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Abstract: Nonclinical trials are important to validate the efficacy and safety of medicinal plants. Sci-
entific toxicological studies with Piper vicosanum Yuncker have showed its safety; however, no studies
have indicated the analgesic or antiarthritic potential of the ethanolic extract of P. vicosanum leaves
(EEPV). The objective of the present work was to evaluate the antiarthritic and antinociceptive effects
of EEPV in experimental mouse models. The oral administration of EEPV (100, 300, and 700 mg/kg)
and dexamethasone (1 mg/kg) were performed in carrageenan-induced pleurisy, in formalin and
acetic-acid-induced nociception, and in zymosan-induced articular inflammation models in Swiss
mice. The EEPV (300 mg/kg) was tested in zymosan-articular inflammation, the complete Freund’s
adjuvant (CFA) inflammatory model, and in in situ intravitreal microscopy analysis of rolling and
adhesion events of leukocytes in the mesenteric microcirculation in mice. EEPV significantly inhib-
ited: (i) nociceptive response at phase 1 and 2, and also in the cold response in the formalin model;
(ii) abdominal contortion induced by acetic acid; (iii) mechanical hyperalgesia after 4 and 6 h, knee
edema after 6 h, and leukocyte migration in articular inflammation induced by zymosan. All doses
of EEPV reduced the leukocyte migration to the inflamed pleural cavity and knee edema 4 h after
the zymosan knee injection. The treatment with the EEPV significantly inhibited the CFA-induced
edema, mechanical and cold hyperalgesia, and NAG and MPO. The EEPV also significantly inhibited
carrageenan-induced leukocyte rolling and adhesion. The present study revealed, for the first time,
the antiarthritic and antinociceptive effects of the EEPV.

Keywords: Piper vicosanum; inflammatory response; articular inflammation; nociception

1. Introduction

The Brazilian National Health Surveillance Agency ensures the population’s health
by guaranteeing the safety of products and services, including the medicinal plants and
phytotherapeutic products [1,2]. The investigation of pharmacological activities of natural
products, obtained from medicinal plants, is essential in the search for new alternatives
for the treatment of diseases, reducing consumption, and, consequently, the incidence of
adverse effects of traditionally used drugs. The nonclinical and clinical trials can show the
safety and efficacy of new herbal products through toxicological studies that investigate
the safety in the use of these products [3].

Piper vicosanum Yuncker, a plant of Piperaceae family, is a little-explored species that
has shown a great therapeutic potential. Several plants of Piper genus are used as food and
in folk medicine to relieve bronchitis, intestinal pain, inflammatory conditions, and pain [4].
The composition of the essential oil obtained from P. vicosanum Yuncker leaves collected in
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the Brazilian Atlantic Forest [5] and in Cerrado [6] were investigated. Both oils obtained in
these studies were rich in monoterpenoids, such as limonene and other compounds [5,6].

In a toxicological analysis of the ethanolic extract of P. vicosanum leaves (EEPV), Wistar
rats during a 28-day treatment with EEPV did not exhibit clinical signs of toxicity. However,
some biomarkers of renal and liver functions were altered [4]. The antiedematogenic
effects of essential oil from P. vicosanum leaves (100 and 300 mg/kg) were revealed, and the
anxiolytic effect of EEPV was demonstrated, and this essential oil did not present in vivo
toxicity [6,7].

Since only few scientific studies related to the anti-inflammatory activity of the extract
of P. vicosanum were performed, the objective of this work was to evaluate its analgesic,
anti-inflammatory, and antiarthritic potential. The ethanolic extract from Piper vicosanum
leaves (EEPV) was tested in several models of experimental inflammation and nociception,
such as carrageenan-induced pleurisy, in formalin and acetic-acid-induced nociception, and
in situ mesenteric bed microcirculation models. The antiarthritic and anti-inflammatory
potential of EEPV was assayed in zymosan-induced articular inflammation and CFA-
induced persistent inflammation models in mice.

2. Materials and Methods
2.1. Preparation of the Ethanolic Extract of P. vicosanum Leaves (EEPV)

The species P. vicosanum was collected in February 2017 in Dourados, MS, Brazil
(coordinates 22◦12′37.8′ ′ S, 54◦55′2.6′ ′ W), and the specimen was deposited in the Federal
University of Grande Dourados (UFGD) herbarium (DDMS 4411). In addition, the use of the
species was registered and approved by the National System for the Management of Genetic
Heritage and Associated Traditional Knowledge (SisGen Registry number AE032EB).

Leaves (1430 g) were dried at room temperature, pulverized, and subjected to three
extractions by maceration with 70% ethanol for 7 days. The extract was concentrated in a
reduced-pressure rotary evaporator and dried in a hood [7]. A total of 203 g of ethanolic
extract were obtained, as previously described.

The phytochemical analysis was previously described in a study carried out by our
group [7], in which the presence of alkaloids, phenolic compounds, tannins, steroids, and
triterpenes was identified. In the present work we carried out the determination of the
content of phenolic compounds and flavonoids, and we performed the phytochemical
analysis of EEPV by HPLC-DAD.

2.2. Determination of the Content of Phenolic Compounds

For each 100 µL of sample, 1.5 mL of 2% sodium carbonate aqueous solution, 0.5 mL of
Follin–Ciocalteau reagent (1:10 v/v), and 1 mL of distilled water were added. It was allowed
to react for 30 min, and the reading was performed in the UV-VIS Global Trade Technology
spectrophotometer at a wavelength of 760 nm. The same procedure was performed for the
blank, replacing 100 µL of the sample with 100 µL of the solvent used in the preparation of
the solutions. The concentration was calculated by preparing an analytical curve, using
gallic acid as a standard. With the data, the linear regression was developed and the
straight-line equation was obtained, which had the data used in the calculation of the real
samples. The result was expressed in mg of gallic acid per g of lyophilized extract. From
these readings taken in the spectrophotometer, an average was taken, and the data were
obtained through the formula: y = a + bx, in which “y” refers to the reading made in the
spectrophotometer, “x” refers to the phenolic, “a” refers to white (0.0118), and “b” to a
constant, with “a” and “b” being related to gallic acid.

2.3. Determination of Flavonoid Content

For each 500 µL of sample, 1.5 mL of 95% ethyl alcohol, 100 µL of 10% aluminum
chloride, 100 µL of 1 mol·L−1 sodium acetate, and 2.8 mL of distilled water were added.
It was allowed to react at room temperature for 40 min and the reading was performed
on a UV-VIS Global Trade Technology spectrophotometer at a wavelength of 415 nm. The
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same procedure was performed for the blank, replacing 500 µL of the sample with 500 µL
of the solvent used to prepare the solutions. The concentration was calculated by preparing
an analytical curve, using quercetin as a standard. With the data, the linear regression
was developed and the equation of the line was obtained, which had the data used in
the calculation of the real samples. The result was expressed as mg of quercetin per g of
lyophilized extract. By means of the readings taken in the spectrophotometer, an average
was performed, and these data were calculated according to the formula: y = a + bx, where
“y” refers to the reading made in the spectrophotometer, “x” refers to the phenolic content,
“a” refers to blank (0.0121), and “b” to a constant.

2.4. Phytochemical Analysis by HPLC-DAD

The analysis was performed on a VARIAN chromatograph with a ternary pump
system, model 210, diode array detector (DAD), with scanning between 200 and 800 nm,
programmed at 254 nm. A Phenomenex C-18 column (4.6 mm × 250 mm, particle diameter
10 µm) and precolumn (25 mm× 3 mm) of the same phase as the column was used. Elution
was performed in a gradient system: MeOH/H2O from 5 to 100% methanol, taking 20 min
to reach 100% methanol, 5 min to 100% methanol, and 5 min to return to the initial condition.
The analysis time was 25 min. Pump flow rate of 1 mL/min and injected volume of 10 µL.
Samples were filtered with a 0.20 µm microfilter.

2.5. Animals

Male and female Swiss mice (weight between 25 and 30 g) were obtained from UFGD
central biotherium. These animals were transferred to the sectorial biotherium of the Faculty
of Health Sciences (FCS) of UFGD. They were kept in propylene boxes and maintained in
controlled light conditions (12 h light/dark) and temperature (mean 23 ± 2 ◦C), receiving
water and commercial feed ad libitum. On the day of the experiment, they were taken to the
laboratory for adaptation 60 min before the start of the experiment. Anesthesia was induced
with 20 µL of 10 mg/kg xylazine 2% + 100 mg/kg ketamine 10% intraperitoneally. When
the animals were to be euthanized, we used a solution of 100 µL xylazine 2% + 100 µL of
ketamine 10% intraperitoneally. The experiment was conducted according to the animal
rights guidelines with the approval of the UFGD Committee on Animal Ethics under
number 37/2017.

2.6. Formalin-Induced Nociception Test

For the formalin test, mice were divided in 5 groups of 6 mice each. The experimental
groups were treated with oral EEPV (100, 300 and 700 mg/kg); the vehicle group was
treated with oral sterile saline (0.9%) and the morphine group was treated with 5 mg/kg
subcutaneously. After 60 min of administration of the treatment, the animals received
intraplantar injections of formalin 2.5% (20 µL/animal) in the right rear paw. After ad-
ministration of formalin, the animals were placed individually under a glass funnel, and
the time the animals spent licking the right hind paw was timed in two phases (phase I:
0 to 5 min; phase II: 15 to 30 min). Time zero was considered immediately after formalin
injection. At the end of phase 2 (30 min), cold sensitivity tests (allodynia) were performed
with the application of 20 µL of acetone topically on the right hind paw. After 60 min, paw
edema analysis was performed using a plethysmometer (Insight®). At the end, the animals
were euthanized [8].

2.7. Acetic Acid-Induced Abdominal Writhing Test

For the abdominal writhing test, the animals were distributed in 5 groups of 6 mice
each. The EEPV groups were treated with oral doses of 100, 300, and 700 mg/kg. The
vehicle group was treated with sterile saline solution (0.9%) and the morphine group was
treated with 5 mg/kg subcutaneously. After 60 min, we administered acetic acid 0.8%
(0.1 mL/10 g) intraperitoneally and observed behavior for over 20 min [9].
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2.8. Carrageenan-Induced Pleurisy

The male mice were distributed in six groups of six mice each. The control and
naïve groups were treated with saline solution (0.9%), the groups were treated with oral
EEPV at 100, 300, and 700 mg/kg, and the reference group received dexamethasone at
1 mg/kg by the subcutaneous route (s.c.). All the animals (except the naïve group, which
received 100 µL of sterile saline 0.9% intrapleural) received 100 µL intrapleural injection of
carrageenan 1% (500 µg/cavity) 60 min after the treatments (Henriques et al., 1990). After
4 h, the animals were euthanized for collection of pleural exudates in 1 mL of PBS-EDTA.
Subsequently, samples were centrifuged at 2500 rpm for 10 min, the supernatants were
discarded, and the pellets were resuspended in 0.5 mL PBS-EDTA. Aliquots of 50 µL of
samples were taken for counting total leukocytes in a Neubauer chamber.

2.9. Zymosan-Induced Arthritis Model

Female Swiss mice were distributed into 6 groups of 5 animals each. The control and
naïve groups were treated with saline (0.9%), the treatment group was treated with EEPV
700 mg/kg orally, and the reference group received dexamethasone at 1 mg/kg i.p. After
60 min of treatment, all animals received 20 µL injections of zymosan (500 µg/articular
cavity) behind the suprapatellar tendon of the left knee space [10,11]. After 4 and 6 h of
induction, the animals had the edema volume measured using a digital micrometer; in
these times, the mechanical hyperalgesia was measured using a digital analgesimeter (Von
Frey). After 6 h of arthritis induction, the animals were euthanatized, and knee joints
were exposed by surgical incision and washed twice with 5 µL of PBS/EDTA. The exudate
was diluted to a final volume of 50 µL with PBS/EDTA to determine the total leukocyte
counts. The total number of leukocytes was determined in a Neubauer chamber using a
light microscope. The results were expressed as the number of leukocytes per articular
cavity [12].

2.10. In Situ Intravital Microscopy Analysis for Rolling and Adhesion Events of Leukocytes in the
Mesenteric Microcirculation

The mice received orally 300 mg/kg of EEPV, vehicle (10% Tween solution) or in-
domethacin (5 mg/kg), 30 min prior the carrageenan injection (n = 5–7 animals/group).
One additional mouse group (negative control) was treated only with saline solution in the
peritoneal cavity. The animals were anesthetized with ketamine/xylazine solution (1:1),
the carrageenan injection was performed, and the control and EEPV groups received an
injection of 500 µg/cavity by the intraperitoneal route (i.p.). Subsequently, the intravit-
real microscopy analysis was performed two hours after carrageenan intraperitoneal or
saline (naïve) injection. A lateral incision was performed in the abdominal wall of mice to
exposure of the mesentery to the observation of in situ microcirculation. The mice were
maintained on a heated plate (37 ◦C) adapted to observation of optical microscopy with a
video camera/monitor to project and record the images. The preparation was kept moist
and warm with Ringer Locke’s solution (pH 7.2–7.4), which contained 1% gelatin. The
vessels were considered the postcapillary venules with 10–18 µm diameter. During 10 min,
the number of rolling and adherent leukocytes of each animal was recorded. Leukocyte
adherence was determined when leukocyte remained static in the endothelium for more
than 30 s.

2.11. Paw Edema, Mechanical Hyperalgesia, Cold Response, Myeloperoxidase (MPO), and Enzyme
N-acetilglucosaminidase (NAG) Analysis in CFA-Induced Paw Inflammation for 24 h

Three groups of five female mice received two oral administrations (p.o.) (the first oral
administration at time 0 and the second exposure after 24 h) of saline solution (0.9%, control
group), EEPV (300 mg/kg, p.o.), and the positive control received dexamethasone 1 mg/kg
(s.c). After the first administration, the animals received 20 µL of oil suspension containing
killed M. tuberculosis (Freund’s complete adjuvant—CFA) by intraplantar injection in the
right paw. After 3, 4, and 24 h of CFA administration in the paw, cold sensitivity was
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measured after acetone stimulation, mechanical hyperalgesia was analyzed by the von
Frey method, while paw edema was measured with a plethysmometer (Insight®). Paw
edema, MPO, and NAG activity were analyzed 24 h after CFA injection. The migration of
neutrophils and macrophages to the skin tissue of the paw in female mice was indirectly
quantified through the activity of MPO and NAG, respectively. For this purpose, the skin
of the paw of female mice were removed 24 h after the CFA injection. All the descriptions
of these methodologies were performed according to Formagio et al. (2022) [13].

2.12. Rota Rod Test

Two groups of five female mice received one single administration of saline solution
(0.9%, p.o., control group) and EEPV (300 mg/kg, p.o.). After 60 minutes, mice were placed
on a horizontal rod that rotates about its long axis; the animal must walk forwards to
remain upright and not fall off [14].

2.13. Statistical Analysis

The data are presented as the mean ± standard error (SEM). The determination of
significant differences among groups was made via one-way analysis of variance (ANOVA)
and the Tukey test were chosen as a post hoc (GraphPad Prism Software version 8.0, La Jolla,
CA, USA). The percentage of inhibition was calculated from the control group. Differences
were considered to be significant when p < 0.05.

3. Results
3.1. Phytochemical Analysis

The analyzes of the chemical content of EEPV indicated a content of phenolic com-
pounds of 58.45 mg/g and of flavonoids of 12.03 mg/g.

3.2. Analysis of EEPV by HPLC-DAD

Figure 1 shows the chromatogram and UV spectra of the ethanol extract, and the UV
spectra indicate that the substances present in the extract are of different classes. Substance
2, with retention time 14.131, is a flavonol [15], and substances 1 and 3, with retention times
13.331 and 15.147, are from the amide class [16].
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Figure 1. Chromatogram (HPLC-DAD) of the EEPV. Peak 2 (green) is a flavonol, and peaks 1 (red)
and 3 (yellow) are substances of the amide class.

3.3. EEPV Inhibited Nociceptive Response in Phase 1 and 2 and Cold Allodynia in Formalin Model

In phase 1, the oral EEPV administration of 300 and 700 mg/kg induced significant
nociceptive inhibition (81% and 78%, respectively); however, the dose of 100 mg/kg did not
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differ from the control group results (Figure 2a). In phase 2, the oral EEPV administration of
300 and 700 mg/kg induced significant nociceptive inhibition (93% and 68%, respectively);
however, the dose of 100 mg/kg did not differ from control group results (Figure 2b). None
of the doses of the EEPVs tested showed antiedematogenic properties (Figure 2c). In the
cold response test, the inhibition results were 70% and 74% for 300 and 700 mg/kg of the
EEPV, respectively. The morphine group inhibited the nociceptive response in phase 1, 2,
and also the cold response (Figure 2d). The comparison among the groups showed that the
EEPV had similar patterns of response in relation to phase 1, phase 2, and the cold response.
The dose of 300 and 700 mg/kg of the EEPV did not differ between themselves; however,
they were different from the control and the 100 mg/kg of EEPV groups (Figure 2a–c).
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Figure 2. Effect of treatment with EEPV in a model of formalin-induced nociception. The animals
were treated with 100, 300, or 700 mg/kg; vehicle group orally received saline solution (0.9%); the
morphine group received subcutaneous doses of 5 mg/kg (n = 5–7 animals/group). Antinociceptive
activity observed through phases I (a) and II (b). Sensitivity to cold with acetone after 30 min of
intraplantar formalin injection (c). Edema evaluated 1 h after intraplantar injection of formalin
2.5% (d). Each bar represents the mean ± SEM. The letters “a”, “b”, and “c” indicate significant
differences among groups according to Tukey´s multiple comparisons test.

3.4. EEPV Inhibited Abdominal Writhing Induced by Acetic Acid

In the analysis of the antinociceptive effect of EEPV on acetic acid-induced abdominal
writhing, a significant effect was observed at both doses (300 and 700 mg/kg), 36% and
44%, respectively. The dose of 100 mg/kg of EEPV did not differ from control results. The
morphine group showed total inhibition of the effect (Figure 3). In abdominal writhing
induced by acetic acid, the comparison among groups showed that the doses of 300 and
700 mg/kg of EEPV did not differ between themselves; however, they were different from
control and the 100 mg/kg of the EEPV groups (Figure 3).
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Figure 3. Effect of EEPV treatment on acetic acid-induced abdominal writhing. The animals were
treated with 100, 300, or 700 mg/kg; vehicle group received orally saline solution (0.9%); the morphine
group received subcutaneous doses of 5 mg/kg (n = 5–7 animals/group). After injection of acetic
acid 0.8% i.p., the count of the number of writhings. Bars represent mean ± SEM. The letters “a” and
“b” indicate significant differences among groups according to Tukey´s multiple comparisons test.

3.5. EEPV Reduced Leukocyte Migration in Carrageenan-Induced Pleurisy Model

Four hours after intrapleural carrageenan injection, the EEPV group at doses of 100,
300, and 700 mg/kg decreased the leukocyte migration (Figure 4). All three treated groups
differed statistically from the control and from naïve groups. The leukocyte recruitment
inhibition was: 20.27% for the EEPV group at a dose of 100 mg/kg, 19.45% at a dose of
300 mg/kg, 26% at a dose of 700 mg/kg, and 81% for the DEXA group (Figure 4). All
EEPV-treated groups did not differ statistically among themselves; however, all treated
groups differed from the control.
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3.6. EEPV Reduced Knee Edema, Mechanical Hyperalgesia, Leukocyte Migration in
Zymosan-Induced Articular Inflammation

After 4 h of zymosan administration in the knee, oral exposure of female mice to
a dose of 300 mg/kg of EEPV prevented mechanical hyperalgesia in 82.66%, while the
dose of 700 mg/kg of the EEPV and the treatment with dexamethasone blocked the
mechanical response (Figure 5a). After 6 h of zymosan injection in the knee, the doses of
300 and 700 mg/kg of the EEPV and the dexamethasone group blocked the development of
mechanical hyperalgesia (Figure 5b). After 4 h of zymosan administration in the knee, all
doses of the EEPV tested and dexamethasone groups interfered statistically in knee edema
when compared with the control group (Figure 5c). The inhibition of knee edema induced
by EEPV was 81.58% for 100 mg/kg, 73.65% for 300 mg/kg, 77.33% for 700 mg/kg, while
for dexamethasone, it was 62.15%. After 6 h of zymosan administration in the knee, the
oral administration of 300 mg/kg of EEPV prevented the knee edema in 79.71%, while the
dose of 700 mg/kg prevented of 83.81% and the dexamethasone prevented 83% (Figure 5d).
In relation to total leukocyte migration to the knee, the doses of 300 and 700 of the EEPV
blocked the migration of these cells to synovial liquid, while the dexamethasone inhibited
86.8% (Figure 5e). The oral exposure to the doses of 300 and 700 mg/kg of EEPV in did
not differ among themselves; however, they differed from the control and from the dose
of 100 mg/kg of the EEPV (Figure 5a,b,d,e). The mechanical hyperalgesia, cold response,
and knee edema (6 h) evaluation showed that the groups treated with doses of 300 and
700 mg/kg of EEPV did not differ among themselves; however, they differed from the
control and from the dose of 100 mg/kg of the EEPV (Figure 5a,b,d,e).

3.7. EEPV Reduces Rolling Leukocytes and Leukocyte Adhesion on Mesenteric In
Situ Microcirculation

Carrageenan injection (i.p.) significantly increased rolling (Figure 6a) and adhesion
(Figure 6b) of leukocytes in the endothelium 2 h after inflammatory stimulation when
compared to the control group. Oral pretreatment with the EEPV (300 mg/kg) significantly
diminished leukocyte rolling by 48.84% and adhesion by 48.2%. compared to the control
group. Indomethacin, used as reference drug, reduced leukocyte rolling by 59.67% and
adhesion by 49.51% compared to control group.

3.8. EEPV Reduces Mechanical Hyperalgesia, Cold Sensitivity, Edema Formation, Myeloperoxidase
(MPO), and Enzyme N-acetilglucosaminidase (NAG) Activity in CFA-Induced Inflammation

After 3, 4, and 24 h of the CFA administration in the paw, oral exposure of female mice
to a dose of 300 mg/kg of the EEPV and the treatment with dexamethasone blocked the
mechanical hyperalgesia response (Figure 7a–c). After 3 h of the CFA administration in
the paw, the oral administration of 300 mg/kg of the EEPV prevented the cold response
in 47.61%, while dexamethasone prevented 40.47% (Figure 7d). After 4 h of the CFA
administration in the paw, the oral administration of 300 mg/kg of the EEPV prevented the
cold response in 72.72%, while dexamethasone prevented 56.81% (Figure 7e). After 24 h
of the CFA administration in the paw, the oral administration of 300 mg/kg of the EEPV
prevented the cold response in 51.6% while dexamethasone prevented 43.5% (Figure 7f).
After 24 h of the CFA administration in the paw, the oral administration of 300 mg/kg of the
EEPV prevented MPO activity response in 42.22%, while dexamethasone prevented 77.18%
(Figure 7g). After 24 h of the CFA administration in the paw, the oral administration of 300
mg/kg of the EEPV prevented NAG activity response in 35.98%, while dexamethasone
prevented 50.98% (Figure 7h). In edema, the EEPV was effective in the inhibition at 3, 4,
and 24 h induced by the CFA (Figure 7i).
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Figure 5. Effect of oral administration of EEPV on the zymosan-induced knee edema, mechanical hy-
peralgesia, leukocyte migration in synovial exudate in mice. The animals received EEPV (100, 300, and
700 mg/kg, p.o.), vehicle (control), or dexamethasone (DEXA, 1 mg/kg, s.c.) (n = 5–7 animals/group),
and 1 h later, an intraplantar injection of zymosan was administered. Graphs (a,b) represent the eval-
uation of the mechanical hyperalgesia at 4 and 6 h, respectively, after zymosan injection; graphs (c,d)
represent the evaluation of the knee edema at 4 and 6 h, respectively, after zymosan injection; graph
(e) represents the evaluation of the total leukocytes counts 6 h after stimulus. The letters “a” and “b”
indicate significant differences among groups according to Tukey´s multiple comparisons test.
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Figure 7. Effect of oral administration of EEPV on mechanical hyperalgesia and response to cold
after 3 (a,d), 4 (b,e), 24 h (c,f), and MPO (g), NAG (h), and edema (i) after CFA injection in mice.
Mice were treated two times (time 0 and 24 h from the first treatment) with EEPV (300 mg/Kg p.o.),
dexamethasone (DEXA—1 mg/kg, s.c.), or vehicle (n = 5–7 animals/group). The bars express the
mean ± SEM. Differences between groups were analyzed by analysis of variance (one-way ANOVA)
followed by the Tukey test. The letters “a”, “b” and “c” indicate significant differences between groups.
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4. Discussion

To the best of our knowledge, this is the first report of the antiarthritic and antinoci-
ceptive effects of ethanolic extract of Piper vicosanum leaves (EEPV) on in vivo models of
articular inflammation and nociceptive models (formalin-induced nociception test and
acetic acid-induced abdominal writhing test). Few studies have demonstrated the pharma-
cological potential of P. vicosanum, and our research group has focused on demonstrating
the safety of this plant in the most recent articles published on this subject [4,17]. To our
knowledge, only the anxiolytic [7] and anti-inflammatory [6] activity of P. vicosanum oil
has been investigated. The results of joint inflammation and CFA-induced inflammation
models indicate an antiarthritic potential of the EEPV, while the in situ microcirculation
results demonstrate that the EEPV-induced inhibition of migration plays an important
role in this mechanism. The analgesic effect of the EEPV was shown in the models of the
formalin-induced nociception, acetic acid-induced nociception, and also in mechanical and
thermal hyperalgesia in the CFA and zymosan models.

The chemical analysis of the EEPV described that this extract contains alkaloid, pheno-
lic, tannin, steroid, and triterpenoid compounds [7]. Morphine analogues and alkaloids
obtained from medicinal plants represent important sources of new drug analgesic can-
didates [18]. Phenolics and its derivatives also possess relevant biological properties [19],
while tannins may be employed as a therapeutic agent [20]. Several steroids administered in
patients are effective in decreasing postoperative pain and in the reduction of inflammatory
markers [21]. The presence of alkaloid, phenol, tannin, steroid, and triterpenoid compounds
in the EEPV could contribute to the biological activity found in the P. vicosanum specimen.

In relation to the analgesic effects of the EEPV, no studies were found concerning
the analgesic properties of P. vicosanum in the published literature. The formalin model
could show the analgesic potential of products in phase 1 and 2 in relation to sponta-
neous pain. In the present work, the doses of 300 and 700 mg/kg of the EEPV showed
antinociceptive properties in both phases, showing that the EEPV action is involved in the
antagonization of inflammatory and neurogenic pain. Frequently, the majority of nons-
teroidal anti-inflammatory drugs (NSAIDs) only inhibit phase 2 without interfering with
phase 1. Morphine inhibits both phases, and the analgesic effects of the EEPV could be sim-
ilar to these opioid effects. The EEPV also inhibited the abdominal contortion induced by
acetic acid (Figure 3). The abdominal contortion model is a different type of experimental
assay to verify the antinociceptive effects of medicinal plants [22–25]. The rotarod test was
performed in mice to test if EEPV induced alterations in motor coordination [14]. When the
animals are placed on a Rota rod apparatus, they did not fall, showing that the EEPV did
not alter motor conditions (results not shown).

Animal models in pain research, such as the complete Freund’s adjuvant (CFA) in-
flammatory pain in mice, included both evoked and nonevoked behavioral measurements,
and it could reflect the human pain experience [26]. The CFA-induced paw inflammation
model was chosen since it causes an inflammatory pain characterized by mechanical and
thermal stimulation. Our results showed that EEPV is able to inhibit both mechanical and
cold nociceptive responses (after 3, 4, and 24 h from CFA injection) stimulated by von
Frey apparatus and by acetone, respectively (Figure 7a–f). In addition to this aspect, the
CFA-induced chronic inflammation model simulates an arthritis-like inflammation.

The MPO activity measured the neutrophil migration while the NAG activity analyzed
the monocyte migration, both indirectly. The EEPV inhibited these enzyme activities,
showing a reduction of the migration of neutrophils and monocytes. In the present study, it
was possible to reveal that acute exposure to the EEPV inhibited all parameters (mechanical
hyperalgesia, cold allodynia, edema, MPO, and NAG activity) (Figure 7a–g) elicited by
the CFA injection into the paw, corroborating the data of zymosan-induced inflammatory
articular pain. These results confirm the analgesic, anti-inflammatory, and antiarthritic
potential of P. vicosanum, and also showed that the EEPV reduces both neutrophil and
monocyte migration to inflammatory sites in the CFA inflammatory model in mice.
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Two hours after the carrageenan injection, the phenomenon of leukocyte rolling/
adhesion to the mesentery was observed by intravital microscopy. The EEPV reduced
the leukocyte–endothelium interaction (Figure 6) and also the leukocyte transmigration
(Figure 4). In our results, the efficacy of the oral EEPV was similar to the oral indomethacin
treatment. Although the doses were different, the inhibition values did not differ statis-
tically when the groups were compared. The results showed that the EEPV is effective
against leukocyte/adhesion in inflamed mesenteric microcirculation, showing that this oil
may affect adhesion molecules.

Branquinho et al. (2017) [27] showed the antiedematogenic effects of essential oil from
P. vicosanum leaves (100 and 300 mg/kg) on a carrageenan-induced paw edema model,
and also demonstrated the inhibition of leukocyte migration in a pleurisy model. In the
present study, the effects of the EEPV on leucocyte inhibition was shown with doses of
100, 300, and 700 mg/kg (Figure 4). The murine model of zymosan-induced arthritis is
a pharmacological tool used to study several inflammatory mechanisms and is useful as
an experimental model to assess the anti-inflammatory effects of different products [10].
In the beginning of the inflammatory process induced by zymosan, this inflammatory
agent stimulated an important oedema formation, accompanied by a massive neutrophil
infiltration in the synovial tissue and the fluids of the inflamed joints [28]. The present study
showed that intraarticular zymosan injection in mice resulted in an expressive increase in
leukocyte migration, in knee joint thickness, and in mechanical hyperalgesia (Figure 5).

The EEPV, mainly in doses of 300 and 700 mg/kg, showed a high efficacy against the
mechanical hyperalgesia development (Figure 5a,b), knee edema formation (Figure 5c,d),
and leukocyte migration (Figure 5e) induced by zymosan. The EEPV had similar or
higher efficacy when compared to dexamethasone in the inhibition of these parameters
(Figure 5a–e). Experimental studies have demonstrated the inhibition of leukocyte re-
cruitment to the knee joint constitutes a useful therapeutic strategy to treat rheumatoid
arthritis [29]. The antiarthritic efficacy of the treatment of female mice with a dose of
100 mg/kg was different from the results of mice treated with doses of 300 and 700 mg/kg.
These results suggested that the EEPV is an antiarthritic agent, and this action indicated
that this extract acts on specific targets.

5. Conclusions

For the first time, the analgesic, anti-inflammatory and antiarthritic potential effects
of the EEPV was revealed in inflammation, arthritis, and nociception models. Our data
support the antiarthritic activity in terms of the inhibition of leukocyte migration, character-
ized by reduction of leukocyte infiltration, adhesion, and rolling. Antinociceptive activity
was also observed in formalin and in acetic acid-induced abdominal writhing models.
Taken together, the data suggest that the EEPV has therapeutic potential in arthritis and
pain diseases.
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