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Abstract: The oral cavity is a complex ecosystem accommodating various microorganisms (e.g., bacteria
and fungi). Various factors, such as diet change and poor oral hygiene, can change the composition
of oral microbiota, resulting in the dysbiosis of the oral micro-environment and the emergence of
pathogenic microorganisms, and consequently, oral infectious diseases. Systemic administration is
frequently used for drug delivery in the treatment of diseases and is associated with the problems,
such as drug resistance and dysbiosis. To overcome these challenges, oral drug delivery systems
(DDS) have received considerable attention. In this literature review, the related articles are iden-
tified, and their findings, in terms of current therapeutic challenges and the applications of DDSs,
especially nanoscopic DDSs, for the treatment of oral infectious diseases are highlighted. DDSs are
also discussed in terms of structures and therapeutic agents (e.g., antibiotics, antifungals, antivi-
ral, and ions) that they deliver. In addition, strategies (e.g., theranostics, hydrogel, microparticle,
strips/fibers, and pH-sensitive nanoparticles), which can improve the treatment outcome of these
diseases, are highlighted.

Keywords: antibacterial agents; drug resistance; infection control; microbiology; oral pathology

1. Introduction

The oral cavity, as a component of the digestive system, comprises various vital
structures, such as teeth, periodontal tissues, and oral mucosa. It is considered a complex
ecological niche, including more than 700 microorganisms. This oral microbiota inhibits
the growth of pathogenic microorganisms and participates in preserving the stability and
balance of oral microecology [1]. Alteration in the composition of oral microbiota, owing
to changes in diet, poor oral hygiene, and systemic diseases, could cause the dysbiosis
of oral microecology [2] and, consequently, oral infectious diseases (e.g., dental caries,
periodontitis, peri-implantitis, and oral candidiasis) [1]. These infectious diseases have a
high prevalence, in which dental caries by itself affect 2.5 billion people worldwide [3].

Systemic administration has long been used as the most important route for the deliv-
ery of therapeutic agents in treating oral diseases; however, it causes complications, such
as drug resistance, dysbiosis, and adverse effects, such as impairment in renal and hepatic
functions [4]. To overcome these challenges, drug carriers, such as nanoparticles [1,5],
hydrogels [6], microparticles [7,8], carbon-based polymers [9], and cyclodextrin-based
delivery systems [10] seem to be promising tools as they can (i) control and target drug
release, (ii) improve drugs’ pharmacokinetics, and (iii) increase drugs’ bioavailability and
selectivity, leading to an improvement in the treatment efficacy [11–18]. In addition, these
carriers can improve the administration safety and drug interactions with other body
tissues [11]. For example, Chen et al. [19] demonstrated that loading platinum complexes
of curcumin into a copolymeric nanoparticle (denoted as Pt-CUR@PSPPN) could decrease

Pharmaceutics 2022, 14, 2293. https://doi.org/10.3390/pharmaceutics14112293 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics14112293
https://doi.org/10.3390/pharmaceutics14112293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0003-4009-4921
https://orcid.org/0000-0003-3854-6773
https://orcid.org/0000-0001-5222-3829
https://doi.org/10.3390/pharmaceutics14112293
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics14112293?type=check_update&version=1


Pharmaceutics 2022, 14, 2293 2 of 18

the liver toxicity of the therapeutic compounds (Pt-CUR) in A549 xenograft tumor-bearing
nude mice, in which the blood concentrations of blood urea nitrogen (BUN) and creatinine
in the tumor-bearing mice receiving Pt-CUR@PSPPN, compared to the tumor-bearing mice
receiving Pt-CUR, decreased by 16.7 and 4.8%, respectively. Luo et al. [20] synthesized
platinum (IV)-prodrug nano-sensitizer and evaluated the acute toxicity of the formula-
tion in female BALB/c nude mice. The results demonstrated that the nanoformulation
could increase the maximum tolerated dose (MTD) of cisplatin by 3.3-fold. Fentahun
et al. [21] synthesized a thermosensitive hydrogel containing two therapeutic compounds
of 5,6-dimethylxanthenone-4-acetic acid (DMXAA) and doxorubicin and evaluated the
systemic toxicity of the formulation in a tumor-bearing mouse model (HeLa cells xenograft
BALB/c nude mice model) through measuring the weight changes of the animals. The
results demonstrated that the hydrogel, containing DMXAA and doxorubicin, compared
to DMXAA and doxorubicin, caused a decrease of 2.2% in the body weight loss of the
tumor-bearing animals. Among drug carriers, nanoscopic drug delivery systems (DDSs)
have received increasing attention for dental applications [11]. Structurally, there are vari-
ous types of nanoparticles, such as nanospheres, nanofibers, nanocapsules, core-shell, and
mesoporous nanoparticles [5,11,22–27]. In addition to nanoparticles, other DDSs, such as
microparticles and hydrogels, have been used for controlling oral infectious pathogens
(Figure 1) [1].
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Figure 1. Drug delivery platforms used in the treatment of oral diseases.

This literature review provides an overview of the application of various DDSs to
deliver therapeutic agents for the treatment of oral pathogens. In addition, future directions
for their development, with an emphasis on the strategies, such as theranostics and pH-
sensitive nanoparticles, hydrogel, microparticles, and strips/fibers, are discussed.

2. Drug Delivery Systems for Oral Pathogens Treatment
2.1. Nanoparticles

Nanoparticles are the most important carriers of antibacterial drugs for the treatment
of oral infectious diseases [1]. Typically, they are copolymer-based nanoparticles, i.e.,
they are constructed from different polymers, such as poly(lactic-co-glycolic acid) (PLGA)
and poly(ethylene glycol)(PEG), and biopolymers, such as lipids, chitosan, and alginate.
They benefit from biocompatibility and biodegradability and could be simply modified or
combined for drug delivery [1]. Many DDSs, such as protein-polysaccharide coacervate-
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based nano-carrier systems, are bio-adhesive particles that can adhere to oral mucosa or
tooth surface to release a drug locally in a sustained manner [28,29]. For instance, Niaz
et al. [29] synthesized nicin-loaded protein-polysaccharide coacervate-based nano-carrier
systems (PPC-NCS) using sodium caseinate-sodium alginate. They then evaluated the
efficacy of PPC-NCS in adsorbing mucin and determined the profile of nicin release from
nicin-loaded PPC-NCS. To evaluate the mucin adsorption efficacy, PPC-NCS solution
and mucin type II (1 mg/mL) at the ratio of 1:1 were mixed at room temperature for 1
h. The suspension was then centrifuged (13,000 rpm, 25 min) to obtain the supernatant.
The absorbance of the supernatant was then determined at 263 nm, and the amount of
free mucin was measured using the standard curve. The amount of adsorbed mucin
on the PPC-NCS surface was calculated. Also, the efficacy of nicin-loaded PPC-NCS to
control drug release was evaluated in vitro using simulated salivary fluids. The results of
mucoadhesive studies on the mucosa of the oral cavity demonstrated that nisin-loaded
PPC-NCS, compared to the standard nisin, was 76.7% more potent in adsorbing mucin. In
addition, the results of the drug release study demonstrated that the formulation released
nisin in a sustained manner, in which ~84% of the loaded drug was released after 32 min at
pH 6.8 and 37 ◦C in simulated salivary fluids [29]. Also, in another study [30], chitosan-
based bionanocomposites containing chlorhexidine were prepared, and their profile of
drug release and mucoadhesiveness were measured. To evaluate the mucoadhesiveness,
mucin (0.1 mg/mL) with and without bionanocomposite formulations (1 mg/mL) was
rehydrated in phosphate-buffered saline (PBS, pH 7.4), and a material with an elastic
dominant gel like property was prepared. After 18 h incubation at room temperature, a
drop of mucin gel was dried by vacuum and gold-coated. The gold-coated gel was then
imaged using scanning electron microscopy. Also, the drug release study was performed
in vitro at room temperature with the dialysis bag technique. The results demonstrated that
chlorhexidine-loaded bionanocomposites had good mucoadhesive properties. In addition,
the results showed that the bionanocomposites could release the drug in a prolonged and
sustained manner without the initial burst release, in which ~20% of the loaded drug was
released after 24 h at pH 6.8.

Nanoparticles can be used to modify dental materials without affecting their basic
properties [1]. Also, they could be modified with pH-responsive groups, such as tertiary
amine, to structurally respond to an acidic environment and release their cargo [31]. In the
oral cavity, sugars are fermented by bacteria within biofilms, resulting in a highly acidic
environment, in which the pH values in human dental biofilm, which is also known as
plaque, often decrease to 4.5 or even less, especially after contact with cariogenic food
products, such as sucrose and starch [31,32]. Thus, the persistent acidic pH (~4.5–5.5) in the
plaque at the sites of active caries can occur [31,32]. The niches with low pH promote EPS
synthesis, while cariogenic organisms, such as S. mutans, continue to multiply, leading to the
continuous accumulation of biofilm, the acid-dissolution of tooth enamel and, eventually,
the occurrence of dental caries [31]. Akram et al. [33] synthesized pH-sensitive PLGA-
modified mesoporous silica nanoparticles (MSN), and the formulation was loaded with
chlorhexidine (CHX) and embedded into experimental resin-based dentin adhesives at the
weight ratios of 5 and 10 wt%. The formulation released CHX in a pH-dependent manner,
in which the highest percentage of drug release, which was ~55% of the loaded drug after
30 days, was observed for 10 wt% CHX-loaded/MSN-PLGA modified adhesive at pH 5,
while this value was ~41% at pH 7.4 [33]. Zhang et al. [34], in another study, synthesized a
pH-responsive core-shell nano micelle. The resulting formulation, methoxypolyethylene
glycol-b-poly-2-(diisopropylamino) ethyl methacrylate (mPEG-b-PDPA), was loaded with
bedaquiline, and the profile of drug release from the formulation was evaluated at pH 7,
6, and 5. The results demonstrated that at pH 7, bedaquiline was released slowly in the
first 12 h, in which the amount of drug release did not exceed 35% of the loaded drug,
and the cumulative amount of the drug release reached over 90% after 8 days. At pH 6,
the amount of bedaquiline released in the first 12 h was 70.3% and reached 94.8% on the
third day, while at pH 5, the amount of drug released was 92.2% after 3 h [34]. Table 1
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demonstrates various drug carriers, including nanoparticles used for the treatment of oral
infectious diseases.

Table 1. Various drug carriers used for the treatment of oral infectious diseases.

Carrier Therapeutic Agent Oral Infectious Diseases Results

Chitosan nanoparticles
Glass ionomer cement and

titanium oxide
nanoparticles

Dental caries

Chitosan nanoparticles incorporating glass
ionomer cement and titanium oxide
nanoparticles enhanced the antimicrobial
(Streptococcus mutans (S. mutans)) activity by
approximately 1.7-fold [35].

Mesoporous silica
nanoparticles (MSNs) Chlorhexidine Dental caries

Chlorhexidine-loaded MSNs demonstrated
antibacterial activity against biofilms of S.
mutans (minimum inhibitory concentration
(MIC): 100 µg/mL), Streptococcus sobrinus (MIC:
200 µg/mL), Fusobacterium nucleatum (F.
nucleatum) (MIC: 100 µg/mL), Aggregatibacter
actinomycetemcomitans (MIC: 100 µg/mL), and
Enterococcus faecalis (MIC: 200 µg/mL) [36].

Micelle nanoparticles Triclosan Dental caries

Triclosan-loaded micelle nanoparticles inhibited
the initial biofilm growth of S. mutans by 6-log
colony-forming unit (CFU)/hydroxyapatite (HA)
disc compared to the untreated control [37].

Liposomes nanoparticles 0WHistatin 5 peptide Oral candidiasis
Liposomes could increase the cytotoxicity effects
of 0Whistatin 5 by approximately 13-fold against
Candida albicans (C. albicans) [38].

PEG-PLGA nanoparticles Dodonaea viscosa var.
Angustifolia (DVA) Dental caries

DVA-loaded PEG-PLGA nanoparticles
demonstrated antibacterial activity against
biofilms of S. mutans by 8-fold compared to the
blank nanoparticles [39].

Hydrogel Tinidazole Periodontitis

Tinidazole-loaded hydrogel (monomethoxy
poly(ethylene glycol)-block-poly(d,l-lactide)
(mPEG-PDLLA)) could increase the t1/2 (h), tmax
(h), and area under the curve (AUC)0–168
(h µg/mL) of tinidazole by 16-, 8-, and 21-fold,
compared to the control group, in a rabbit
periodontitis model [40].

Hydrogel Histatin-5 Oral candidiasis

Histatin-5-loaded hydrogel (hydroxypropyl
methylcellulose (HPMC)) could increase the
antifungal (C. albicans) effects of histatin-5 by
approximately 9-fold compared to the control
hydrogel [41].

Dendrimer Apigenin Dental caries

The apigenin-loaded dendrimer demonstrated
an increase in the antibacterial (S. mutans)
activity by 1.6-fold compared to the control
nanoparticle [42].

PLGA/chitosan composite
microsphere KSL-W peptide Periodontitis

KSL-W-loaded PLGA/chitosan composite
microsphere, compared to the control group,
demonstrates significant antibacterial (F.
nucleatum) activity (inhibition zone of 0 and
2.26 cm in control and KSL-W-loaded
PLGA/chitosan composite microsphere
receiving groups, respectively) [43].

Nanoparticles can be also used as theranostic agents (Figure 2). They contain two
radioactive drugs, one of which is used to diagnose, and the other is used to treat, resulting
in an improvement in the treatment outcomes [44].
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2.2. Oral Stimuli-Responsive Drug Delivery Systems

The oral cavity, as a unique ecosystem, has several anatomic microniches representing
complex physicochemical properties, such as pH, oxygen, temperature, or redox poten-
tial [45]. In the healthy state, these features (i.e., pH (6.2–7.6 [46]), oxygen, temperature
(37 ◦C [47]), and redox potential) are in a stable state; however, when infectious diseases
occur, there would be a disturbance in the stability, and these properties change [47].

Oral stimuli-responsive DDSs, also known as smart DDSs, have been recently inves-
tigated [48,49]. These DDSs could react to the changes in the physicochemical properties
of the oral cavity and cause more accurate drug delivery or release. In oral medicine, two
types of stimuli-responsive DDSs have been investigated, nano and injectable DDSs [50].
Among the nano DDs, pH-responsive DDSs are the most commonly used carrier in the
oral cavity [50]. In pH-responsive DDSs, the carriers are decorated with pH-sensitive
groups, such as amines or acid-labile bonds, and the drug release is controlled by protona-
tion/deprotonation reaction or breakage of the chemical bonds during pH change [50].

Among injectable DDSs, hydrogels are more predominant and are developed using a
Sol-Gel method [1]. This type of DDSs could also be modified to respond to the changes
in the physicochemical properties of the oral cavity, such as pH and temperature [1]. For
instance, in one study, Chang et al. [51] synthesized a naringin-loaded thermo-gelling and
pH-responsive carrier that could respond to temperature and pH changes. The hydrogel
was synthesized from carboxymethyl-hexanoyl chitosan, β-glycerol phosphate, and glyc-
erol that was constantly fluidic at 4 °C, while the synthesized hydrogel became gel rapidly
at 37 ◦C. The hydrogel could also release naringin faster at pH 5.5 due to the protonation of
amine groups at acidic pH [51]. Overall, oral stimuli-responsive DDSs lead to controlled
and targeted drug release and, consequently, an enhancement in therapeutic efficacy a
reduction in the side effects of the drugs.

2.3. Hydrogels

Hydrogels are water-soluble polymeric structures with high porosity. They are three-
dimensional, cross-linked networks that could readily swell in an aqueous environment and
absorb water or biological fluid and, as a result, form a gel matrix [6]. Hydrophilic groups
(e.g., -OH, -CONH-, CONH2-) are responsible for hydrogel formation [52]. Hydrogels are
well-biocompatible and are similar to the native extracellular matrix owing to their high
water content [53]. This DDS can load a large amount of drug due to its porous structure
and release the drug in a controlled manner due to its capability of swelling in an aqueous
environment. In one study, Tarawneh et al. [54] developed a chlorhexidine-loaded cellulose-
based hydrogel and measured the drug loading efficiency and the hydrogel efficacy to
control the drug release. The results demonstrated that the hydrogel was synthesized with
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a drug loading efficiency of 58% and could slowly release the drug, in which less than 10%
of the loaded drug was released within 96 h [54]. In another study, ref. [55] fluconazole-
loaded hyaluronic acid-based hydrogel was synthesized and characterized in terms of drug
loading efficiency and profile of drug release. The results demonstrated that the hydrogel
was synthesized with the drug encapsulation efficiency of 83.3% that could preserve ~15%
of the loaded drug after 3 h, and released the remaining loaded drug (~85%) in a controlled
manner [55]. Most hydrogels have exceptional bioadhesivity and could adhere to the tooth
surface and oral mucosa for sustained drug release [53]. Kong et al. [41] developed a histatin-
5 bioadhesive hydrogel using hydroxypropyl methylcellulose. The results of viscosity
measurement and drug release studies demonstrated that hydrogel viscosity decreased
by increasing the temperature, in which the viscosity was 317.84 ± 6.92 centipoise (cP) at
room temperature, while this value was equal to 197.73 ± 0.76 cP at 37 ◦C. Also, the results
of the drug release study demonstrated that histatin-5 was released from the formulation
in a controlled, sustained manner, in which ~98% of the loaded drug was released after
2 h at 37 ◦C. Hydrogel DDSs have been widely used for the treatment of periodontitis and
peri-implantitis (Table 1) [1]. They can be readily administered in liquid form at the site of
drug absorption, where they swell and form a stable gel, which could prolong the residence
time of the active substance [1]. The drug, in the liquid dosage form, is delivered to the
periodontal tissue, and after reaching the target site, the liquid dosage form changes into
a gel dosage form through a sol-gel transition process, and the drug is then released in a
sustained manner [1,56,57]. In one study, Garala et al. [56] synthesized an in situ hydrogel
containing chlorhexidine hydrochloride using a cold method and different polymers, such
as poloxamer 188, poloxamer 407, gellan gum, and carbopol 934P. The results demonstrated
that only hydrogels prepared from 15% w/v and 20% w/v concentration of poloxamer 407
could form hydrogels at various ranges of body temperature (28–39 ◦C).

2.4. Microparticles

Polymer-based microparticles have been studied to improve the therapeutic effects of
antimicrobial drugs against oral infectious agents [7,8]. Various synthetic (e.g., PLGA) and
natural (e.g., chitosan) polymers have been utilized in the construction of microparticles
for drug delivery [58]. Kawatika et al. [59], in one study, demonstrated that chitosan
microparticles could decrease the bacterial (Streptococcus mutans (S. mutans)) viability
(6.5 × 103 versus 2 × 105 colony-forming unit (CFU)/cm2) and increase the acidogenicity
(pH 7.3 versus 5) more than chitosan aqueous dispersion; therefore, the results indicated
that chitosan microparticles were more potent by ~30.8-fold in inhibiting the growth
of mature biofilms. The results of another study [60] demonstrated that doxycycline-
loaded PLGA microspheres released doxycycline in a sustained manner in the periodontal
pocket of patients with chronic periodontitis. Currently, a drug-loaded microparticle
(Arestin®), which is prepared from bioresorbable polymer, poly (glycolide-co-DL-lactide)
and minocycline hydrochloride antibiotic, is available in the market to treat patients with
adult periodontitis [58].

2.5. Strips/Fibers

Strips and fibers, with a polymeric matrix, have been utilized for antimicrobials (e.g.,
chlorhexidine, doxycycline, tetracycline, minocycline, and metronidazole) delivery as an
accessory treatment in periodontology [58]. They can be constructed in the proper di-
mension to be inserted into the periodontal pocket to achieve desired clinical results [61].
Strips and fibers are appropriate DDSs for the treatment of periodontitis owing to their
(i) biocompatibility and biodegradability, (ii) ability to completely fill the pockets, and
(iii) great mucoadhesion features, which lead to their strong retention capability on the
target site. Local drug delivery into the periodontal pocket causes the target sites to be-
come directly accessible. It also improves patient compliance and resolves gastrointestinal
problems resulting from oral drug delivery. In addition, local drug delivery into the
periodontal pocket is a noninvasive, pain-free, and easy-to-use that avoids the hepatic
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first-pass metabolism, improves the drugs’ therapeutic efficacy, and reduces the treatment
cost. Moreover, this route prolongs the drug action and can be considered a reliable drug
delivery route in patients who cannot swallow [61]. Strips and fibers can be synthesized
from various polymers and their combinations. Acrylic polymers have been extensively
used to synthesize strips and fibers [4]; however, owing to their adverse effects, such as
non-absorbability and removal from the body that is required after therapy, other polymers,
such as cellulose derivatives (hydroxypropyl cellulose, hydroxypropyl methyl- cellulose,
ethyl cellulose), polycaprolactone, polyhydroxy-butyric acid, poly- methylmethacrylate,
and PLGA, have been used for their synthesis [58]. PerioChip is a commercial strip com-
posed of a biodegradable matrix of hydrolyzed gelatin containing chlorhexidine gluconate.
PerioChip can preserve the drug concentration above the minimum inhibitory concentra-
tion (MIC) for > 99% of periodontal pocket flora for up to 9 days [62]. Also, Actisite® is a
commercial periodontal fiber for use in the periodontal pocket. It is composed of a monofil-
ament of ethylene/vinyl acetate copolymer and tetracycline hydrochloride antibiotic that
releases the antibiotic continuously for 10 days [63].

3. Drugs Used in the Treatment of Oral Pathogens
3.1. Antibiotic Delivery

Bacterial biofilms cause a significant challenge in oral health. The biofilms are pro-
duced when bacteria cluster together, producing extracellular polymeric substances (EPSs)
around each bacterial cell. The EPSs contain various proteins and polysaccharides, that
produce binding sites. The microenvironment of EPSs allows bacteria to adhere to each
other and stick to biological and non-biological surfaces, resulting in drug resistance. In
addition, some bacteria (e.g., S. mutans and lactobacilli) can develop an acidic environment,
which decreases the effectiveness of the antibiotics [11]. Moreover, the shear forces in the
oral cavity, due to the action of the tongue and oral mucosa, further increase the treatment
challenges of bacterial infections. To overcome these challenges, new platforms of DDSs can
be utilized to improve antibiotic-pathogen interactions and modulate drug dosage [11]. In
this regard, a new strategy that exploits shear forces in the oral cavity has been investigated
by Zhang et al. [64]. Figure 3 demonstrates a nanoparticle-hydrogel hybrid system that
could release antibiotics effectively under shear forces. The results of Zhang et al. [64] study
demonstrated that the bio-adhesive nanoparticle-hydrogel delivery system could release
the loaded drug locally in a controlled manner, enabling controlled and sustained drug re-
lease kinetics. To evaluate the drug release from the nanoparticle-hydrogel delivery system,
0.5 mL of the formulation was transferred into a dialyzer, and a 100 nm pore-size dialysis
membrane was used. The dialyzer was immersed in 100 mL of PBS and stirred (37 ◦C). At
various time points, 1 mL of the solution was replaced with 1 mL of the fresh PBS. The drug
concentration in the collected samples was calculated. The results also demonstrated that
this system had excellent adhesion and antibiotic retention in biological environments (e.g.,
bacterial film, a mammalian cell monolayer, and mouse skin tissue) under high-shear stress
conditions. In addition, this bioadhesive nanoparticle-hydrogel system was found potent in
treating other diseases by selecting the proper drug and nanoparticle cargo. The adhesion
and viscoelasticity features of the nanoparticle-hydrogel delivery system could be adjusted
to meet the need for shear stresses under peculiar physiological conditions. This system was
also found to be completely safe and nontoxic as it did not cause any seeable skin reaction
or toxicity during the 7-day treatment process. However, it may be necessary to match the
duration of gel adhesion with the time span for the drug release as the gel without antibi-
otics could be potentially susceptible to bacterial colonization. This issue can be addressed
by either regulating the hydrogel degradation rate or regulating the rate of antibiotic release
from nanoparticles. Overall, this bio-adhesive nanoparticle-hydrogel delivery system that
utilizes adhesive force to overcome high shear forces demonstrated a high potential for
long-lasting, safe, and efficient localized delivery of different therapeutics [64].
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3.2. Antifungal Delivery

Among oral fungal infections (e.g., candidiasis, histoplasmosis, aspergillosis, and coc-
cidioidomycosis), candidiasis, caused by Candida albicans (C. albicans), is the most common
infection that can develop hyperplastic candidiasis, leading to carcinoma [11,65]. There
are some hypothetical molecular mechanisms by which C. albicans can cause dysplasia
and malignant neoformations. These mechanisms include (i) the generation of endoge-
nous nitrosamines, (ii) the overexpression of the transcription factors of P53, Ki-67, and
COX-2, (iii) an increase in the generation of acid aspartyl proteinase, (iv) an increase in
the production of proinflammatory cytokines, such as interleukin (IL)-1α, IL-1β, IL-6, IL-8,
IL-18, and tumor necrosis factor (TNF)-α, (v) an increase in the generation of acetyl-CoA
synthetase, (vi) a decrease in the production of β-defensins and an increase in the pro-
duction of alcohol dehydrogenase enzyme, and (vii) the production of candidalysin as a
toxic protein [66]. Fluconazole is an antifungal drug used for the site-specific treatment
of C. albicans infections [11]. However, the clinical application of fluconazole is associ-
ated with side effects, such as headache, liver disease, and the risk of drug resistance.
Thus, it is required to use an appropriate DDS to overcome these problems [67]. For
this purpose, mucoadhesive nanoparticles have been developed for fluconazole deliv-
ery [11]. These particles can be coated with chitosan as a biocompatible and non-toxic
compound with antifungal and mucoadhesive properties to improve their efficacy [11]. It
has been demonstrated that the use of chitosan, as a surface coating agent, can increase the
bioavailability of nanoparticles due to its mucoadhesive property. Mucoadhesive delivery
systems can enhance the residence time of the dosage forms at the site of delivery that
may result in enhanced bioavailability [68]. In addition to chitosan nanoparticles, other
DDSs, such as lipid-based nanoparticles [69], hydrogel [70], and nanofiber [71], have also
been used for the treatment of oral candidiasis (Figure 3). Mendes et al. [69] synthesized
a miconazole-loaded nanostructured lipid carriers (NLC) dispersion and evaluated its
antifungal activity against C. albicans. The results demonstrated that the nanoparticles
could increase the antifungal activity of the drug by 4-fold. Martin et al. [70] synthesized
sodium alginate-based hydrogel containing nystatin and evaluated its antifungal activity
against C. albicans on pig animals. To evaluate the antifungal activity of the nystatin-loaded
hydrogel in vivo, adequate amounts of hydrogel equivalent to 30 mg nystatin was applied
on the buccal mucosa of one of the cheeks (9 cm2 each one) using a paintbrush. The
hydrogel was administrated 4 times a day for 2 days. According to the results, the drug-
loaded hydrogel, compared to the standard drug, caused less antifungal activity by 1.7-fold
in vitro; however, the results of in vivo study demonstrated that the resulting amounts of
nystatin retained in the porcine mucosae of pigs receiving nystatin-loaded hydrogel was
3.38 ± 0.25 µg/g tissue/cm2, while there was no nystatin in the porcine mucosae of pigs
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receiving nystatin solution. Tonglairoum et al. [71], in another study, evaluated the antifun-
gal activity of a clotrimazole-loaded microemulsion-containing nanofiber mats compared
to the standard clotrimazole. The results demonstrated that the nanofiber formulation of
clotrimazole, compared to the standard clotrimazole, was ~11.4-fold more potent in killing
C. albicans after 30 min treatment [71].

In addition, various pH-sensitive, polymer-based microparticles with mucoadhesivity
have been developed for encapsulating miconazole nitrate. These microparticles can
release the drug in a sustained manner (Figure 4D), and improve the miconazole nitrate
dissolution rate [11,72–74]. In one study, Tejada et al. [74] synthesized miconazole nitrate-
loaded microparticles using hydroxypropyl methylcellulose and evaluated the efficacy of
the drug-loaded microparticles in controlling the drug release and improving its dissolution
rate. The results demonstrated that the particles could control the drug release for 30 min,
in which the whole amount of the drug was released from the microparticles after 30 min.
Also, the microparticles could improve the dissolution rate of the drug by ~2.7-fold [1].
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Figure 4. Drug delivery systems for the treatment of oral candidiasis using (A) lipid-based nanoparti-
cles, (B) nanofiber mat, (C) bioadhesive hydrogel, and (D) denture materials modified by prolonged
miconazole release. The denture materials modified by copolymer improve binding with miconazole,
resulting in prolonged drug release.

3.3. Antiviral Delivery

Most antiviral drugs, such as atazanavir [75] and erythromycin [76], can specifically
target viruses. By now, antiviral drugs are most commonly administered orally, meaning
that in addition to the lung, the major proportion of the drugs is distributed to the systemic
circulation [77]. Viral infections, such as oral herpes infection, are able to engage the skin of
the mouth and oral mucosa. Oral herpes, due to human herpes simplex virus 1 (HHV-1),
can cause pain in the lips, tongue, and mouth roof [78], while HHV-2 causes genital herpes.
HHV-3 is another human herpes simplex virus that causes chickenpox and herpes zoster.
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Also, HHV-4 (Epstein- Barr) and HSV-5 (cytomegalovirus) viruses are other viral infection
agents that cause infectious mononucleosis. HHV-6 and HHV-7 can cause roseola, which is
a viral infection associated with high fever and a skin rash in small children. HHV-8 virus in
patients with acquired immunity deficiency syndrome (AIDS) causes Kaposi’s sarcoma [79].
There are a few strategies for the local administration of antiviral drugs. For example,
using an antiviral cream for the treatment of labial herpes is the only local route for the
treatment of the disease [4]. Nanoparticle application for the delivery of antiviral drugs
can be exciting for researchers [80] because they are able to regulate their release kinetics,
enhance their bioavailability, control the rate of their dissolution, decrease their side effects,
and decrease the treatment cost [11]. In this regard, various types of nanoparticles, such as
graphene oxides (GOs) [81], carbon dots (C-dots) [82], and fullerenes [9], have been used
for the treatment of viral diseases that will be discussed in more detail.

3.3.1. Carbon-Based Polymers

Carbon-based nanomaterials, such as graphene, carbon dots (C-dots), and fullerenes,
have been confirmed for delivering antiviral drugs as they have low cytotoxicity and can
be easily manipulated to specify their function. For instance, graphene can directly interact
with viruses, while fullerene has inhibitory effects on viral activity [9]. The sharp edges
of graphene oxides (GOs) can nullify the virus before its interaction with cells. Moreover,
the negative charge of GOs enables them to interact with viruses electrostatically and, as
a result, causes an improvement in their antiviral activity. Moreover, graphene oxide can
perform photocatalysis, resulting in viruses being photodegraded directly. This further
improves the degradation caused by the sharp edges. Graphene oxide nanoparticle systems
supported by silver have also shown an increase in their efficacy in degrading viruses.
This results from the ability of silver to increase binding to the glycoproteins on the viral
membrane and prevents the invasion of viruses into cells [10]. Du et al. [83] synthesized
silver nanoparticles modified GOs nanocomposites (GO-AgNPs) and evaluated the antiviral
efficacy of the formulation. The results demonstrated that GO-AgNPs could suppress the
porcine reproductive and respiratory syndrome virus (PRRSV) infection and inhibit the
virus entry into the host cells by an inhibition efficiency of 59.2% [83].

C-dots nanomaterials, a carbon-based nanomaterial, could cause antiviral effects by them-
selves. Barras et al. [84] synthesized C-dots from 4-aminophenylboronic acid hydrochloride
and evaluated their antiviral activity against HSV-1 infection. The results demonstrated
that the formulation could inhibit HSV-1 infection in ng/mL concentration range with
the half maximal effective concentration (EC50) of 80 and 145 ng/mL on Vero and A549
cells, respectively. Du et al. [85], in another study, evaluated the cell toxicity and antiviral
effects of C-dots on the replication of pseudorabies virus (PRV) and PRRSV. The results
demonstrated that the C-dots had low cytotoxicity against Monkey kidney MARC-145 and
Porcine kidney PK-15 cells (cell viability of >90% at 0.125 mg/mL of C-dots after 12, 24, 36,
and 48 h incubation). Also, C-dots, compared to the control group, could inhibit the PRV
entry into the host cells by ~13.2% after 24 h incubation, while this value for PRRSV was
~19.4% [85]. Fahmi et al. [86] synthesized anhydrous citric acid-based C-dots nanoparticles
and modified them with carboxyl phenylboronic acid (CBBA; CBBA-Cdots). The toxicity
and antiviral effects of C-dots and CBBA-Cdots against MOLT-4 human leukemia cells and
human immunodeficiency virus -1 (HIV-1) were then evaluated. The results demonstrated
that C-dots and CBBA-Cdots with the size of 2.8 and 6.2 nm, respectively, were synthesized.
Both nanoparticles were nontoxic towards MOLT-4 cells (the half of cytotoxic concentration
(CC50) values of 2901.2 and 1991.9 µg/mL for C-dots and CBBA-Cdots, respectively). Also,
the results demonstrated that C-dots and CBBA-Cdots could inhibit virus entry into the
host cells by half concentration of inhibition (IC50) values of 9506.3 and 26.7 µg/mL, respec-
tively. This primarily resulted from the cooperation between hydroxyl and carboxyl surface
groups as well as boronic acid to prevent the formation of hydrogen bonding between the
viruses and cells [9].
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In the case of fullerene, this specific type of carbon-based material has antiviral activity
against HIV due to its potency to block the encoded enzymes by preventing the active sites
of HIV protease. Generally, fullerenes have low cytotoxicity against human lymphoblastic
CEM cells [87]; however, they have low solubility. To address this issue, they can be
combined with highly soluble materials, such as alkali metal salts. Fullerenes can produce
singlet oxygen particles, which cause the photodynamic inactivation of viruses. Carbon-60-
based materials have photosensitizer activity. As photosensitizer activity causes an increase
in their cytotoxicity, the decreased solubility perceived in fullerenes and related materials
is an advantage owing to the more readily removal of carbon-60-based materials from the
body. In general, fullerenes have demonstrated promising efficacy in treating several viral
diseases, such as hepatitis C virus (HCV), respiratory syncytial virus (RSV), H1N1, herpes
simplex virus, human cytomegalovirus, Zika, and Dengue viruses [9].

3.3.2. Cyclodextrin-Based Delivery Systems

Cyclodextrins (CDs)-based delivery systems are able to deliver drugs site-specifically
at an associated spread rate; thus, they are promising carriers for the treatment of viral
infections. They could form hydrophobic inclusion complexes in both solution and solid
states, allowing them to change their physical properties easily. Also, CDs-based delivery
systems can be chemically modified to improve their properties. For example, β-CD,
as the standard form of CDs, contains 21 hydroxyl groups (seven primary and fourteen
secondary hydroxyls), which can be modified with various functional groups [10]. Due
to bioadaptability and multifunctional features, CDs are able to reduce the undesirable
features of drugs through the formation of inclusion complexes [88].

There are various types of release patterns for CDs as DDSs, including immediate,
prolonged, modified, and delayed releases. Immediate release is especially applicable
when the effects of an injected drug are needed urgently. In the immediate release, CDs
increase the dissolution rate of a drug, which is not very water-soluble. The CDs, such
as hydroxypropyl-β-cyclodextrin (HP-β-CD), heptakis-[2,6-di-O-methyl]-β-cyclodextrin
(DM-β-CD), sulfobutylether-β-cyclodextrins (SB-β-CDs) and branched β-CDs, that release
the loaded drugs immediately, are generally used for the delivery of low water-soluble
drugs while CDs, such as ethylated and acylated β-CDs, that release the loaded drugs in a
prolonged manner are used for the delivery of water-soluble, high dose drugs. Prolonged-
release formulations, compared to immediate-release formulations, cause a reduction in
the frequency of administering doses to patients as the release of a larger single dose takes
a longer time [88]. CDs formulations, such as cyclodextrins in combination with polyoxy
60 hydrogenated caster oil derivative (HCO-60) or in combination with hydroxypropyl
cellulose, that cause drug release in a modified manner can be developed from the combi-
nation of CD complexes with different carriers [88]. HCO-60 causes an inhibition in the
drugs’ crystal formation, while hydroxypropyl cellulose causes a relatively steady rate of
drugs’ dissolution within the body. CD-based formulations with modified-release profiles
can release the encapsulated drugs continuously over a period of time. These formulations
are used for drugs which have poor oral bioavailability and reduced solubility owing to
crystal formation. In addition, CDs formulations that release the loaded drug in a delayed
manner are used for the delivery of drugs into a specific part of the body by measuring
the time needed for a drug to reach the target site and be metabolized [10]. In one study,
Donalisio et al. [89] prepared a complex of acyclovir and sulfobutyl ether-β-cyclodextrin
and then incorporated the resulting formulation into chitosan nanodroplets. The antiviral
efficacy of the formulation was then evaluated using a plaque reduction assay. The results
demonstrated that the acyclovir-loaded nanodroplets, compared to acyclovir, were more
efficient in inhibiting HSV-2 virus infection by ~2.8-fold [89].

3.4. Ion Delivery

S. mutans and S. sobrinus bacteria ferment carbohydrates and produce organic acids.
The intensified acidity promotes the calcium and phosphate ions released from enamel and
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mineralized dentin. This demineralization process is neutralized by the saliva activity, in
which the bicarbonate ions in saliva function as a buffer and cause restoring the normal pH
in the oral environment. Also, mineral ions in saliva restore the calcium and phosphate
ions on the tooth surfaces (remineralization). Shifting this dynamic physiological balance
to demineralization can cause dental caries and, as a result, enamel dissolution [11,90,91].
The delivery of calcium, phosphate, and fluoride ions to block demineralization in the oral
environment is a serious challenge for dental researchers for over a century. Herein, the
delivery of various ions for dental application will be discussed in more detail.

3.4.1. Fluoride Delivery

Fluoride suppresses the growth of bacteria, which cause dental caries and further acid-
ification of the oral milieu [11,92]. Increasing the concentration of fluoride ions in the saliva
causes a decrease in hard tissue demineralization [93]. Fluoride ions, through reacting with
hydroxyapatite (HA), incorporate into the HA lattice structure to generate fluorapatite with
higher acid-resistance properties [11,92]. HA is a biocompatible agent and has been used in
different formulations as a biomimetic compound to prevent enamel caries progression [94]
and to relieve dentin hypersensitivity [95]. Also, fluoride ions disrupt the metabolism
of bacteria which produce organic acid and suppress caries progression [11,92]. It has
been shown that daily consumption of 200 ppm of fluoride suppresses dental caries [96].
Designing novel ion delivery systems to preserve the fluoride ions concentration in the
saliva has been reported [97–99].

The large surface-to-volume ratio of microparticles and nanoparticles, as fluoride ions
delivery systems, enables them to increase their ions loading capacity. These particles can
also release fluoride ions in a controlled manner, which causes maintenance of the optimized
concentration of the ions and their protective effects for a longer time. For this purpose,
nanoparticles, compared to microparticles, are more efficient carriers due to their higher
surface-to-volume ratio. For example, calcium fluoride nanoparticle (nano-CaF2), compared
to traditional glass ionomer cements, causes an increase in the cumulative fluoride release
because nano-CaF2, compared to traditional glass ionomer cements, has a 20-fold higher
surface area [100]. Different ion delivery systems have been synthesized, and their efficacy
in delivering fluoride was evaluated [96–99,101]. Ghafar et al. [96] synthesized thiolated
chitosan-based bioadhesive film, the film was loaded with calcium fluoride nanoparticles
and lignocaine, and the efficacy of the resulting bioadhesive films in controlling the release
of fluoride ions was evaluated. The results demonstrated that the films caused a prolonged
release of fluoride ions for 8 h, in which ~94% of the loaded fluoride was released after 8 h at
pH 6.8. Keegan et al. [97] synthesized (sodium fluoride) NaF/chitosan microparticles using
glutaraldehyde as a cross-linker. The resulting formulation caused the continuous release
of fluoride ions up to 6 h at pH 4 and 7, in which ~74 and ~78% of the loaded fluoride were
released at pH 4 and 7, respectively. De Francisco et al. [98], in another study, synthesized
sodium fluoride-loaded ethylcellulose and sodium fluoride-loaded gelatin microparticles
and evaluated the efficacy of the particles in releasing the loaded sodium fluoride in vitro.
The results demonstrated that the formulations could release the loaded sodium fluoride
in a sustained manner over 8 h, in which ~11.5 and ~60% of the loaded sodium fluoride
were released from ethylcellulose microparticles and gelatin microparticles, respectively,
after 8 h. In addition, Nguyen et al. [99] synthesized chitosan/fluoride nanoparticles using
sodium tripolyphosphate, as a cross-linking agent, and demonstrated that the fluoride ions
were released from the particles in a sustained manner at both pH 5 and 7, in which ~58
and ~46.7% of the loaded fluoride were released at pH 5 and 7, respectively, after 24 h. The
acidic pH (pH 5) caused an increase in the release of fluoride from the nanoparticles. The
results of Nguyen et al. study [99] suggest that these nanoparticles can release fluoride
ions in acidic pH and promote hard tissue remineralization [96]. Samarehfekri et al. [101],
in another study, synthesized polylactic acid (PLA) nanoscaffold nanomicelles containing
NaF and evaluated the efficacy of the nanomicelles in controlling the release of fluoride.
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The results demonstrated that the nanomicelles released 59% of the loaded fluoride after
4 h at pH 7.4 and 37 ◦C.

3.4.2. Calcium and Phosphate Delivery

Calcium ions constitute 99% of bone tissue, and the administration of calcium com-
pounds, such as calcium carbonate, calcium lactate, or calcium gluconate, causes the
inhibition of osteoporosis and bone loss. Carbonated apatite, with 10 calcium ions and
6 phosphate ions, constitutes the bulk of minerals in enamel [102,103].

Using ion delivery systems, such as HA [104], tricalcium phosphate [11,105], and
amorphous calcium phosphate (ACP), for the delivery of calcium and phosphate ions is a
promising approach to preventing dental caries by increasing the saturation of these ions
in the oral environment [11,106]. Polyamidoamine (PAMAM) dendrimers are hydrophilic
polymers with a core of ethylenediamine and amidoamine branching structure that make
them capable of absorbing calcium molecules [107]. Liang et al. [103], in a study, prepared
PAMAM dendrimers containing calcium and phosphate ions and evaluated their efficacy
in preventing tooth decay. The resulting formulation could release calcium and phosphate
ions at low pH and neutralize the acidic environment and inhibit dental caries [103]. ACP
nanoparticles are not sufficiently stable in the oral environment and are easily converted into
a crystalline form, resulting in a decrease in the bioavailability of calcium and phosphate
ions for tooth enamel remineralization [11]. To address this issue, Luo et al. [108] used
polyacrylic acid to improve ACP stability. Polyacrylic acid-ACP was then loaded into MSNs
through electrostatic interaction. The resulting formulation caused the release of calcium
and phosphate ions in a sustained manner to remineralize collagen fibrils in demineralized
dentin [108]. Also, casein phosphopeptide (CPP) as a cluster protein has been used to
enhance the ACP stability and, as a result, to improve the calcium and phosphate ions
bioavailability. Mendes et al. [109] demonstrated that CPP-ACP could reduce tooth decay
by releasing calcium and phosphate ions into the oral environment.

4. Conclusions and Outlook

One of the most important strategies to treat oral infectious diseases is the systemic
administration of antimicrobial drugs, where the drugs are distributed throughout the
body, resulting in an increase in their side effects and a decrease in the therapeutic ef-
fects. Systemic administration can develop drug resistance, dysbiosis, and impairment in
renal and hepatic functions. To solve these issues, DDSs are considered an appropriate
strategy in order to improve the therapeutic effects of drugs. Using DDSs can lead to
a controlled and targeted drug release pattern and improve the drug pharmacokinetics,
bioavailability, and selectivity, resulting in an improvement in the treatment outcome.
By now, various DDSs, such as nanoparticles (e.g., liposome, chitosan, MSNs, micelle,
PLGA, dendrimer), hydrogels (e.g., monomethoxy poly(ethylene glycol)-block-poly(d,l-
lactide) (mPEG-PDLLA), hydroxypropyl methylcellulose (HPMC)), microparticles (e.g.,
poly (glycolide-co-DL-lactide)), and strips/fibers (e.g., biodegradable matrix of hydrolyzed
gelatin) have been evaluated and have demonstrated promising results. Investigations
have shown that (i) using nanoparticles could release the loaded drugs/agents in a pH-
dependent manner to achieve targeted drug delivery, enhance the antibacterial properties of
the restorative materials, and improve the antibacterial and antifungal activity of the loaded
drugs/agents, (ii) using hydrogels could enhance the half-life of the loaded antibiotics and
improve the antifungal and antibacterial activity of the drugs/agents, (iii) using micropar-
ticles could enhance the antibacterial activity of the drugs/agents, and (iv) strips/fibers
have excellent mucoadhesion properties and could improve the antimicrobial activity and
drugs/agents. However, more efficient DDSs are required due to the high prevalence
of oral infectious diseases. In this regard, the therapeutic applications of DDSs might
be further improved through the development of multifunctional DDSs (e.g., theranostic
nanoparticles and stimuli-responsive DDSs) and an enhancement in their efficacy. The
multifunctional DDSs enable researchers to monitor the response to the treatment and
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control the release behavior of the loaded drugs. Also, the results from the literature can be
used to improve the properties of the DDSs (e.g., toxicity and stability). These results can
further help to minimize the cost of the treatment by reducing the drug dose.
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