
Citation: Ben-Yehuda Greenwald, M.;

Liu, Y.-H.; Li, W.; Hiebert, P.; Zubair,

M.; Tenor, H.; Braun, T.; Naef, R.;

Razansky, D.; Werner, S. Topical

Wound Treatment with a Nitric

Oxide-Releasing PDE5 Inhibitor

Formulation Enhances Blood

Perfusion and Promotes Healing in

Mice. Pharmaceutics 2022, 14, 2358.

https://doi.org/10.3390/

pharmaceutics14112358

Academic Editors: Michael Mildner

and Hendrik Jan Ankersmit

Received: 22 September 2022

Accepted: 27 October 2022

Published: 31 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Article

Topical Wound Treatment with a Nitric Oxide-Releasing PDE5
Inhibitor Formulation Enhances Blood Perfusion and Promotes
Healing in Mice
Maya Ben-Yehuda Greenwald 1, Yu-Hang Liu 2,3 , Weiye Li 2,3, Paul Hiebert 1, Maria Zubair 1, Hermann Tenor 4,
Tobias Braun 4 , Reto Naef 4,*, Daniel Razansky 2,3,* and Sabine Werner 1,*

1 Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7,
8093 Zurich, Switzerland

2 Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine,
University of Zurich, 8057 Zurich, Switzerland

3 Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering,
ETH Zurich, 8092 Zurich, Switzerland

4 Topadur Pharma AG, Grabenstrasse 11A, 8952 Schlieren, Switzerland
* Correspondence: reto.naef@topadur.com (R.N.); daniel.razansky@uzh.ch (D.R.);

sabine.werner@biol.ethz.ch (S.W.); Tel.: +41-44-633-3941 (S.W.)

Abstract: Chronic, non-healing wounds constitute a major health problem, and the current thera-
peutic options are limited. Therefore, pharmaceuticals that can be locally applied to complicated
wounds are urgently needed. Such treatments should directly target the underlying causes, which
include diabetes mellitus, chronic local pressure and/or vascular insufficiency. A common con-
sequence of these disorders is impaired wound angiogenesis. Here, we investigated the effect of
topical application of a nitric oxide-releasing phosphodiesterase 5 inhibitor (TOP-N53)-containing
liquid hydrogel on wound repair in mice. The drug-loaded hydrogel promoted re-epithelialization
and angiogenesis in wounds of healthy and healing-impaired diabetic mice. Using a non-invasive
label-free optoacoustic microscopy approach combined with automated vessel analysis, we show
that the topical application of TOP-N53 formulation increases the microvascular network density and
promotes the functionality of the newly formed blood vessels, resulting in enhanced blood perfusion
of the wounds. These results demonstrate a remarkable healing-stimulating activity of topically
applied TOP-N53 formulation, supporting its further development as a wound therapeutic.

Keywords: angiogenesis; nitric oxide; phosphodiesterase; optoacoustic microscopy; photoacoustic
imaging; wound healing

1. Introduction

The skin fulfills various vital functions, including the regulation of body temperature,
sensory reception, synthesis of vitamins and hormones, water balance, and protection
against environmental insults. Therefore, its efficient repair after injury is of utmost impor-
tance. This is achieved by a dynamic and complex healing process [1–3]. Unfortunately, a
large percentage of the population shows severe healing impairments, in particular, many
aged individuals and patients with diabetes or those treated with immunosuppressive
steroids [4,5]. These patients often develop ulcerative skin defects (chronic wounds), which
mainly include venous and arterial ulcers, pressure ulcers and diabetic foot ulcers [4].
Such wounds are characterized by chronic inflammation and a failure to produce new
tissue, whereby re-epithelialization and the formation of new blood vessels are particu-
larly affected [4,6]. The treatment options for chronic wounds are still unsatisfactory and
largely restricted to dressings and devices that help to provide a healing-promoting local
milieu [7]. Importantly, very few clinical advances have been made in the past few decades
in treating chronic, non-healing wounds [8], leaving an increased number of patients with
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few therapeutic options and causing a huge burden to the health care system [4,5,9]. The
existing therapeutic approaches, including hyperbaric oxygen therapy, the usage of skin
substitutes, negative pressure therapy and local delivery of platelet-derived growth factor,
are limited in their efficacy, and currently, there is no approved small molecule compound
for the treatment of problematic, non-healing wounds [10].

Previous studies revealed beneficial effects of nitric oxide (NO) donors and phosphodi-
esterase inhibitors on wound healing. For example, an NO-releasing polymer incorporated
ointment promoted wound closure and several relevant wound healing parameters in
mice [11] and application of the NO donor molsidomine reversed the impaired healing in
diabetic rats [12]. The phosphodiesterase 5 (PDE5) inhibitor sildenafil (Viagra) promoted
wound healing in healthy and experimental diabetic rats [13] and also improved the de-
layed wound healing in irradiated tissues [14]. To combine the positive effects of NO
donors and PDE5 inhibitors, we previously developed TOP-N53, a small molecular weight
NO-releasing phosphodiesterase 5 inhibitor (PDE5I). Remarkably, intradermal injection of
this compound at the wound edge improved wound re-epithelialization and angiogenesis
in healthy and healing-impaired diabetic mice without enhancing inflammation or scar
formation [15]. Moreover, we showed the superiority of TOP-N53 in donating NO and
inhibiting PDE5 compared with single-acting NO-donors or PDE5 inhibitors, resulting
in enhanced levels of cGMP [15]. However, the translational potential of this compound
remains a challenge, and it is as yet unclear if TOP-N53 indeed promotes the functionality
of wound vessels, thereby allowing enhanced blood perfusion of the wound tissue. Fur-
thermore, wound management in a clinical setting will require an efficient topical wound
treatment. This would not be possible with TOP-N53 dissolved in dimethyl sulfoxide
(DMSO) as used in our previously published study where TOP-N53 was delivered via
intradermal injection [15]. Here, we produced and characterized an immediate release
TOP-N53-containing topical wound formulation, using ingredients which are accepted for
wound treatment by the regulatory authorities and compatible with wound standard of
care. We demonstrate its ability to promote wound re-epithelialization and angiogenesis
in healthy and healing-impaired diabetic (db/db) mice. Furthermore, the non-invasive
and longitudinal monitoring of wound healing progression using a label-free optoacoustic
microscopy (LSOM) approach in combination with automated vessel analysis shows that
topical application of a TOP-N53 liquid hydrogel formulation promotes wound blood flow
and enhances microvascular network density.

These results reveal that the TOP-N53 hydrogel formulation improves major deficien-
cies of poorly healing wounds and encourage further pre-clinical and clinical research with
this compound.

2. Materials and Methods
2.1. Preparation and Characterization of a TOP-N53 Formulation in a Liquid Hydrogel

To manufacture 100 g of topical hydrogel formulation of TOP-N53 at a final concen-
tration of 165 µM, an aqueous gel was prepared by adding hydroxyethyl cellulose (HEC;
0.25 g) (CAELO, Hilden, Germany) in portions to 12 mM phosphate buffer (pH 6.7) (Rades
GmbH, Hamburg, Germany). Butylated hydroxytoluene (0.006 g) (Sigma-Aldrich, St. Louis,
MO, USA) and benzyl alcohol (2.0 g) (PanReacAppliChem, Barcelona, Spain) were added
to polyethylene glycol (PEG) 400 (70.0 g) (BASF, Ludwigshafen, Germany), heated to 50 ◦C
and cooled down after dissolution. TOP-N53 (9.97 mg; 16.5 µmol) was dissolved in the
PEG 400 mixture (heated to 50 ◦C for 15 min and stirred for 2 h at room temperature). The
PEG 400 mixture was added to the aqueous gel (equilibrated to room temperature at phase
merging) to a final weight of 100 g and stirred with a spatula until a homogenous gel was
obtained. The procedure to manufacture the vehicle formulation was identical, but without
TOP-N53. The vehicle formulation is also abbreviated ‘HEC/PEG’ in the remainder of the
manuscript. To manufacture hydrogels containing 1, 3 or 10 µM TOP-N53, the HEC/PEG
formulation with TOP-N53 at 165 µM prepared as described above was appropriately
diluted in HEC/PEG. The hydrogel formulations at different TOP-N53 concentrations keep
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the compound in solution, and no particles are formed. Moreover, TOP-N53 was stable
in the hydrogel for at least two weeks. Formulations were prepared freshly for all wound
healing experiments.

The viscosity of TOP-N53 liquid hydrogel formulation was measured using a Modular
Compact Rheometer MCR 102 (Anton Paar GmbH, Graz, Austria). The measurements were
done using cone plate geometry (diameter 50 mm) with 5 min resting phase. Fifty measure-
ments with varying duration of each measurement (logarithmic: 100 sec start value und
0.1 sec end value, segment duration: 759.862 sec) were performed. Rheometer data analysis
software RheoCompass (Anton Paar GmbH, Graz, Austria) was used for analysis. Mea-
surement of TOP-N53 release from the hydrogel formulation was performed using the two-
chamber Rapid Equilibrium Dialysis (RED) plate (Thermo Scientific ScientificTM, Waltham,
MA, USA). TOP-N53 hydrogel formulation was transferred to the donor chamber in the
RED plate, while the receiver chamber was filled with human blood plasma (ZHBSD, Rütis-
trasse 19, CH-8952 Schlieren, Switzerland; (https://www.zhbsd.ch/kunden/preislisteagb/,
accessed on 3 April 2022). Agreement for the use of the plasma was obtained from the
responsible Cantonal Ethics Committee (BASEC Number 2020-00513, issued by the Can-
tonal Ethics Committee Zurich, Switzerland). The plasma was diluted 1:1 with normocin
(1:500, Invivogen, San Diego, CA, USA)-treated simulated interstitial fluid buffer (SISF,
pH 7.4) composed of 117 mM NaCl, 3 mM KCl, 2.8 mM CaCl2 × 2H20, 1 mM MgCl2,
27 mM NaHCO3, 1 mM K2HPO4 and 0.5 mM Na2SO4. The RED plate was then sealed
with an aluminum foil, placed into a 37 ◦C incubator and incubated under continuous
shaking at 200 rpm. After 24 h, the complete liquid of the receiver chamber was taken. The
sample was then prepared for the subsequent liquid chromatography–mass spectrometry
(LCMS) measurement using the solid phase extraction (SPE, protein precipitation Sirocco
plate, Waters Corp, Milford, MA, USA) method (Mass spectrometry AB Sciex API 4000
LC/MS/MS Triple Quad, reverse mode, InfinityLab Poroshell 120 Bonus-RP, 2.1 × 50 mm,
2.7 µm, narrow bore LC column, solvent A: 2 mM ammonium formate in water + 0.1%
formic acid, solvent B: 2 mM ammonium formate in methanol/acetonitrile (50/50; v/v)
+ 0.1% formic acid, flow rate: 400 µL, run time: 5.2 min). During the experiment, deuter-
ated TOP-N53D4 was spiked into the receiver chamber and used as an internal standard,
creating a calibration curve for further TOP-N53 content quantification.

2.2. Cell Culture

Human primary foreskin keratinocytes were cultured in CnT-Prime Epithelial Cell
Culture Medium (CELLnTEC, Bern, Switzerland). Human foreskin fibroblasts were cul-
tured in Dulbecco’s Modified Eagle’s Medium DMEM (Sigma-Aldrich, St. Louis, MO),
supplemented with 10% fetal bovine serum (FBS) and penicillin/streptomycin.

2.3. MTT Assay

The MTT assay was used to evaluate the cytotoxicity of the different treatments.
Cultures were incubated for 22–24 h with 0.1 or 1 µM TOP-N53 or vehicle dimethyl
sulfoxide (DMSO) (0.01%), or with vehicle liquid hydrogel formulation (HEC/PEG) or TOP-
N53 liquid hydrogel formulation at a concentration of 1 or 10 µM TOP-N53 in 1:10, 1:100,
or 1:1000 dilutions as indicated. One or ten µM TOP-N53 liquid hydrogel formulation was
diluted 1:10 in cell culture medium to a final concentration of 0.1 or 1 µM TOP-N53 in liquid
hydrogel formulation, respectively. For the treatment of human primary keratinocytes
with TOP-N53 in a 0.01% (final) DMSO formulation, TOP-N53 or vehicle were sequentially
diluted in cell culture medium under sterile conditions from 10 mM solution of TOP-N53
in 100% DMSO to their respective final concentrations in the assay (0.1 or 1 µM TOP-N53
in 0.01% DMSO or 0.01% DMSO (vehicle)). Cultures were then incubated for 0.5 h with
MTT (5 mg/mL in PBS) at 37 ◦C/5% CO2, and the absorbance at 590 nm was measured
using a GloMax®Discover reader (Promega, Fitchburg, MA, USA).

https://www.zhbsd.ch/kunden/preislisteagb/
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2.4. Measurement of cGMP Levels in Human Platelets

Buffy coats from human peripheral blood were commercially acquired from the
Zurich Red Cross Blood Donation Service (ZHBSD, Rütistrasse 19, CH-8952 Schlieren,
Switzerland) (https://www.zhbsd.ch/kunden/preislisteagb/ accessed on 3 April 2022).
Buffy coats were only released from ZHBSD once negative results from assays for HCV,
HIV, Treponema pallidum, HBV, HEV, HAV, ParvoB19, and West Nile Virus were available.
Agreement for the use of commercially acquired buffy coats from the competent Cantonal
Ethics Committee was obtained (BASEC Number 2020-00513, issued by the Cantonal
Ethics Committee Zurich, Switzerland). Experimental work was done in a Biosafety Level-
2 (BSL2) environment. Work with human buffy coats was filed as a project with the
Swiss Federal Office for the Environment (FOEN, BAFU) at https://www.ecogen.admin.
ch/public/, application A203119-00. The protocol for isolation of washed platelets was
adopted from Gambaryan et al., with modifications [16]. Buffy coats (50 mL) were diluted
3.2-fold with Buffer A composed of 34.8 mM trisodium citrate, 150 mM NaCl (pH 8.4) and
centrifuged at 200× g for 10 min. The supernatant comprising platelet-rich plasma (PRP)
was removed and ACD solution (85 mM trisodium citrate, 71 mM citric acid, 111 mM
D-glucose (pH 4.4)) was added at one tenth of the final volume followed by addition
of 0.01 U/mL (final concentration) apyrase. After centrifugation at 200× g for 5 min to
separate remaining white and red blood cells, the PRP was removed, placed into new tubes,
and centrifuged at 700× g for 15 min. The diluted platelet-poor plasma (PPP) was aspirated,
and the platelet pellet washed once in buffer D (120 mM NaCl, 30 mM D-glucose, 12.9 mM
trisodium citrate (pH 6.5)) at 700× g for 15 min. The buffer supernatant was removed by
aspiration, and platelets were resuspended in modified Tyrode (134 mM NaCl, 2.9 mM KCl,
12 mM NaHCO3, 0.36 mM NaH2PO4, 5 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid (HEPES), and 5 mM D-glucose. Modified Tyrode in the current study was Tyrode
supplemented to a final concentration of 0.2% (w/v) human serum albumin, 0.5 mM
MgCl2, 0.01 U/mL apyrase. Platelets were counted in a modified Neubauer chamber and
adjusted to 1.8 × 109 cells/mL. Washed platelets (final concentration 4.5 × 108 cells/mL)
were pre-incubated for 10 min with the soluble guanylate cyclase stimulator riociguat
(1µM, #HY-14779, MCE, Lucerna Chem AG, Lucerne, Switzerland) and the selective PDE2
inhibitor BAY 60-7550 (100 nM, HY#14-992, MCE, Lucerna Chem AG; IC50 rhPDE2A at
71 pM) and then incubated together with TOP-N53 in different formulations (see below).
Following a 2 h incubation time, 20 µL 2N HCl were added. Supernatants from a 5 min
1000× g centrifugation step were frozen at −80 ◦C. Total platelet cGMP (pmol/mL) content
was determined using a commercially available ELISA (Direct cGMP ELISA, ADI-901-
014, Enzo Life Sciences ELS, Lausen BL, Switzerland), following the instructions of the
manufacturer.

Test Items and formulations were as follows:
TOP-N53, DMSO formulation. TOP-N53 was diluted from a 10 mM stock solution in

100% DMSO to a final concentration of 3 µM in 0.1% DMSO/modified Tyrode in the final
assay well.

TOP-N53, Hydrogel formulation. TOP-N53 was diluted from a 165 µM stock solution in
HEC/PEG formulation (0.25% hydroxyethylcellulose, 70% PEG400 as main components,
see Table 1 for a complete description of the ingredients) in modified Tyrode to an interme-
diate concentration of 30 µM and next 10-fold in the assay well to a final concentration of
3 µM TOP-N53. This final concentration was chosen based on the in vivo results, which
identified an optimum at 3 µM (see Results, Section 3). Final concentrations of PEG400 and
hydroxyethylcellulose in the assay well were 1.27% and 0.0045%.

https://www.zhbsd.ch/kunden/preislisteagb/
https://www.ecogen.admin.ch/public/
https://www.ecogen.admin.ch/public/
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Table 1. Composition of liquid hydrogel formulations: Vehicle and TOP-N53, 165 µM.

Vehicle 165 µM TOP-N53

Ingredient (%) (w/w) (%) (w/w)

Polyethylene glycol 400 (PEG 400) 70 70

Benzyl alcohol 2 2

Butylated hydroxytoluene 0.006 0.006

Hydroxyethyl cellulose (HEC) 0.25 0.25

Phosphate buffer 12 mM pH 6.7 27.744 27.734

TOP-N53 0 0.01
PEG 400: Polyethylene glycol 400; HEC: Hydroxyethyl cellulose.

Vehicle hydrogel formulation. The hydrogel vehicle was diluted 5.5-fold and finally
10-fold in the assay well.

In the experiments, DMSO was adjusted to a final concentration of 0.3% in all assay wells.

2.5. Animals and Wound Healing Experiments

Mouse maintenance and animal experiments had been approved by the local veteri-
nary authorities (Kantonales Veterinäramt Zurich, Switzerland). Full-thickness excisional
wounds (5 mm diameter) were generated on the back skin of female C57BL/6JRj, BKS(D)-
Leprdb/JorlR, or SKH-1 mice at the age of 9–11 weeks. One day prior to wounding, the
back skin was shaved and a layer of depilatory cream (Veet, Reckitt Benckiser, Heidelberg,
Germany) was applied. After 2–5 min, the cream was cleared away, and the skin was
cleaned with water and 70% ethanol. Mice were anesthetized in an induction chamber
using 2–4% isoflurane in an oxygen/air mix for imaging experiments or by intraperitoneal
injection of ketamine/xylazine (100 mg ketamine/5–10 mg xylazine per kg body weight)
for wound healing experiments. Immediately and three days post-wounding, 20 µL of
TOP-N53 liquid hydrogel formulation (final TOP-N53 formulation concentrations were
1, 3, 10 or 165 µM) or vehicle liquid hydrogel formulation were applied topically on the
wound. As an example, the 3 µM TOP-N53 formulation corresponds to 0.000181%, and
36.28 ng were applied per wound. All four wounds of one individual mouse received
an identical treatment. At the perimeter of the wound, 10 µL of Mastisol (Ferndale Lab-
oratories, Fernadale, MI, USA) were applied to improve the adherence of the Tegaderm
dressing (Tegaderm, 3M Deutschland GmbH, Neuss, Germany)), which was used to cover
the wounds. Mice were single-housed during the experiments. They were sacrificed at day
5 post-wounding, and the wound tissue was excised and analyzed as described below.

2.6. Histology

Wounds were excised and fixed overnight with either 4% paraformaldehyde (PFA)
or 95% ethanol/1% acetic acid, followed by tissue processing and paraffin embedding,
or they were directly frozen in tissue freezing medium (Leica Microsystems, Heerbrugg,
Switzerland). Sections of 7 µm thickness from the middle of the wounds were stained with
hematoxylin and eosin (H&E) or with Herovici stain [17] or used for further immunohis-
tochemistry/immunofluorescence analysis. Stained sections were photographed using a
Zeiss AxioImager.M1 microscope equipped with Zen Pro software (Zeiss, blue edition, 3.2)
(Carl Zeiss AG, Oberkochen, Germany) to control the Axiocam MRm camera or using the
Pannoramic 250 Slide Scanner (3D Histech, Budapest, Hungary). Analysis of the various
wound parameters [15] and staining quantifications were performed using ImagePro® Plus
software (Media Cybernetics Inc., Rockville, MD, USA).

2.7. Immunohistochemistry and Immunofluorescence Staining

Paraffin sections were dewaxed and rehydrated using a xylene/ethanol gradient.
PFA-fixed sections were then incubated in citrate buffer (pH 6.0) at 95 ◦C for 1 h for antigen
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retrieval. Frozen sections were fixed with cold acetone. Sections were blocked with PBS
containing 12% BSA for 1 h at room temperature, followed by incubation with primary
antibodies. For immunohistochemical staining, a biotin-conjugated secondary antibody
was used, and bound antibodies were detected using the Vectastain ABC kit and the
diaminobenzidine peroxidase substrate kit (both from Vector Laboratories, Burlingame,
CA, USA). For immunofluorescence analysis, slides were incubated at room temperature
for 1 h with Cy3-conjugated secondary antibodies (Jackson ImmunoResearch Laborato-
ries, Inc., West Grove, PA, USA) and counterstained with Hoechst 33342 (Sigma-Aldrich,
St. Louis, MO). The antibodies used, their dilutions and the incubation conditions are listed
in Table 2.

Table 2. Antibodies used for immunohistochemistry or immunofluorescence staining.

Antibody Source Dilution Incubation
Conditions Identifier

Rabbit anti-Ki67 Abcam, Cambridge, UK 1:200 15 min at RT Cat#Ab15580; RRID:
AB_443209

Biotinylated anti-rabbit IgG Jackson ImmunoResearch 1:1000 30 min at RT Cat#111-065-003; RRID:
AB_2337959

Rat anti-Meca32 BD Biosciences, Franklin Lakes, NJ 1:1000 Overnight at 4 °C Cat#553849; RRID:
AB_395086

Mouse anti-α-smooth
muscle actin-FITC Sigma-Aldrich 1:500 Overnight at 4 °C Cat#F3777; RRID:

AB_476977

Anti-rat-Cy3 Jackson ImmunoResearch 1:200 30 min at RT Cat#715-165-150; RRID:
AB_2340666

2.8. Large-Scale Optoacoustic Microscopy (LSOM)

A previously described label-free large-scale optoacoustic microscopy (LSOM) imaging
technique [18] was used to monitor changes in microvascular networks in mouse dorsal skin
during the wound healing process. Briefly, LSOM visualizes the intrinsic optical absorption
contrasts of living mammalian tissues primarily resulting from hemoglobin (Hb). A pulsed
nanosecond laser (Onda, Bright Solutions, Italy) with 532 nm wavelength was used to
generate optoacoustic responses from tissues. The induced broadband ultrasound (US)
signals of vessels were recorded by a customized spherically focused polyvinylidene
fluoride (PVDF) ultrasound sensor. The acquired signals were then processed to render
three-dimensional images of microvasculature and further analyzed to extract vascular
metrics using custom-developed algorithms in Matlab 2020b [18,19].

2.9. Large-Scale Dorsal Skin Imaging

A dorsal imaging mount (DIM) [18] was used to conduct non-invasive dorsal skin
imaging. Mice were anaesthetized, placed on the DIM, and their body temperature was
maintained at 37 ◦C by a built-in self-regulated heating pad. Eye protection cream was
applied and left on the eyes during the entire imaging procedure. The coarse-resolution
LSOM images covering both dorsal skin wounds over 30 × 11 mm2 lateral field of view
(FOV) were acquired with 20 µm pixel size, while a 5 µm pixel size was employed for
the fine-resolution images for individual wounds over small areas (7 × 7 mm), showing
the detailed microvascular features. The maximum laser per-pulse energy was 900 nJ at a
maximum repetition rate of 12 kHz [18,19].

2.10. Automatic Vessel Segmentation and Analysis Algorithm (AVSA) for Skin Vasculature

An automatic vessel segmentation and analysis algorithm (AVSA) [18] was used to
quantify the metrics of skin microvascular networks for the LSOM datasets. Hb content
was calculated directly based on the sum of raw LSOM image intensity values divided by
the total imaged area (the wound region was excluded), aiming to eliminate any potential
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bias introduced by the contrast enhancement and filtering procedures. Fill fraction was
estimated using the total blood vessel area divided by the total imaged area for evaluating
the skin vasculature distribution surrounding the wounds [19]. To precisely analyze other
vascular parameters such as vessel diameter, LSOM volumetric datasets were first divided
into two volumes, i.e., superficial and deeper vessels based on their relative depth from the
skin surface, by means of a customized segmentation algorithm [18]. These two volumes
were projected into 2D maximum intensity projections (MIPs) and analyzed individually
using the AVSA, and the vascular parameters were then combined for statistical assessment.
Otherwise, the overlapping areas/branches of small-superficial and large-deeper vessels
would introduce potential false identification of skin vasculature [18]. To further identify
each blood vessel and its corresponding vascular parameters, LSOM datasets of individual
wounds (i.e., the fine-resolution images) were contrast enhanced, denoised and smoothed,
and then underwent image thresholding, binarization and vessel skeletonization proce-
dures by using the AVSA. Number of identified vessels, vessel diameter, vessel length and
vessel tortuosity (i.e., sum of all angles divided by vessel length) were all calculated for
assessment. Vessel parameters per wound were calculated and presented with the mean
values ± standard error for the LSOM image statistics. A histogram of vessel diameters was
also presented for day 5 post-wounding, including all identified vessels in each treatment
group. The AVSA also provides the position information of identified vessels for each indi-
vidual wound. Thus, we generated the vessel-parameter heatmaps by integrating specific
parameters with their corresponding vessel position information, presenting the changes
surrounding the wounds over time. To generate the heatmaps, vessels were grouped into
15 × 15 pixels over 7 × 7 mm2 field of view (FOV) based on their position information.
Every pixel then represents the total vessel count and average set of vessel parameters, for
example, diameter calculated for all wounds.

2.11. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 9/9.3.1 software (GraphPad
Software Inc., La Jolla, CA, USA). Mann–Whitney U test was used for comparison of two
groups. For analysis of wound closure, a two-sided Fisher’s exact test was applied. To study
the dose response of TOP-N53 liquid hydrogel formulation, ordinary one-way ANOVA,
Dunnet multiple comparisons test or One sample t test (mentioned in the text) was applied.
To evaluate the effect of TOP-N53 liquid hydrogel formulation on wound blood perfusion,
a two-way ANOVA, Bonferroni’s multiple comparisons test or unpaired two-tailed t-test
(mentioned in the text) were used. Quantitative results are expressed as mean ± standard
error of the mean (SEM). * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001; **** p ≤ 0.0001.

3. Results
3.1. Preparation of a Non-Toxic TOP-N53 Liquid Hydrogel Formulation, Which Does Not Impair
the Wound Healing Process

TOP-N53 is a unique dual-acting NO donor and PDE5I, which was specifically de-
signed for local wound treatment [20]. The small molecule compound (molecular weight
604.68 g/mol) is highly lipophilic as reflected by a calculated logarithm of the partition
coefficient (clogP) of 3.79 and is practically insoluble in water. Therefore, it is suitable
for topical delivery to normal skin, but requires a carrier formulation to enable wound
treatment. Hydrogel formulation was chosen for this purpose due to its abilities to sup-
port wound hydration, aid in oxygen penetration, and create an optimal wound healing
environment that promotes cell proliferation and migration [21]. It also keeps TOP-N53 in
solution at pharmacologically effective doses used in this study, and therefore, it can diffuse
through the wound tissue. We prepared a liquid hydrogel formulation with ingredients
approved by the regulatory authorities for topical administration in humans (Table 1). It
is compatible with the chemical features of TOP-N53 [15] and allows its incorporation
up to a concentration of 165 µM with relatively low viscosity (0.8684 [Pa*s]). Using an
in vitro assay, we found that the hydrogel allows the efficient release of TOP-N53 in human
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blood plasma diluted 1:1 with simulated interstitial fluid buffer (Figure 1A). Importantly,
TOP-N53 was active following its release as reflected by the increased total cGMP levels.
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Figure 1. A non-toxic liquid hydrogel formulation allows release of active TOP-N53. (A) TOP-N53 
concentration as measured by LCMS multiple reaction monitoring in human blood plasma diluted 
with simulated interstitial fluid buffer (1:1) following 24 h incubation in a rapid equilibrium dialysis 
device system. N = 3 per treatment group. N.D.: not detectable; V: Vehicle. (B) Washed human 
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Figure 1. A non-toxic liquid hydrogel formulation allows release of active TOP-N53. (A) TOP-N53
concentration as measured by LCMS multiple reaction monitoring in human blood plasma diluted
with simulated interstitial fluid buffer (1:1) following 24 h incubation in a rapid equilibrium dialysis
device system. N = 3 per treatment group. N.D.: not detectable; V: Vehicle. (B) Washed human
platelets were incubated with riociguat (1 µM) and BAY 60-7550 (100 nM) for 10 min and then
treated with 3 µM of TOP-N53 hydrogel formulation or vehicle hydrogel formulation (V) or vehicle
hydrogel formulation and 3 µM of TOP-N53 dissolved in DMSO for 2 h. Incubation was terminated
by adding 20 µL of 2 N HCl. Total cGMP (pmol/mL) was measured by ELISA. N = 4 independent
experiments using platelets from different donors. Primary human keratinocytes ((C), left) or foreskin
fibroblasts ((C), right) were incubated for 22–24 h with 0.1 or 1 µM TOP-N53 in DMSO (0.01%) or
0.01% DMSO only, or with vehicle liquid hydrogel formulation (V) or TOP-N53 at final concentrations
of 0.1 or 1 µM in liquid hydrogel formulation or with 10-, 100- or 1000-fold dilutions of the liquid
hydrogel formulation in culture medium as indicated and analyzed for cell viability using MTT assay.
N = 4–12 technical replicates per treatment group. Bars indicate mean +/− SEM. * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001, **** p ≤ 0.0001 (Ordinary one-way ANOVA, one sample t test for data shown in
Figure 1A).

TOP-N53 liquid hydrogel formulation at 10-fold dilution had only a minor effect on
the viability of primary human keratinocytes following 22–24 h of incubation (Figure 1C).
A higher dilution of the formulation was required for the treatment of primary human
foreskin fibroblasts because of mild toxicity for this cell type (Figure 1C, right panel).

To test if the formulation affects the wound healing process, vehicle liquid hydrogel
formulation or saline solution were dripped topically on full-thickness excisional wounds
of C57BL/6 mice, followed by the application of skin adhesive at the wound perimeter
and attachment of occlusive wound dressing. This treatment was performed immediately
as well as at day 3 after wounding (Figure 2A,B). Histomorphometric analysis of wound
sections showed similar outcomes of healing and wound appearance with saline or vehicle
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liquid hydrogel formulation treatment (Figure 2C–I), emphasizing the safety of the formula-
tion under the experimental conditions. Herovici staining, which stains young and mature
collagen fibers in blue and purple, respectively [17], did not reveal obvious differences in
the collagen-positive area in the granulation tissue between the vehicle formulation and
saline treatment groups. Similar areas of young and mature collagen fibers and their ratio
were observed, further emphasizing that the formulation does not affect the healing process
(Figure 2C (right) and Figure 2J–M).
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Figure 2. The liquid hydrogel formulation has no adverse effects on wound healing. (A) Scheme
illustrating the topical wound treatment (left) and a representative topically treated wound covered
with Tegaderm (right). The scheme was created using BioRender.com. (B) Treatment regimen for
wound healing experiments. (C) Representative photomicrographs of hematoxylin/eosin (left)-and
Herovici (right)-stained paraffin sections from 5-day wounds of healthy mice treated with saline
or vehicle liquid hydrogel formulation. Magnification bars: 100 µm. D: Dermis, Es: Eschar, GT:
Granulation tissue, HF: Hair follicle, WE: wound epidermis. Black arrows indicate the tips of the
epithelial tongues. (D) Percentages of open (white bars) and closed (black bars) 5-day wounds based
on histological sections. n = 8 (saline; S) or n = 7 (vehicle; V) wounds. (E) Percentage of wound
re-epithelialization, including open and closed wounds. n = 7–8 wounds. Length (F) and average
thickness (epidermis area/epidermis length) (G) of the wound epidermis (WE). n = 7–8 wounds.
(H) Percentage of wound contraction based on the initial wound length (5 mm). n = 7–8 wounds.
(I) Area of granulation tissue (GT). n = 7–8 wounds per treatment group. Percentage of collagen-
positive GT area (J), percentage of young (blue) (K) or mature (purple) (L) collagen-positive GT
area and ratio of mature (purple)-to-young collagen (blue) positive GT area (M) based on Herovici
staining. n = 7–8 wounds. Bars indicate mean +/− SEM.
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3.2. Topical TOP-N53 Formulation Increases Keratinocyte Proliferation and Wound Angiogenesis
in Healthy Mice

To first test the effect of the TOP-N53 liquid hydrogel formulation on the healing of
full-thickness excisional wounds in healthy mice, we chose day 5 after wounding for our
analysis because of our previous experience with intradermal injection of TOP-N53 [15]
and because this time point represents the peak of wound granulation tissue formation and
re-epithelialization in the excisional wound model that we used [3].

TOP-N53 at 1 and 10 µM was applied in the formulation using the same procedure and
treatment regimen as for the vehicle (Figure 3A,B). The treated mice did not show weight
loss throughout the experiment (Figure S1A). A slightly higher percentage of the TOP-N53
formulation-treated wounds were closed at day 5 compared with the vehicle formulation-
treated wounds, although the difference was not statistically significant (Figure 3A,B). As
expected for healthy mice in which the wound healing process is highly efficient, TOP-
N53 treatment had no significant effect on re-epithelialization, length and thickness of
the wound epidermis, wound contraction and granulation tissue area (Figure 3C–G). This
was confirmed by semi-quantitative wound scoring (Figure S1B). However, TOP-N53
formulation-treated-wounds showed increased proliferation of keratinocytes in the wound
epidermis as demonstrated by Ki67 immunostaining, and the difference was significant
at 1 µM TOP-N53 (Figure 3H–I). A mild, but non-significant increase in cell proliferation
was also observed in the granulation tissue below the epithelial tongue and in the wound
bed (middle of the wound) (Figure 3H,J,K). Treatment with TOP-N53 formulation caused
only a very mild increase in CD68+ macrophages and Ly6G+ neutrophils in the granulation
tissue, and only at the highest concentration (Figure S1C,D).

The granulation tissue area, which stained positive for Meca32, a vascular endothe-
lial cell marker, was significantly larger in the wounds treated with 10 µM TOP-N53.
This was observed in the entire granulation tissue and in particularly at the wound
edges, where angiogenesis is initiated (Figure 3L–O). Moreover, vessel maturation was
increased at the wound edges as reflected by the co-staining of Meca32 and the vascular
smooth muscle cell marker α-smooth muscle actin (Figure 3L,P–R). No obvious difference
in the number of myofibroblasts was detected in the different treatment groups at the
wound edges and in the entire granulation tissue as reflected by a similar area covered by
α-smooth muscle actin-positive cells outside the vessels. However, myofibroblasts were
more abundant in the wound bed of TOP-N53 formulation-treated vs. vehicle-treated-
wounds (Figure S1E–G).
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Figure 3. TOP-N53 liquid hydrogel formulation promotes keratinocyte proliferation and angiogenesis
in wounds of healthy C57BL/6J mice. (A) Representative photomicrographs of hematoxylin/eosin-
stained paraffin sections from 5-day wounds of mice treated with vehicle hydrogel formulation
(V) or TOP-N53 1 or 10 µM liquid hydrogel formulation. Magnification bars: 100 µm. D: Dermis,
Es: Eschar, GT: Granulation tissue, HF: Hair follicle, WE: wound epidermis. Black arrows indicate
the position of the epithelial tongue. (B) Percentages of open (white bars) and closed (black bars)
5-day wounds based on histological sections. n = 11 (vehicle; V); n = 11 (1 µM) or n = 11 (10 µM).
(C) Percentage of wound re-epithelialization, including open and closed wounds, n = 10–11 wounds
per treatment group. (D,E) Length (D) and average thickness (epidermis area/epidermis length) (E)
of the wound epidermis (WE). n = 11 wounds. (F) Percentage of wound contraction based on the
initial wound length (5 mm). n = 11 wounds. (G) Area of GT. n = 11 wounds. (H) Representative
photomicrographs of wound sections stained for Ki67. Magnification bars: 100 µm. Ki67+ cells per
mm wound epidermis (I) or mm2 granulation tissue area below the epithelial tongue (J) or in the
wound bed (K). n = 10–11 wounds. (L) Representative photomicrographs of wound sections stained
for Meca-32 (red) and α-smooth muscle actin (SMA) (green) and counterstained with Hoechst (blue).
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White dashed lines define the different areas of the granulation tissue. Magnification bars: 100 µm.
Percentage of GT tissue area at the wound edge area (WED) stained positive for Meca32 (M) or in the
wound bed (WB) (N) or total GT (O). n = 5–6 wounds. Percentage of GT area at the wound edge (WED)
stained positive for Meca32 and α-SMA (P) or in the wound bed (WB) (Q) or total GT (R). n = 5–6 wounds.
All bars represent mean +/− SEM. * p ≤ 0.05; ordinary one-way ANOVA (all graphs, except analysis
of open vs. closed wounds for which Fisher’s exact test was used).

3.3. Topical TOP-N53 Formulation Promotes Wound Re-Epithelialization and Angiogenesis in
Healing-Impaired Diabetic Mice

Next, we tested the therapeutic efficacy of TOP-N53 liquid hydrogel formulation in
mice with genetically determined type II diabetes (db/db mice), an established mouse model
for impaired wound healing [22]. The diabetic condition of these mice was confirmed by
analysis of blood glucose levels (Figure S2A). We then generated full-thickness excisional
wounds in these mice and treated them topically with vehicle formulation or TOP-N53
formulation at different concentrations according to the treatment procedure and regimen
shown in Figure 2A,B. Neither TOP-N53 formulation at different concentrations nor vehicle
formulation treatment affected the body weight during the treatment period (Figure S2B).
At day 5, most wounds were not fully re-epithelialized (Figure 4A,B), with the exception
of two wounds treated with 3 µM TOP-N53, which were closed (Figure 4B). Histomor-
phometric analysis of the H&E-stained 5-day wound sections revealed that the impaired
re-epithelialization that is characteristic for wounds in db/db mice (compare Figures 3C and 4C)
was significantly improved upon treatment with 3 µM TOP-N53 (Figure 4C). TOP-N53
3 µM formulation seemed to be an optimal treatment under these experimental conditions,
as the wound re-epithelialization rate showed a “bell”-shaped-like curve and was no longer
increased at higher concentrations. Wound re-epithelialization is achieved by a combination
of keratinocyte migration and proliferation. A very mild increase in keratinocyte migration
in the TOP-N53 treated wounds was suggested based on the length of the wound epidermis
(Figure 4D). The thickness of the latter was only affected following treatment with a higher
concentration of TOP-N53 formulation (Figure 4D,E). Wound contraction was mildly, but
non-significantly increased upon treatment of wounds with TOP-N53 3 µM formulation
(Figure 4F), while the area of granulation tissue was not altered (Figure 4G). However,
TOP-N53 had a strong effect on the vasculature. There were significantly more vascular
endothelial cells at the wound edges and in the entire granulation tissue in wounds treated
with TOP-N53 3 µM vs. vehicle formulation, as reflected by Meca32 staining (Figure 4H–J),
demonstrating that TOP-N53 3 µM formulation enhances wound angiogenesis.

Taken together, these results show that topically applied TOP-N53 in liquid hydrogel
formulation is most efficient in diabetic mice when applied at a concentration of 3 µM,
which promoted wound re-epithelialization and angiogenesis in these animals.
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Figure 4. TOP-N53 liquid hydrogel formulation promotes wound re-epithelialization and angiogene-
sis in healing-impaired diabetic mice. (A) Representative photomicrographs of hematoxylin/eosin-
stained paraffin sections from 5-day wounds of diabetic db/db mice treated with vehicle hydro-
gel formulation (V) or TOP-N53 3 µM liquid hydrogel formulation. Magnification bars: 100 µm.
D: Dermis, GT: granulation tissue, HF: Hair follicle, WE: wound epidermis. (B) Percentages of open
(white bars) and closed (black bars) 5-day wounds based on histological sections. n = 24 (vehicle; V);
n = 12 (1 µM), n = 12 (3 µM), n = 12 (10 µM) and n = 12 (165 µM) wounds. (C) Percentage of wound
re-epithelialization, including open and closed wounds. n = 12–24 wounds per treatment group.
Length (D) and average thickness (epidermis area/epidermis length) (E) of the wound epidermis
(WE). n = 12–24 wounds. (F) Percentage of wound contraction based on the initial wound length
(5 mm). n = 12–24 wounds. (G) Area of GT. n = 12–24 wounds. (H) Representative photomicrographs
of wound sections stained for Meca-32 (red) and counterstained with Hoechst (blue). Magnification
bar: 100 µm. Percentage of Meca32-positive GT area at the wound edge (WED) (I) or in the total
GT (J). n = 5–6 mice per treatment group. All bars represent mean +/− SEM. * p ≤ 0.05, ** p ≤ 0.01;
ordinary one-way ANOVA (all graphs, except analysis of open vs. closed wounds for which Fisher’s
exact test was used, and angiogenesis analysis where 2 groups were compared and Mann–Whitney U
test was used).
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3.4. Topical Application of TOP-N53 Liquid Hydrogel Formulation Enhances Wound Blood Flow
and Microvascular Network Density in SKH-1 Mice

Our previous and new data showed that TOP-N53 enhances wound re-epithelialization
and angiogenesis in both healthy and healing-impaired diabetic mice upon intradermal
injection [15] or topical application in hydrogel formulation (this study). In addition, it
directly promoted endothelial cell migration and tube formation in vitro [15]. However,
it was so far unclear if wound vascular blood flow is indeed improved. To address this
question, we performed label-free non-invasive longitudinal imaging of the wound mi-
crovascular network using LSOM in SKH-1 hairless mice. These mice are particularly
suitable for the visualization of wound angiogenesis, because they lack hair and melanin,
which can interfere with imaging, but show normal wound healing [23]. SHK-1 mice
were treated with vehicle formulation or with the optimized concentration of TOP-N53
formulation (3 µM) using the treatment regimen of the previous experiments (Figure 2B).
Consistently, the mouse body weight was not affected during the experiment (Figure S2C).
The volumetric LSOM images were recorded at different time points for both treatment
groups and all mice (Figure S2D). Following image acquisition, skin or wound vasculature
were analyzed using an automatic vessel segmentation and analysis algorithm (AVSA) to
allow quantification of the relevant metrics [18,19]. Since LSOM is based on light absorption
by hemoglobin (Hb), we first quantified the Hb content. This parameter is based solely
on the sum of raw image intensity values, divided by the total imaged area, avoiding any
image post-processing effects. We found significantly more intense signals and higher
Hb content in the compound formulation-treated wounds at day 5 post-injury compared
with the vehicle formulation-treated wounds (Figure 5A,B). Similarly, the fill fraction,
which directly evaluates the skin vasculature distribution (e.g., calculated as the total
blood vessel area divided by the total imaged area), was increased at the same time point
(Figure 5C). The latter metric was even highly significant (** p = 0.008) when calculated
using an unpaired two-tailed t-test. It is important to note that fill fraction reflects blood
volume, which was shown to be correlated with blood flow [24,25]. A further detailed
vascular analysis was performed following segmentation of the volumetric imaging data
into two groups, according to the vessel size and their depth in the skin/wound. This
was performed to increase the accuracy of our automatic vessel analysis by minimizing
any 3D overlapping areas/branches of the vessels that interfere with other vessels, which
may cause false identification of normal skin vasculature. For convenience purposes, we
highlighted the surface vessels in orange and the deep vessels in blue, while the wound
regions were blocked out (Figure 5D). To emphasize the formation of functional vessels
over time, we created heat maps for functional vessel number and vessel diameter from a
representative wound of each group at multiple time points (Figure 5E). There was a clear
difference in both vessel number and vessel diameter between the treatment groups at day
5 post-injury (Figure 5E–G). At this time point, an obvious increase in vessel number was
seen in the TOP-N53-treated wounds (Figure 5F). These vessels were smaller in diameter,
likely indicating active vessel sprouting (Figure 5G). The reduction in vessel diameter at
day 5 post-wounding in the TOP-N53-treated wounds was even more pronounced when
considering the vessel diameter measured in intact skin. The full distribution of the indi-
vidual vessel diameter at day 5 post-injury is shown in Figure 5H, revealing the significant
difference between the treatment groups and showing high numbers of smaller vessels
for the TOP-N53-treated wounds. In contrast, there was no difference in vessel tortuosity
(e.g., sum of all angles of each vessel divided by its vessel length) between the treatment
groups (Figure 5I). Note that, although the peaks of diameters of newly formed vessels in
TOP-N53 treated wounds ranged from 16–22 µm at day 5 post-injury in the distribution
curve (Figure 5H), the mean vessel diameter, which is calculated based on each wound
(Figure 5G), reflects the mean value of individual vessel diameters, including the big vessels
with a diameter of up to 100 µm (Figure 5H). This causes a shift towards a slightly higher
mean value.
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Figure 5. TOP-N53 liquid hydrogel formulation promotes wound blood flow and increases the
number of small wound vessels in SKH-1 mice. (A) Representative LSOM images of 5-day wounds
from SKH-1 mice treated topically either with vehicle hydrogel formulation (V) or TOP-N53 3 µM
liquid hydrogel formulation. Magnification bars: 1 mm. The colormap represents optoacoustic
signal intensity in arbitrary units (a.u.). (B,C) Analysis of hemoglobin (Hb) content (a.u./mm2)
(B) or percentage of fill fraction (C) based on LSOM images acquired pre- and post-wounding at
different time points. n = 14 wounds per treatment group. V: vehicle. (D) Representative LSOM
images of wound vessels segmented into superficial (orange) and deeper (blue) vessels based on
their size and relative depth to the skin surface. Magnification bars: 1 mm. (E) Spatial-averaged
heatmaps (each pixel corresponds to 0.46 × 0.46 mm2 area) showing a qualitative assessment of vessel
number and diameter per pixel pre- and post-wounding at different time points. n = 14 wounds.
Analysis of vascular parameters including number of vessels (F), vessel diameter (G), distribution
of vessel diameter (H) and vessel tortuosity (I). All parameters were calculated based on LSOM
images acquired pre- and post-wounding at different time points. n = 14 wounds. All bars represent
mean +/− SEM. Statistics is shown for day 5. * p ≤ 0.05 (Two-way ANOVA and Bonferroni multiple
comparisons test).

Complementary histomorphometric analysis of the imaged wounds at day 5 after
wounding showed a mild, but non-significant increase in wound re-epithelialization in the
TOP-N53 group. There were no obvious changes in wound epidermis length or thickness,
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wound contraction, or granulation tissue area (Figure S2E–I). Consistent with the results
obtained in other mouse strains and with the imaging data, the Meca32-positive areas at
the wound edges, in the wound bed and in the entire granulation tissue were significantly
larger in the TOP-N53-treated mice (Figure S2J–M). These results confirm the potent effect of
TOP-N53 formulation on wound angiogenesis and show the excellent correlation between
histomorphometric and LSOM data.

4. Discussion

Chronic, non-healing wounds have a significant economic impact on healthcare sys-
tems and are associated with high patient morbidity and mortality [4,5,9]. In such wounds,
a variety of factors prevent healing, resulting in persistent inflammation and deficiencies
in keratinocyte migration, fibroblast proliferation and migration, matrix deposition, and
vascularization [4]. The toolset of treatment options available to clinicians is limited in its
efficacy and often requires complex treatment procedures [7,8,26]. Therefore, new thera-
peutic approaches for the treatment of chronic wounds are required to improve the healing
process and the patients’ quality of life.

Studies from our laboratory have shown that TOP-N53, which combines NO-driven
stimulation of cGMP synthesis with reduced cGMP degradation through inhibition of
PDE5, respectively, promotes different healing parameters in healthy and healing-impaired
diabetic mice [15]. This was enabled through the compound’s action on the major skin
resident cells, thereby accelerating wound re-epithelialization, granulation tissue formation
and angiogenesis without inducing excessive inflammation and scar formation [15]. Ideally,
this compound should be applied topically to poorly healing wounds [8].

Here, we show that a topically applied liquid hydrogel formulation allowing efficient
release of TOP-N53 promotes wound re-epithelialization and angiogenesis. Remarkably,
this was associated with an increase in wound microvascular network density and conse-
quently, enhanced blood flow in the wound granulation tissue. By contrast, the effect of the
TOP-N53 hydrogel on the immune cell response was only very mild, which is consistent
with the findings obtained with intradermally injected TOP-N53 [15].

An important effect of TOP-N53 formulation was the promotion of wound re-epithelialization,
which was seen upon intradermal injection of TOP-N53 [15] or following its local wound appli-
cation in the HEC/PEG hydrogel formulation (this study). During wound re-epithelialization,
keratinocytes undergo a partial epithelial-mesenchymal transition (EMT), which is impor-
tant for the repair process [27]. In the future, it will be of interest to determine if EMT
is affected by TOP-N53 treatment. The similar effects achieved with injected or topically
applied TOP-N53 on re-epithelialization demonstrate the suitability of the liquid hydrogel
formulation (HEC/PEG) for topical application, which is of key relevance for future thera-
peutic application. This was confirmed when we analyzed its effect on wound angiogenesis.
In healthy mice, keratinocyte proliferation was most efficiently promoted at a concentration
of 1 µM (20 µL hydrogel), while the optimal concentration for wound angiogenesis was
10 µM (20 µL hydrogel). This is consistent with results from others showing NO-mediated
promotion of keratinocyte proliferation at an optimal NO-donor concentration [28] and
may indicate a higher sensitivity of wound keratinocytes to the compound formulation
treatment as compared to wound blood vessel cells.

The most striking effect exerted by TOP-N53 liquid hydrogel formulation was the
enhanced blood flow combined with an increased wound microvascular network density.
This is particularly important, as diabetic ulcers are characterized by low vascularity and
capillary density [29,30], often as a consequence of compromised NO production and the
resulting reduction in cGMP levels [4,31,32]. This is also consistent with our previous study
showing a direct effect of TOP-N53 on endothelial cell migration and tube formation [15].
Here, we show that this effect is functionally relevant in vivo. By taking advantage of
non-invasive longitudinal imaging of the wound microvascular network using LSOM, we
demonstrate the ability of TOP-N53 in the HEC/PEG hydrogel formulation to promote
functional vessel formation and to enhance wound blood perfusion. This is of paramount
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importance, as these vessels support the wound with nutrients and oxygen and also allow
the invasion of immune cells and removal of hazardous agents, thereby promoting the
repair process. Thanks to the non-invasive nature of LSOM, we were able to non-invasively
and longitudinally monitor the therapeutic effects of TOP-N53, while the wound region of
interest could still be collected after the last imaging time point for histological evaluation.
The observation of an increased number of smaller, but functional blood vessels 5 days
post-wounding in TOP-N53 formulation-treated wounds fits with the normal wound
healing kinetics, where new blood vessels sprout and grow, and robust angiogenesis starts
approximately 2–3 days post-wounding and peaks at day 5–7, followed by vessel regression
through apoptosis [33]. Our work also demonstrates the suitability of the LSOM approach
to study the effect of different compounds on blood vessel formation. This opens new
avenues for the use of this new technology, which was recently used for the analysis of the
normal wound healing process [18] and the effect of a VEGFA transgene on the vasculature
in normal and wounded skin [19].

To this end, various key players in the wound healing process have been identified,
including growth factors and cytokines [4,34,35]. Some of them have been used in transla-
tional studies, e.g., with the aim to enhance wound vascularization [33]. Our data suggest
the use of a synthetic, stable, small molecular weight compound, TOP-N53, which may
rescue the endothelial dysfunction apparent in chronic wounds and promote the formation
of new functional vessels in skin wounds. When formulated in a liquid hydrogel, this
compound can be used for topical application on wounds. Hydrogel formulations as
presented in this study will be particularly suitable for wounds that allow a daily treatment,
such as digital ulcers that result from poor blood flow due to vasoconstriction in systemic
sclerosis patients [36]. Therefore, the results presented here encourage further translational
research, including the development of delivery systems that allow application of TOP-
N53 in a time-controlled manner and appropriate dose for improved treatment of chronic,
non-healing skin wounds.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics14112358/s1, Figure S1: The effect of TOP-N53 liquid
hydrogel formulation on wound healing in healthy C57BL/6J mice; Figure S2: TOP-N53 liquid
hydrogel formulation promotes wound vascularization.
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