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Abstract: The purpose of the present study was to experimentally confirm the thermodynamic
correlation between the intrinsic liquid–liquid phase separation (LLPS) concentration (SLLPS

0 ) and
crystalline solubility (Sc

0) of drug-like molecules. Based on the thermodynamic principles, the
crystalline solubility LLPS concentration melting point (Tm) equation (CLME) was derived
(log10SC

0 = log10SLLPS
0 − 0.0095(Tm − 310) for 310 K). The SLLPS

0 values of 31 drugs were newly
measured by simple bulk phase pH-shift or solvent-shift precipitation tests coupled with laser-
assisted visual turbidity detection. To ensure the precipitant was not made crystalline at <10 s, the
precipitation tests were also performed under the polarized light microscope. The calculated and
observed log10 SC

0 values showed a good correlation (root mean squared error: 0.40 log unit, absolute
average error: 0.32 log unit).

Keywords: liquid–liquid phase separation; intrinsic solubility; melting point; drug-like

1. Introduction

Intrinsic aqueous solubility (Sc
0) is one of the most important physicochemical prop-

erties of a crystalline drug. Many Sc
0 prediction methods have been reported in the litera-

ture [1–3]. In most cases, Sc
0 is directly predicted from the chemical structure by empirical

statistic approaches [4–6]. However, even though this approach has been investigated for
more than several decades, Sc

0 prediction is still challenging [7].
An alternative approach would be to separate the solubilization process into the

melting and solvation terms based on the theory of thermodynamics (Figure 1).

Figure 1. Thermodynamic scheme of crystalline drug solubilization.

The general solubility equation (GSE) is one of this kind of stepwise prediction ap-
proach. Based on the thermodynamic principles, GSE has been formulated as [8],

log10SC
0 = 0.5 − log10Poct − 0.01(Tm − T) (1)
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where Tm is the melting point, T is the temperature, and Poct is the octanol/water partition
coefficient. GSE was derived from the thermodynamic principles without parameter fitting.
The constant of the GSE (0.5) is attributed to the solubility of a drug in octanol. When a
liquid-state drug is completely miscible in octanol, the solubility of the liquid-state drug in
octanol is expressed as 0.5 [9].

One merit of this kind of stepwise prediction approach is that it can be used to
evaluate the relative contribution of the solvation and crystal lattice energy terms such
as 0.5 − log10Poct and 0.01(Tm − T) in GSE, respectively. Therefore, it is of great help to
navigate drug design. In addition, it also helps formulation design because a solubilizing
formulation suitable for a drug differs depending on the cause of poor solubility being
solvation or crystal lattice energy. Another merit of the stepwise approach is that the
intermediate parameters such as Poct and Tm can be directly experimentally measured to
confirm the prediction accuracy for each process.

Recently, the liquid–liquid phase separation (LLPS) of a drug attracted a lot of attention
in drug research [10–14]. Several methods have been reported to measure the intrinsic LLPS
concentration (SLLPS

0 ) [15]. As explained in the Theory section, LLPS is synonymous with
the solvation phenomena shown in Figure 1. Therefore, in theory, Sc

0 can be approximately
described by SLLPS

0 and melting point (Tm) (see Theory section). However, the accuracy of
this approximation has not been experimentally confirmed for drug-like molecules. This
information is important for clarifying which energy term is responsible for the inaccuracy
of Sc

0 prediction, which may lead to breakthroughs in in silico predictions.
The purpose of the present study was to experimentally confirm the thermodynamic

correlation between the intrinsic liquid–liquid phase separation (LLPS) concentration
(SLLPS

0 ) and crystalline solubility (Sc
0) of drug-like molecules. In this study, the SLLPS

0 values
of 31 drugs were newly measured by a simple precipitation test using laser-assisted visual
turbidity detection (LAVTD).

2. Theory

The intrinsic solubility ratio of a crystalline drug (Sc
0) and a liquid drug (SL

0 ) equals the
ideal solubility ratio of the crystal drug (Xc

0) and the liquid drug (XL
0 ),

Sc
0

SL
0
=

Xc
0

XL
0

(2)

The ideal solubility is the mole fraction solubility of a drug in an ideal solution (in the
liquid drug). By rearranging this,

log10SC
0 = log10SL

0 + log10
Xc

0

XL
0

(3)

Assuming that the change in heat capacity upon melting is equal to zero [16], the ideal
solubility ratio (Xc

0/XL
0 ) can be estimated as,

log10
Xc

0

XL
0
= −∆Sm

Tm − T
2.303RT

(4)

where ∆Sm is the entropy of melting, and Tm is the melting point.
Approximating SL

0 by the intrinsic liquid–liquid phase separation concentration (SLLPS
0 ),

Sc
0 is expressed as

log10SC
0 = log10SLLPS

0 − ∆Sm
Tm − T
2.303RT

(5)

This formula is hereinafter referred to as the crystalline solubility LLPS concentration
melting point equation (CLME). It should be noted that SLLPS

0 and SL
0 do not exactly match

because water and a liquid phase drug are mutually miscible to some extent. In addition,
LLPS and the glass–liquid phase separation were not distinguished in this study [17].
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According to Walden’s rule, ∆Sm = 56.5 J/K·mol. Therefore, at 298 K (25 ◦C) and 310 K
(37 ◦C), Equation (5) becomes

log10SC
0 = log10SLLPS

0 − 0.0099(Tm − 298) (6)

log10SC
0 = log10SLLPS

0 − 0.0095(Tm − 310) (7)

It should be noted that CLME was derived from the thermodynamic principles without
any parameter fitting.

3. Materials and Methods
3.1. Materials

Sodium hydroxide aqueous solution (8 mol/L) (NaOH), 6 mol/L hydrochloric acid
(HCl), sodium chloride (NaCl), sodium dihydrogen phosphate dihydrate (NaH2PO4 2H2O),
N,N-dimethylacetamide (DMA), boric acid, methanol, 0.1% trifluoroacetic acid-acetonitrile,
(S)-(+)-naproxen, diphenhydramine hydrochloride, haloperidol, ibuprofen, indomethacin,
ketoprofen, niflumic-acid, papaverine hydrochloride, (±)-propranolol hydrochloride, qui-
nine, and warfarin sodium were purchased from FUJIFILM Wako Pure Chemical Corpo-
ration (Osaka, Japan). 2-Naphthoic acid, acemetacin, bifonazole, bupivacaine hydrochlo-
ride, carprofen, chlorpromazine hydrochloride, diclofenac sodium salt, dipyridamole,
fenofibrate, flufenamic-acid, flumequine, flurbiprofen, furosemide, glipizide, ketoconazole,
ketotifen fumarate, losartan potassium, loxoprofen, mefenamic-acid, meloxicam, phenylbu-
tazone, probenecid, procaine hydrochloride, procaine, propafenone hydrochloride, re-
bamipide, sulfasalazine, sulindac, thioridazine hydrochloride, and verapamil hydrochlo-
ride were purchased from Tokyo Chemical Industry (Tokyo, Japan). Meclofenamic-acid
sodium salt and phenytoin sodium were purchased from Sigma-Aldrich (Arklow, Ireland).
Benzocaine, lidocaine hydrochloride, and terbinafine hydrochloride were purchased from
Combi-Blocks (San Diego, CA, USA). Orphenadrine hydrochloride was purchased from
Chem Cruz (Huissen, Netherlands). 0.1% trifluoroacetic acid-distilled water was purchased
from Kanto Chemical Co., Inc. (Tokyo, Japan). Pramoxine hydrochloride was purchased
from Cayman Chemical (Ann Arbor, MI, USA). Warfarin free acid was prepared by adding
1 N HCl to warfarin sodium dissolved in distilled water. Propafenone free base was
prepared by adding 1 N NaOH to propafenone hydrochloride dissolved in distilled water.

3.2. Methods
3.2.1. Crystallization Time Measurement

Before the SLLPS
0 measurements, the crystallization time of 47 drugs was measured

by performing the precipitation test under the polarized light microscope (PLM). In the
pH-shift precipitation method, an ionizable drug was dissolved in distilled water as a
salt form or by adding 1–3 Eq of NaOH (for weak acids) or HCl (for weak bases). A
total of 1.0 µL of 1 N HCl (for weak acids) or 1 N NaOH (for weak bases) was dropped
onto a glass slide, then the drug solution (9.0 µL) was added and covered with a cover
glass. In the solvent-shift precipitation method, an un-dissociable drug was dissolved in
N,N-dimethylacetamide. Distilled water (19.8 µL) was added to the drug solution (0.2 µL).
The drug concentration was set to 30 mM, except for propafenone (20 mM), lidocaine
(200 mM), terbinafine (18 mM), fenofibrate (198 mM), and haloperidol (2 mM). For the
measurements at 310 K, the temperature was maintained by a glass plate heater (BLAST
Inc., Kanagawa, Japan). The precipitants were monitored under a PLM (crossed-Nicols
with a sensitive-tint plate) (Olympus CX-43, Olympus Corporation, Tokyo, Japan). The
solid state of the precipitant was diagnosed as crystalline when polarization was observed.

3.2.2. SLLPS
0 Measurement by the Precipitation Tests Coupled with Laser-Assisted Visual

Turbidity Detection (LAVTD)

The drugs with a crystallization time > 10 s were selected for the SLLPS
0 measurements.

The SLLPS
0 value was measured by the bulk phase pH-shift precipitation tests or the solvent-
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shift precipitation tests coupled with laser-assisted visual turbidity detection (LAVTD)
as previously reported [18]. Each drug solution was prepared as described above. For
the measurements at 310 K, the drug solution, 1 N NaOH, 1 N HCl, and glass test tubes
were pre-heated in a water bath. In the case of ionizable drugs, 1 N NaOH or 1 N HCl
(100 µL) was added to the glass test tube, then set to the LAVTD device (Figure S1). The
drug solution (900 µL) was then added to the glass test tube and immediately vigorously
shaken. In the case of un-dissociable drugs, the drug solution (10 µL) was added to the
glass tube, then distilled water (990 µL) was added. Turbidity was visually detected within
10 s with the assistance of a red laser (635 nm). The concentration of the drug solution
was changed with 0.001 to 0.1 mM increments to give 3 significant digits. The SLLPS

0 value
was defined as the drug concentration at which the solution started to show turbidity. The
SLLPS

0 measurement was performed in triplicate.
To compare with the literature data, SLLPS

0 was also measured using the same medium
conditions as the reference [19]. Diclofenac sodium was dissolved in methanol. The drug
solution was added to the glass test tube (10 µL). Phosphate buffer (990 µL, pH 2.0, PO4:
50 mM, NaCl: 128 mM) was added to the glass test tube and immediately vigorously
shaken at 298 K. The SLLPS

0 value was determined as described above.

3.2.3. SLLPS
0 Measurement by Turbidity Detection Using a UV/VIS Spectrophotometer

Each drug solution was prepared as described above. A 1 N NaOH or 1 N HCl solution
(70 µL) was added to the quartz cell and set to a UV/VIS spectrophotometer (UV-1850,
Shimadzu Corporation, Kyoto, Japan). A drug solution (630 µL) was rapidly added to
the quartz cell and the absorbance was measured at 500 nm within 10 s at 298 K. This
wavelength was set to be higher than the absorption wavelength of each drug. The SLLPS

0
measurement was performed in triplicate.

3.2.4. Intrinsic Solubility Measurement

Crystalline free-form drugs were used for the intrinsic solubility measurement. The
intrinsic solubility was measured based on the harmonized protocol as previously re-
ported [20]. Each drug was added to a test solution (10 mL) in a 15 mL tube. The samples
were rotated at 40 rpm at 310 K except for procaine (1800 rpm). Before filtration, the sample
was allowed to stand still for 1 min. The sample was then filtered (hydrophilic PVDF,
0.22 µm pore size). The first few drops were discarded to avoid filter adsorption [21]. The
drug concentration in the filtrate was determined by UV spectroscopy (UV-1850, Shimadzu
Corporation, Kyoto, Japan). The residual solid was collected by vacuum filtration and
analyzed by differential scanning calorimetry (DSC). The composition of the medium,
the amount of the added drug, the incubation time, and the detection wavelength are
summarized in Table 1. The achievement of equilibrium was confirmed by time-course
measurements up to 48 h.

Table 1. Experimental conditions of intrinsic solubility measurement.

Drug Medium Amount of Drug (mg) Incubation Time (h) Wavelength (nm)

Bifonazole pH 9.0 borate buffer 1 30 72 255
Carprofen 0.1 N HCl 30 48 300

Flurbiprofen 0.1 N HCl 30 48 248
Loxoprofen 0.1 N HCl 50 48 220

Phenylbutazone 0.1 N HCl 30 48 264
Procaine 0.01 N NaOH 500 1 280

Propafenone 0.01 N NaOH 30 48 305
Quinine 0.01 N NaOH 100 48 350

Sulfasalazine 0.1 N HCl 30 48 369
Sulindac 0.1 N HCl 50 48 331
Warfarin 0.1 N HCl 30 48 275

1 The concentration of boric acid was adjusted to 50 mM.
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Procaine showed hydrolysis in alkali conditions [22]. Therefore, the concentration of
procaine was determined by HPLC (Shimadzu Prominence LC-20 series; Colum: Zorbax
Eclipse Plus C18, 2.1 × 50 mm, particle size: 3.5 µm; mobile phase: acetonitrile/0.1% triflu-
oroacetic acid (5: 95); flow rate: 0.6 mL/min; temperature: 40 ◦C; injection volume: 10 µL).
The achievement of equilibrium was confirmed by time-course measurements.

3.2.5. Differential Scanning Calorimetry Measurement

The solid form of the residual particles in the intrinsic solubility measurement was
determined by differential scanning calorimetry (DSC). The sample was placed in a non-
sealed aluminum pan and analyzed by DSC (Shimadzu DSC60 plus, Shimadzu Corporation
Kyoto, Japan) under nitrogen gas (50 mL/min). Heat flow was set to 10 ◦C/min.

3.2.6. Thermodynamic Correlation between the Intrinsic Liquid–Liquid Phase Separation
Concentration and Crystalline Solubility

The Sc
0 value was calculated by CLME (Equation (7)). The experimental Tm values

were obtained from the literature when available (Table 2). The Sc
0 values at 310 K were

also obtained from the literature when available. The correlation between the calculated
and observed Sc

0 values was evaluated by the average absolute error (AAE), the root mean
square error (RMSE), and the coefficient of determination (r2). The AAE and RMSE were
calculated by

AAE =
∑
∣∣∣log10 Sc

0, calc − log10 Sc
0,obs

∣∣∣
N

(8)

RMSE =

√√√√∑
(

log10 Sc
0,calc − log10 Sc

0,obs

)2

N
(9)

where the subscript calc and obs indicate the calculated and observed values.
The Sc

0 value was also calculated by GSE using the experimental log10Poct values in
the literature.

4. Results
4.1. Crystallization Time

Before the precipitation tests, the crystallization time for each compound was deter-
mined under PLM. The results are summarized in Table S1. Because LAVTD requires
10 s, the drugs that crystallized within 10 s were excluded from the following studies
(31 remained out of 47 drugs).

4.2. Validation of the Precipitation Tests Coupled with Laser-Assisted Visual Turbidity Detection

In LAVTD, the turbidity of a solution was detected by visual inspection. However,
visual detection could cause a measurement error. To validate LAVTD, turbidity mea-
surements were also performed by UV/VIS spectrometry for several drugs (diclofenac,
ibuprofen, papaverine, propafenone, and warfarin). The photograph of the LAVTD method
and the absorbance vs. concentration profiles measured by the UV/VIS spectrometry are
summarized in Figure 2. The SLLPS

0 value was determined as the concentration intercept
value. The SLLPS

0 of diclofenac, ibuprofen, papaverine, propafenone, and warfarin were
determined as 0.25 ± 0.00 mM, 0.64 ± 0.01 mM, 0.83 ± 0.00 mM, 0.38 ± 0.00 mM, and
0.56 ± 0.00 mM, respectively by the UV/VIS method. The SLLPS

0 values measured by
LAVTD were almost identical to those measured by the UV/VIS method (Figure 3). The
coefficient of determination was 0.997.

To further validate LAVTD, the SLLPS
0 value of diclofenac measured by LAVTD was

compared with the literature values measured by the UV/VIS method and the fluorescence
spectroscopy method [19]. The SLLPS

0 value measured by the LAVTD methods, the UV/VIS
method, and the fluorescence spectroscopy method were 0.20 mM, 0.18 mM, and 0.17 mM,
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respectively (at 298 K). Therefore, LAVTD yielded the SLLPS
0 value close to the previously

reported values.

Figure 2. (A) The photograph of LAVTD method at 298 K. (B) Concentration vs. absorbance profiles
in SLLPS

0 measurement by turbidity detection by UV/VIS spectroscopy at 298 K. The SLLPS
0 value was

determined as the concentration intercept value.

Figure 3. Comparison of the SLLPS
0 values measured with the UV/VIS method and the LAVTD

method (mean ± S.D., n = 3) (298 K).

4.3. Thermodynamic Correlation between the Intrinsic Liquid–Liquid Phase Separation
Concentration and Crystalline Solubility

The molecular weight (MW), acid–base dissociation constant (pKa), Tm, log10Poct,
log10SLLPS

0 , and log10SC
0 of each drug are summarized in Table 2. Many of the SLLPS

0
differed from the Sc

0 values more than 10-fold and up to 158-fold. The correlation between
the calculated and observed SC

0 values is shown in Figure 4. The drugs with a melting
point below 310 K were excluded from the analysis. In addition, terbinafine was excluded
because it was difficult to prepare the crystalline-free base due to its low melting point
(314 K). The AAE, RMSE, and r2 values are summarized in Table 3.
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The correlation between Poct and SLLPS
0 is shown in Figure 5. When the Poct value

increased, the SLLPS
0 value decreased.

Table 2. MW, pKa, Tm, Poct, SLLPS
0 , and SC

0 of model compounds.

Drugs MW pKa
1 Tm (K) log10Poct log10SLLPS

0 (M) log10SC
0 (M) Ref.

Atazanavir 705 4.5 (B) 481 5.8 −4.03 −5.83 [23,24]
Bifonazole 310 5.7 (B) 422 2 4.8 −4.70 ± 0.00 2 −5.42 ± 0.03 2 [25,26]
Carprofen 274 4.2 (A) 484 2 4.3 −3.66 ± 0.00 2 −4.80 ± 0.02 2 [27]
Celecoxib 381 11.1 (A) 437 3.4 −3.95 −5.50 [28–30]

Chlorpromazine 3 319 9.2 (B) <298 5.4 −4.70 ± 0.00 2 - [27]
Cilnidipine 493 None 387 5.7 −5.33 −6.89 [31–33]

Clotrimazole 345 5.9 (B) 417 5.2 −4.65 −5.80 [23,25,34]
Clozapine 327 3.8 (B), 7.5 (B) 458 4.1 −3.38 −4.57 [15,25,34]
Danazol 338 None 498 4.5 −4.43 −6.21 [35–38]

Diclofenac 296 4.0 (A) 453 4.5 −3.52 ± 0.00 2 −4.96 [18,27,39]
Diphenhydramine 3 255 9.1 (B) <298 3.4 −2.94 ± 0.00 2 - [27]

Dipyridamole 505 6.4 (B) 436 2.2 −3.80 ± 0.00 2 −4.70 [40–42]
Efavirenz 316 10.2 (A) 412 5.4 −4.23 −4.59 [15,43–45]

Enzalutamide 464 None between
pH 3–11 470 4.0 −4.04 −5.20 [46,47]

Felodipine 384 <2 415 5.6 −4.59 −5.61 [10,15,25,48]
Fenofibrate 361 None 354 4.6 −4.70 ± 0.00 2 −6.08 [49,50]

Flurbiprofen 244 4.0 (A) 388 2 4.2 −3.37 ± 0.00 2 −4.15 ± 0.01 2 [27]
Ibuprofen 206 4.4 (A) 349 4.0 −3.12 ± 0.00 2 −3.55 [27,51]

Ketoconazole 531 3.3 (B), 6.2 (B) 423 4.3 −3.80 ± 0.00 2 −5.31 [25,52–54]
Ketoprofen 254 4.2 (A) 368 3.2 −2.76 ± 0.00 2 −3.00 [25,55–57]
Ketotifen 309 6.7 (B) 430 2.1 −3.41 ± 0.00 2 −4.28 [58,59]
Lidocaine 234 8.0 (B) 342 2.4 −1.74 ± 0.00 2 −1.90 [27,60]
Loratadine 383 5.3 (B) 409 5.2 −4.70 −5.38 [15,41,61]
Losartan 423 3.2 (A) 457 3.5 −2.07 ± 0.00 2 −3.47 [62–65]

Loxoprofen 246 4.2 (A) 358 2 2.3 −2.21 ± 0.00 2 −2.22 ± 0.00 2 [66,67]
Meclofenamic-acid 296 4.1 (A) 530 5.9 −4.52 ± 0.00 2 −6.68 [27,68]

Miconazole 416 6.1 (B) 358 4.9 −4.88 −5.62 [25,35,69]
Orphenadrine 3 269 9.0 (B) <298 3.8 −3.26 ± 0.00 2 - [27]

Paclitaxel 854 None 493 3.9 −4.43 −6.38 [35,70,71]
Papaverine 339 6.4 (B) 421 3.0 −3.03 ± 0.00 2 −4.35 [27,72]

Phenylbutazone 308 4.4 (A) 379 2 3.3 −3.64 ± 0.00 2 −4.49 ± 0.01 2 [27]
Posaconazole 701 3.6 (B), 4.6 (B) 442 3.8 −4.89 −6.41 [73–75]
Pramoxine 3 330 7.1 (B) <298 3.6 −3.09 ± 0.00 2 - [27]

Procaine 236 2.3 (B), 9.0 (B) 333 2 2.1 −1.71 ± 0.00 2 −2.02 ± 0.01 2 [27]
Propafenone 341 9.3 (B) 364 2 4.6 −3.42 ± 0.00 2 −4.62 ± 0.03 2 [76,77]
Propranolol 259 9.0 (B) 369 3.5 −2.78 ± 0.00 2 −3.07 [27,78]

Quinine 324 4.2 (B), 8.6 (B) 449 2 3.5 −2.82 ± 0.00 2 −3.26 ± 0.00 2 [27]
Rebamipide 371 3.3 (A) 579 2.6 −3.09 ± 0.00 2 −5.29 [79–81]

Ritonavir 721 2.4 (B) 391 3.2 −4.58 −5.74 [15,82–84]

Sulfasalazine 398 2.4 (A), 8.0 (A),
10.9 (A) 532 2 3.6 −4.15 ± 0.00 2 −5.92 ± 0.04 2 [27]

Sulindac 356 4.1 (A) 460 2 3.4 −3.70 ± 0.00 2 −4.60 ± 0.00 2 [27]
Telaprevir 680 0.3 (B), 11.8 (A) 519 4.0 −3.87 −5.17 [17,85]

Terbinafine 3 291 7.1 (B) 314 6.2 −5.22 ± 0.00 2 - [25,86]
Thioridazine 3 371 8.9 (B) <298 5.3 −4.30 ± 0.00 2 - [87–89]

Verapamil 3 455 8.7 (B) <298 4.0 −4.10 ± 0.00 2 - [27]
Warfarin 308 4.9 (A) 436 2 3.5 −3.20 ± 0.00 2 −4.54 ± 0.01 2 [27]

1 A: acid, B: base. 2 Measured values in this study. The SLLPS
0 and SC

0 values were measured at 310 K. Detailed
information on the SC

0 measurements (DSC curves of residual particles, the pH values of suspension after reaching
equilibrium, and calibration curves) are summarized in Figure S4 and Figure 5, and Table S2. 3 Excluded from the
SC

0 prediction.
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Figure 4. Correlation between the calculated and observed SC
0 values at 310 K by (A) Equation (7)

(CLME with SLLPS
0 and Tm) and (B) Equation (1) (GSE using Poct). The black dotted line indicates the

calculated value equals the observed value.

Figure 5. Correlation between Poct and SLLPS
0 . The solid line is log10SLLPS

0 = 0.5 − log10Poct.

Table 3. Statistical correlation of CLME and GSE (N = 39).

CLME (with SLLPS
0 ) GSE (Poct)

AAE (log unit) 0.32 0.71
RMSE (log unit) 0.40 0.91

r2 0.90 0.56

5. Discussion

In this study, we first validated the bulk phase pH-shift and solvent-shift precipitation
tests coupled with laser-assisted visual turbidity detection (LAVTD). This method is simple,
rapid, robust, and requires minimum instrumental resources (only a red laser pointer).
Because LAVTD requires less than 10 s, it enables the SLLPS

0 measurements of rapidly
crystallizing drugs. However, visual detection could cause a measurement error. Therefore,
to validate LAVTD, the SLLPS

0 values were compared with those measured by the UV/VIS
spectrophotometric method and the fluorescence spectroscopy method. There was a good
agreement between the SLLPS

0 values measured by these methods.
In the pH-shift LLPS measurements, in the case of ionizable drugs, the pH value was

shifted by adding a small volume of 1 N HCl or 1 N NaOH to a drug solution (1:9). This
pH-shift procedure can avoid inducing a local high drug concentration that could facilitate
drug crystallization. In the case of un-dissociable drugs, a concentration drug solution in
DMA was diluted by adding distilled water (the final DMA concentration was 1.0%). In
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this case, a high drug concentration may be locally formed at the initial stage of dilution. In
this study, the LLPS concentration was sought by changing the initial drug concentration
rather than stepwise titration with a concentrated drug solution. Stepwise titration changes
the concentration of a rich solvent. In addition, during the stepwise titration process,
crystallization could be induced before reaching LLPS concentration.

In this study, to shift the pH value of a drug solution, 1 N HCl or 1 N NaOH was used
for weak acids and bases, respectively. Therefore, the SLLPS

0 measurement was conducted
at a pH where a drug is undissociated. In other words, LLPS observed in this study is a
phenomenon that undissociated non-electrolytes phases separately to form a drug-rich
phase (liquid drug phase). The drug-rich phase is a transient state before crystallization.
However, when LLPS was formed, a pseudo-equilibrium state was created between the
drug-rich phase and the drug molecules molecularly dissolved in water.

In this study, the SLLPS
0 values of 31 drugs were newly determined. These values were

combined with those reported in the literature to be used for the evaluation of CLME (a
total of 39 drugs). CLME appropriately described the SC

0 values. This result encourages
that in silico Sc

0 prediction can be improved by dividing the prediction scheme into two
processes, SLLPS

0 prediction and Tm prediction. The development of an in silico SLLPS
0

model is currently under investigation. For drug-like molecules, a correlation was observed
between Poct and SLLPS

0 (Figure 5). Therefore, the same parameters for Poct prediction from
chemical structure (hydrogen bonds, molecular volumes, etc.) might also be used to predict
SLLPS

0 [90,91]. A large amount of the SLLPS
0 data set is required to construct an in silico

model. The LAVTD-based method is suitable for high throughput (HTS) measurements.
The HTS SLLPS

0 measurement method is also currently under investigation.
Although the number of drugs used in this study was limited, CLME showed a

significantly better correlation than GSE (p = 0.0004, comparison of two independent
Pearson’s correlation coefficients) (Figure 4). In GSE, Poct is employed to represent the
solvation term. In the octanol phase, drug molecules are surrounded by octanol molecules
(octanol-drug mixture). On the other hand, in the case of LLPS, in the drug-rich phase,
drug molecules are surrounded by themselves (drug-drug mixture). As shown in Figure 1,
the solvation process is the same as the partitioning of a drug between the drug-rich phase
and the water phase.

There may be three possible ways to further improve the correlation by CLME. First, in
this study, the same ∆Sm value (56.5 J/K·mol) was used for all drugs. However, the ∆Sm val-
ues are different for each compound [92]. Second, the activity of the liquid phase (drug-rich
phase) saturated with water should be considered. SLLPS

0 is not exactly the same as SL
0

because water and a liquid drug phase are mutually miscible to some extent [93,94]. Third,
the heat capacity terms should be considered in the ideal solubility ratio calculation [95].

In this study, the SLLPS
0 values of drugs that crystallized within 10 s were not measured.

To measure the SLLPS
0 value of quickly crystallizing drugs, a crystallization inhibitor such as

polymers (e.g., polyvinylpyrrolidone) may be used [96]. However, the SLLPS
0 value varies

depending on the type and concentration of a polymer [97,98]. Therefore, the selection of
a polymer for SLLPS

0 measurements would be important. Alternatively, the results of this
study suggest that the SLLPS

0 value can be calculated from the SC
0 value and the melting

point when the SLLPS
0 value is difficult to measure.

In conclusion, SC
0 can be described by CLME with reasonable accuracy. The results

of this study are important for a good understanding of drug solubility and shed light
on the way to improve in silico SC

0 prediction. SLLPS
0 is a drug intrinsic parameter that

determines the maximum achievable concentration of molecularly dissolved drugs in
aqueous media. The SLLPS

0 measurement using LAVTD is simple and easy. It would be
especially useful for highly lipophilic drugs for which SC

0 and Poct measurements are often
difficult. Therefore, similar to the other drug intrinsic parameters such as pKa and Poct,
SLLPS

0 should be routinely measured in drug discovery.
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