery systems. For example, phorbol-12-myristate-13-acetate (PMA) was released in
HL-60 cancer cells to induce the production of ROS, after the aptamer on MSNs specifically
recognized and targeted binding to HL-60 cancer cells. ROS effectively induced apoptosis
in HL-60 cells [147]. A priming strategy was developed to selectively kill tumor cells by
combining singlet oxygen quenching MnO, with a tumor cell-targeting aptamer. Aptamers
on the surface of nanoparticles can recognize proteins on the surface of tumor cells and
specifically bind to the induced singlet oxygen production "on-off" switch, which produce
high concentrations of ROS at the tumor site to kill the target tumor cells [148].

5. Aptamers Specific to Important Crucial Cancer Biomarkers for Targeted Drug
Delivery

Cancer biomarkers are molecules that indicate the abnormal cancer status and play
important roles in many biological processes, including cell proliferation, cell migration
and cell—cell interactions [149-153]. Most cancer biomarkers are proteins [154]. Aptamers
with high specificity and affinity for certain tumor surface proteins can be selected from the
existing aptamers or DNA /RNA libraries as molecular recognizers to enhance the targeting
of nano-drug vectors [155-157]. These biomarkers can serve as reliable targets for aptamer
drug delivery systems because of the high binding capacity and specificity of aptamers.
Specifically, numerous aptamers target cancer-specific signature markers such as human
cluster of differentiation antigen 133 (CD133), CD44, and EpCAM. This section lists several
representative tumor biomarkers and the corresponding research on aptamer targeting
strategies, as well as some other novel research applications (Figure 5).

CD133, a glycoprotein with five transmembrane structural domains that was iden-
tified from mouse neuroepithelial stem cells and human hematopoietic stem cells, is a
widely recognized tumor stem cell marker [158-166]. CD133-coordinated aptamers can be
used for the detection of some tumors and targeted delivery of chemotherapeutic agents.
The aptamer targeting CD133 was hybridized with partial complementary paired RNA
(ssRNA) and modified on the surface of quantum dots (QDs) and AuNPs to construct
aptamer nanosensors [167]. PLGA-PEG NPs coupled with a paclitaxel-loaded CD133
aptamer (N-Pac-CD133) were designed to eliminate lung cancer stem cells, and the re-
sults showed that N-Pac-CD133 had significantly enhanced targeting and efficacy against
lung cancer stem cells [168]. Zahiri et al. prepared a dendritic MSNs-based (DMSN-
based), pH-responsive nanoparticle that was functionalized with a CD133 aptamer that
was released due to pH changes after endocytosis by tumor cells [169]. A propranolol
aptamer-loaded CD133 polylactic acid-glycolic acid copolymer nanoparticle (PPNCD133)
was designed for the treatment of infantile hemangioma and showed promising effects on
hemangioma [170]. A PEGylated acetylated carboxymethyl cellulose conjugate of SN38 (7-
ethyl-10-hydroxycamptothecin) was developed to covalently bind to an aptamer targeting
CD133. This nanoplatform was used to specifically deliver SN38 to colorectal cancer cells.
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Ligand-modified PEG-AcCMC-SN38 nanoparticles with a size of less than 200 nm showed
enhanced cellular uptake in CD133-positive HT29 cell lines. In conclusion, the prepared
Apt-PEGAcCMC-SN38 can be considered as a promising targeted delivery system for SN38
prodrugs [171].
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Figure 5. Aptamers recognize biomarker acceptors and release drug.

CD44 is a transmembrane molecule with multiple isoforms that overexpresses in
many tumors and promotes tumor formation by interacting with the TME [172-177]. CD44
has been implicated in malignant processes including cell motility, tumor growth, and
angiogenesis. Alshaer et al. successfully conjugated a 2'-F-pyrimidine-containing RNA
aptamer (Aptl) targeting CD44 to the surface of PEGylated liposomes using the thiol-
maleimide click reaction. Flow cytometry and confocal imaging were used to detect the
uptake of Aptl-Lip by cancer cells. The results showed that the Aptl-Lip was prepared in
this article and has higher sensitivity, selectivity and potentiality as a specific drug delivery
system [178]. Kim et al. conducted an attractive study of drug-loaded liposomes linked
with two DNA aptamers that targeted the surface marker transmembrane glycoprotein
MUCT on breast cancer cells and the surface glycoprotein CD44 antigen on breast cancer
stem cells (CSCs). Dual-aptamer-conjugated liposomes (referred to as dual-aptamersomes)
were prepared to encapsulate DOX and tested for doxorubicin delivery to 3D cultured
breast cancer cells and CSCs. The cytotoxicity of dual-Apt-DOX on CSCs and cancer
cells was significantly higher than that of liposomes lacking aptamers [179]. Darabi et al.
designed SLNs containing DOX that was decorated with anti-EGFR/CD44 double RNA
aptamers. The results indicated that SLNs/DOX/Dexa/CD44/EGFR was a promising new
enhanced anticancer delivery system that warranted further clinical trials [109].

An epithelial cell adhesion molecule (EpCAM) is an antigen that is expressed in
cancer stem cells and epithelial cells [180]. It was first discovered in 1979 on colon cancer
cells [181]. EpCAM is expressed frequently and at high levels in various cancers but at low
levels in normal cells [182]. These characteristics make it a biomarker and a therapeutic
target for cancer cells [183]. For instance, Zhao et al. developed a cationic liposome-based
nanoparticle that was loaded with miR-139-5p (miR-139-5p-HSPC/DOTAP /Chol/DSPE-
PEG2000-COOH nanoparticles, MNPs) and surface that was decorated with EpCAM Apt
(miR-139-5p-EpCAM Apt-HSPC/DOTAP /Chol/DSPE-PEG2000-COOH NPs, MANPs)
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for the CRC targeted treatment [184]. In addition, an EpCAM RNA aptamer-conjugated
PEGylated liposomal DOX (ER-lip) was also designed for targeted cancer therapy, which
demonstrated that ER-lip could promote the survival of animal models and reduce the
tumor growth rate. This ER-lip can be used as an ideal drug delivery system for the
treatment of tumors with high expression of EpCAM [185]. In the study by Khezrian
et al., the surface-active hydrophilic side of functional amphiphilic Janus nanoparticles
(JNPs) was functionalized with aptamers against EpCAM to deliver DOX to HT29 cells of
metastatic colorectal cancer [186].

6. Conclusions

Due to the advantages of DNA/RNA aptamers in biological recognition and binding,
they are widely used in intelligent targeted drug delivery, and have become a research
hotspot of biological targeting materials. The aptamer derivatives that have been designed
and synthesized can specifically recognize tumor markers such as tumor surface glycopro-
teins. Furthermore, aptamer derivatives play a unique role in the detection of cancer stem
cells and the targeted delivery of chemotherapy drugs.

However, the limitations of aptamers in clinical application still exist. To date, the
stability and security of the systemic administration of aptamers have not been approved
by regulatory agencies such as the FDA. The FDA has only registered one aptamer drug
for local administration at the site of action. Furthermore, the affinity and selectivity of
aptamers are key factors for targeted drug delivery. Nucleic acid aptamers that are bound or
immobilized on nanostructures may change their three-dimensional conformation, leading
to changes in affinity and selectivity. In addition, cancer surface biomarkers are highly
inconsistent and may be differentially expressed between individuals. Therefore, there is
no universal law for the affinity and selectivity of aptamers in cancer therapy, which cannot
be determined by a single study expanding into a field. With the progress of technology,
these problems will be properly solved.
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5-FU 5-fluorouracil

ALCL  anaplastic large cell lymphoma
Apt aptamer

ATP adenosine triphosphate
AuNPs gold nanoparticles
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CD133 differentiation antigen 133

CLPs cationic liposomes

CRC colorectal cancer

CSCs cancer stem cells

CTCs circulating tumor cells

DOX doxorubicin

DTNs DNA tetrahedron nanostructures
DTX docetaxel

EGFR epidermal growth factor receptor
EpCAM epithelial cell adhesion molecule

EPI epirubicin

FITC fluorescein isothiocyanate

G4 G-tetramer

GSH glutathione

HCC hepatocellular carcinoma

HPMA  N-(2-hydroxypropyl) methylacrylamide
JNPs janus nanoparticles

MNPs magnetic nanoparticles

MREs molecular recognition elements

MSNs mesoporous silica nanoparticles

MUC1 mucin 1
MUC16 mucinlé

NPs nanoparticles

OXA oxaliplatin

PA pyrochlorophyll A

PAM polyacrylamide

PCR polymerase chain reaction
PEG polyethylene glycolpegylated
PEI polyetherimide

PLGA poly(lactic-co-glycolic acid)
PMA phorbol-12-myristate-13-acetate

PTX paclitaxel
QDs quantum dots
ROS reactive oxygen species

SELEX exponential enrichment

siBraf anti-BRAF siRNA

SLNs solid lipid nanoparticles

ssRNA  partial complementary paired RNA
TFO triplex forming oligonucleotides
TME tumor microenvironment

TNBC triple-negative breast cancer

TSIIA tanshinone II-A

VEGF vascular endothelial growth factor
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