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Abstract: Bacteria-mediated cancer therapy has become a topic of interest under the broad umbrella
of oncotherapy. Among many bacterial species, Salmonella remains at the forefront due to its ability to
localize and proliferate inside tumor microenvironments and often suppress tumor growth. Salmonella
Typhimurium is one of the most promising mediators, with engineering plasticity and cancer speci-
ficity. It can be used to deliver toxins that induce cell death in cancer cells specifically, and also as
a cancer-specific instrument for immunotherapy by delivering tumor antigens and exposing the
tumor environment to the host immune system. Salmonella can be used to deliver prodrug converting
enzymes unambiguously against cancer. Though positive responses in Salmonella-mediated cancer
treatments are still at a preliminary level, they have paved the way for developing combinatorial
therapy with conventional chemotherapy, radiotherapy, and surgery, and can be used synergistically
to combat multi-drug resistant and higher-stage cancers. With this background, Salmonella-mediated
cancer therapy was approved for clinical trials by U.S. Food and Drug Administration, but the results
were not satisfactory and more pre-clinical investigation is needed. This review summarizes the
recent advancements in Salmonella-mediated oncotherapy in the fight against cancer. The present
article emphasizes the demand for Salmonella mutants with high stringency toward cancer and with
amenable elements of safety by virulence deletions.
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1. Introduction

Cancer is a leading cause of death worldwide and a burgeoning health burden with
a limited number of successful therapeutics. On average, 10 million people worldwide
lose their lives annually due to various cancers [1]. Every cancer requires an accurate
diagnosis and prompt treatment at the earliest possibility. Even though most conventional
treatment strategies such as surgery, chemotherapy, and radiotherapy remain major life
savers, they have serious limitations that can damage healthy tissues [2,3]. Surgical removal
of cancers can be effective in certain types and developmental stages of cancers; however,
cancer relapse and the possibility of further spread due to metastasis are some of the
inherent weaknesses of this method [4]. On the contrary, radiotherapy and chemotherapy
provide varying degrees of success and inflict unprecedented failures in cancer treatment,
especially distant tumor recurrences and undesirable effects [5,6]. Hence, to fill the gap,
novel treatment concepts and strategies are essential as an ideal treatment for cancers.
Cancer tumors consist of hypoxic core regions and necrotic centers, which make most
cancer treatments incompetent due to lack of oxygen and abnormal vasculature. Studies
have demonstrated that such regions are the key features of tumors that lead to treatment
failure [7–9]. In addition, due to the abnormal vascular architecture, it is a huge challenge to
deliver therapeutic agents to the tumor region. Hence, it is evident that a single treatment
strategy may not be effective against cancer malignancies, but holistic approaches might
bring suboptimal outcomes.
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In recent decades, bacteria-mediated cancer treatments (BMCT) have garnered at-
tention as an alternative strategy to treat cancer tumors due to the intrinsic challenges of
conventional cancer treatment strategies. Advancements in genetic engineering and re-
combinant DNA technology had paved the path for developing numerous bacterial strains
as model systems to be used in cancer immunotherapy. William Coley’s controversial
study, more than a century ago, revealed that some bacterial species may hold the key to
creating targeted treatments for cancers that are challenging to cure. According to Coley,
the complex cocktail he produced had the potential to shrink cancer tumors; however,
the lack of progressive techniques and poor understanding of the mode of action made it
difficult to reproduce consistent results. Revitalizing these early findings, scientists around
the world have attempted to use novel bacterial species, such as Bifidobacterium, Clostridium,
Salmonella, Streptococcus, and Listeria monocytogenes for tumor regression and have brought
deep insight into their mode of action.

Accumulating evidence suggests that the cytotoxic effect of several bacteria can be
hijacked and used against cancer cells. Some bacteria are naturally capable of homing to
tumors, while other invasive species have been exploited to deliver heterologous genes
intracellularly. The high rate of replication and invasive characteristics of some species,
including Salmonella and Clostridium, are better vector candidates to express the target gene
in tumor cells. Bacteria that have higher penetration and dispersion throughout tumors
hold a greater ability to regress tumors [10]. Tumors have hypoxic regions where facultative
anaerobes can survive and function to produce anti-tumor effects. Efficient delivery of the
therapeutic gene to the target tissue or cell is the most significant hurdle for successful gene
therapy. Thus, DNA is normally combined with a gene delivery vehicle in order to protect
and mediate the effective tissue or cell entry of the payload gene of interest (GOI). The
account for the payload GOI is handled by the bacterial invasive character that stands as a
model in animal and human infection.

Among known bacterial species suitable for BMCT, Salmonella enterica serovar Ty-
phimurium (ST) is one of the most versatile, as it can grow under both aerobic and anaer-
obic culture conditions. Therefore, it has no problem spreading systemically in animals
under highly aerobic conditions, and eventually localizes in hypoxic tumor regions, which
are their preferred sites of colonization. Salmonella has exhibited an immense capability to
colonize hypoxic, necrotic, and metastatic tumors; thus, it can complement conventional
treatment strategies [11]. The preferential accumulation ratio of ST in tumor regions is
between 103 to 104 times more than in normal body tissues, resolving a huge challenge
in the target specificity of cancer treatment [12]. Experimental data have confirmed that
this localization occurs in a few days in most cases [13]. Thus, Salmonella can be used as a
carrier to deliver therapeutics directly into the tumor regions, thereby protecting them from
degradation and potential damage from the host immune system. Moreover, Salmonella
can be easily tailored in a myriad of ways such as bacterial ghost systems, protein secre-
tion systems, target-oriented and lysis systems, quorum sensing systems, etc. Thus, it
has versatility for cancer treatment. Additionally, the simplicity of manufacturing it, its
cost-effectiveness, and its rapid mass production place it as a new option for cancer therapy.
In the present article, we elaborate on the mechanisms, strategies, and potential engineering
methods of Salmonella as a key microbial agent suitable for the next generation of cancer
therapy.

2. Bacterial Application for Cancer Therapy

Numerous studies have demonstrated the anti-tumor effects of several bacteria, either
by directly killing or modulating immune components of the tumor microenvironment.
The natural cytotoxic features of bacteria can result in substantial tumor regression. There-
fore, many researchers have exploited non-pathogenic obligate anaerobes and facultative
anaerobes which selectively infiltrate and replicate within solid tumors when administered
systemically. The ability of bacteria to regress tumors came into the limelight in the early
1800s. BMCT started gaining momentum when Coley’s toxin, a mixture of killed Streptococ-
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cus pyogenes and Serratia marcescens developed by Dr. William B. Coley, achieved clinical
responses for many malignant tumors [14]. Additionally, the anti-tumor characteristics
of various bacteria have been documented, such as Salmonella [15], Escherichia coli, Vibrio
cholerae and Listeria monocytogenes [16], Clostridium welchii [17], Clostridium tetani [18], Bi-
fidobacterium infantis [19], Streptococcus pyogenes [20], and Proteus mirabilis [21]. Salmonella
holds natural cytotoxicity that regresses tumors when injected in its native form [15].
Similarly, Clostridium, an obligate anaerobe, can regress tumors in mice [17,22,23].

The bacterial implication in cancer can function as a two-edged sword, since the
association of certain pathogenic species has been linked to colon cancer. E. coli possesses a
genomic island polyketide synthetase codes for the synthesis of colibactin that has been
implicated in colorectal cancer [24]. In another scenario, Clostridium sps., especially Clostrid-
ium perfringens and Clostridium septicum, has been associated with colorectal cancer [25,26].
Salmonella typhi/paratyphi produces a potent carcinogen N-nitroso compound and has been
documented for hepatobiliary carcinoma [27].

3. Attenuated Bacteria for Cancer Therapy

The unique tumor-homing characteristics of bacteria have been exploited for anti-
tumor vaccine therapies, and such bacteria can be genetically attenuated to carry and deliver
heterogeneous antigens which elicit host immunity. Generally, attenuation by modification
on lipopolysaccharides, flagella, or other structural proteins is widely practiced. Moreover,
with advancements in molecular biology, genetic modification for the delivery of different
agents, such as tumor-associated antigens, immunostimulatory molecules, anti-tumor
drugs, and nucleotides (DNA or RNA), are extensively accepted approaches [28]. A
bacterial platform targeting cancer therapy is the choice of many researchers, as it possesses
many benefits. Genetic manipulation, precise tuning, and limitless functional combinations
of desired characteristics using bacteria have brought cancer treatment to a new horizon.
Recently, several studies have focused on cancer treatment using the direct delivery of
heterogeneous antigens or genes encoding anti-tumor molecules. Bacteria, including
Salmonella species, have been significantly attenuated in their virulence in order to rule out
a major threat of systemic infection or collateral damage [13,29].

Bacteria can specifically target tumors and actively penetrate tissue, which can induce
cytotoxicity and destroy malignant cells [30]. Obligate anaerobes and facultative anaerobes
can have an intrinsic tumor-targeting ability, because they can survive intra-tumor hypoxia.
The hypoxic area in the tumor facilitates anaerobes and facultative anaerobes, as well as
additional nutrients, including purines, and the immunosuppressive environment inhibits
the clearance of Salmonella. Transforming growth factor-beta within a tumor inhibits the
activation of neutrophils that prevent bacterial clearance from solid tumors [31]. Attenuated
Salmonella strains which have been developed as gene delivery vectors carrying herpes
simplex virus thymidine kinase (HSV TK) possess anti-tumor activity in mice and are
capable of both selective amplification within tumors and expression of effector genes
encoding therapeutic proteins [15].

Several strategies have been exploited for BMCT research, such as bacterial tumor-
targeting properties, intra-tumoral penetration, bacterial cytotoxicity, expression of anti-
cancer agents, host gene-triggering strategies, and immunotherapy. Although efforts are
ongoing, the success of BMCT in animal models could not be replicated in humans using
ST VNP20009. The attenuated strain with chromosomal deletion of the purI and msbB genes
was able to target the tumor and inhibit tumor growth in mice [32], but failed to replicate
anti-tumor effects in humans [33].

4. Why Is Salmonella the Best Option?

Salmonella-mediated cancer therapy (SMCT) is gaining popularity over other therapies
because of several advantages. For instance, it has characteristic features that are peculiar
to the species, such as self-targeting tumor localization and proliferation, and intrinsic
anti-tumor nature. Compared with other bacterial species, it has several advantages, such
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as the relative ease of attenuation and gene manipulation, and it can grow in a hypoxic
environment. It has a wide range of hosts, including humans and farm animals. In
addition, it can be administered orally and stimulate local and systemic immune responses,
highlighting its use as a model vector for cancer vaccine therapy.

4.1. High Tumor Colonization

The inherent facultative anaerobic and intracellular pathogenic characteristics of
Salmonella facilitate strong preferential colonization in tumor tissue (Figure 1). Clairmont
et al. have documented 1000-fold accumulation of the ST VNP20009 strain in tumors
compared to the liver [32]. These attenuated strains were cleared rapidly from systemic
circulation, liver, and spleen, whereas proliferation in tumor tissue continued for a longer
time [32]. Thus, lower toxicity is observed in the host. Such selective tumor colonization
and proliferation are owing to the hypoxic and vascularized environment of the tumor [34].
The mobility of Salmonella toward tumors and their accumulation is influenced by the
tumor microenvironment, host reticuloendothelial system, and bacterial metabolism [35].
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Figure 1. Therapeutic strategy for Salmonella-mediated cancer therapy. Salmonella has been exploited
to localize and regress tumors via the delivery of anti-cancer molecules to induce cytotoxicity. The
intrinsic tumor-targeting feature of Salmonella has been hijacked to deliver the gene of interest
or secondary metabolites to suppress the tumor. Recently, combination therapy with conventional
treatment strategies is more effective in the treatment of various cancers. Another promising approach
is the bio-imaging of the tumor by using a fluorescence marker that enhances the localization and
helps in targeting the metastatic tumor.
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4.2. Non-Specific Tumor Target

Salmonella has been reported as having invasiveness toward a broad spectrum of
murine tumor models. Several documents support its effectiveness in the treatment of
melanoma, colon cancer, lung cancer, prostate cancer, cervical cancer, and metastatic T-cell
lymphoma. The quiescent cells in the tumor cylindroid model secrete bacterial chemoat-
tractant, and the presence of necrotic and quiescent cells attracts and enables ST to replicate
in the central regions of the quiescent tumor cell mass [36]. Other mechanisms revealed
that Salmonella uses aspartate receptors to initiate chemotaxis toward tumor cylindroids
in vitro. It uses the serine receptor to initiate penetration and the ribose/galactose receptor
to enhance affinity toward necrotic tissue [37].

4.3. Inherent Anti-Tumor Character

Salmonella is believed to have an intrinsic oncolytic activity that is mediated through
the induction of tumor cell apoptosis. Bacterial invasion releases toxins, deprives the
tumor microenvironment of nutrients, and promotes apoptosis [30]. Alternatively, the
anti-angiogenic ability of Salmonella could delay tumor progression by inhibiting tumor
angiogenesis [38,39]. Findings on the ability of Salmonella to downregulate the expression of
hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF)
through the AKT/mTOR pathway support the anti-angiogenic ability of Salmonella [38].
Furthermore, bacteria can activate innate immune cells by cytokine stimulation and recruit
and activate other immune cells at the tumor site, promoting anti-tumor immunity [40].

4.4. Engineering Plasticity

Salmonella is an excellent system for acquiring attenuation by targeting different ap-
proaches. It has flexibility in gene modification that helps to improve the safety of bacterial
therapy through the deletion of major virulence factors or the generation of auxotrophic
mutants that are incapable of replicating efficiently in an environment deficient in specific
nutrients [41]. This increased specificity allows it to function as a “bacterial robot” to
deliver anti-tumor therapeutic agents to the tumor site. It can deliver therapeutic payloads
in the form of DNA, RNA, or protein. For this, the Salmonella delivery system needs to
be transformed with extrinsic gene expression plasmids. The engineering plasticity of
Salmonella enhances its efficacy in cancer therapy through improving safety, specificity, and
delivery of anti-tumor therapeutic agents. It has been exploited for the delivery of cytotoxic
agents such as cytolysin A, PE38, and diphtheria toxin, apoptosis-inducing proteins such
as Fas ligand and TNF-related, apoptosis-inducing ligand (TRAIL), as well as apoptin and
immunomodulatory cytokines, including IL-2, IL-12, IL-18, and IFN-γ [34,42–46]. Engi-
neering plasticity enables the application of Salmonella in the expression of anti-cancer
agents, “prodrugs,” or tumor-specific antigens at tumor sites. At present, the expression of
oncogene-silencing RNA and a strategy of incorporating tumor-killing nanoparticles are
being developed [30,47].

Recently, protein drug delivery to tumors was demonstrated by Raman et al. The
group used intracellular delivery of Salmonella to express constitutive two-chain active
caspase-3, an engineered form of caspase-3 that causes apoptotic cell death. They de-
veloped the strain by engineering genetic circuits to enable autonomous deposition of
protein payloads directly into cancer cells that decreased tumor growth and reduced breast
metastases [48]. Transforming growth factor alpha (TGFα) is a natural ligand for epidermal
growth factor receptor (EGFR), a receptor highly expressed in tumor cells [49]. Researchers
employed the ∆ppGpp Salmonella mutant to deliver a recombinant drug TGFα-PE38, an
immunotoxin comprising a modified Pseudomonas exotoxin A (PE38) conjugated with
TGFα, and investigated the process through which it undermined the tumor by inducing
the expression of pro-inflammatory cytokines from macrophages and neutrophils, such
as IL-1β and TNFα [46,50]. The recombinant protein produced by bacteria effectively
regressed the solid tumor growth and induced tumor cell apoptosis [46].
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5. Salmonella enterica Serovar Typhimurium

ST, a gram-negative pathogenic bacteria [51], is one of the most extensively studied
and promising bacterial mediators of cancer immunotherapy. ST is the choice of many
researchers because of its ability to grow in both aerobic and anaerobic environments,
resulting in its colonization in both non-hypoxic and hypoxic tumors [52]. It has high tumor
specificity and deep tissue penetration potential. It possesses chemoreceptors, such as the
aspartate receptor, that initiate chemotaxis toward viable tumor tissue, serine receptors
to induce tissue penetration, and a ribose receptor to regulate migration toward necrotic
tissue [37]. In addition, it has been engineered and designed in many studies that have
explored cancer-targeting therapeutic agents (Table 1). ST has been engineered as a delivery
vector for anti-tumor effects by expressing the pro-apoptotic Fas ligand in breast cancer
and colon carcinomas in mice models [53]. TRAIL, a natural inducer of apoptosis and
tumor cell death, was used in ST-based cancer therapy under the control of a prokaryotic
radiation-inducible promoter, recA. This study has shown the inhibition of mammary
tumor growth and substantially increased rates of survival [54].

Table 1. Salmonella strains in therapeutic application in cancer.

Bacteria (Strain) Strategy/Gene of Interest Tumor Model Results/Mode of Action References

S. Typhimurium
VNP20009
TAPET-CD

Cytosine deaminase
expression from E. coli that

converts non-toxic
5-fluorocytosine to the
active anti-tumor agent

5-fluorouracil

Mice colon tumors

Mice treated with 5-FC inhibited
tumor growth by 88−96%

compared to TAPET-CD alone,
which inhibited tumor growth by

38−79%

[55]

S. Typhimurium
VNP20009

Carboxypeptidase G2
(CPG2)

Murine models of
breast and colon

cancer

Prodrug-based suicide gene
therapy [56]

S. Typhimurium
VNP20009 msbB and purI mutations melanomas

Attenuated strain preferentially
accumulates in tumors and is

rapidly cleared from other organs
[32]

S. Typhimurium Deletion of ppGpp CT26 tumor Tumor suppression via IL-1β. [50]

S. Typhimurium
A1-R leucine-arginine auxotroph

Pancreatic cancer
orthotopic mouse

model

Promotes CD8+ T cell infiltration
and arrests tumor growth and

metastasis.
[57]

S. Typhimurium
A1-R

Combination with
recombinant methioninase

or doxorubin or
temozolomide

Osteosarcoma,
sarcoma, melanoma

Eradicate osteosarcoma and soft
tissue sarcoma; regresses

malignant melanoma
[58–60]

S. Typhimurium
A1-R

Combination with
temozolomide or

vemurafenib

Melanoma in
patient-derived

orthotopic
xenograft (PDOX)

model

Combinatorial anti-tumor effect
and drugs promoted targeting of S.

Typhimurium A1-R
[61]

S. Typhimurium
(ST2514P3)

Tryptophan auxotroph
(trpA trpE deletion) Breast cancer (4T1) Suppressed the primary tumor

growth and pulmonary metastasis [13]

S. Typhimurium
Vascular endothelial

growth factor
receptor 2

Lewis lung
carcinoma

Tumor suppression and inhibition
of pulmonary metastasis [62]

S. Typhimurium
VNP20009

TNF-related
apoptosis-inducing ligand

(TRAIL)

Mammary tumor,
melanoma

Caspase-3-mediated apoptosis in
cancer cells [54,63]

S. Typhimurium Fas ligand (FasL)
breast carcinoma
and CT-26 colon
carcinoma cells

Tumor growth inhibition by 59%
for breast tumors and 82% for

colon carcinoma
[53]
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Table 1. Cont.

Bacteria (Strain) Strategy/Gene of Interest Tumor Model Results/Mode of Action References

S. Typhimurium shRNA- expressing vectors
targeting bcl2 Melanoma Delayed tumor growth and

prolonged survival [64]

S. Typhimurium Cytotoxic protein (HlyE) Mammary tumor Increased tumor necrosis and
reduced tumor growth [65]

S. Typhimurium
msbB- and purI- IL-18 Lewis lung

carcinoma

Inhibit the growth of primary
subcutaneous tumors and

pulmonary metastases
[66]

S. Typhimurium
Herpes simplex virus

thymidine kinase (HSV
TK)

Melanoma Suppressed tumor growth and a
prolonged average survival [15]

Since the recognition that bacteria could be used for cancer therapy in the 19th century,
Salmonella has been widely studied. It has been the best option for researchers as it covers
many features, including high tumor-targeting capacity, tumor specificity, deep tissue
penetration, and engineering plasticity. ST with auxotrophic mutations has demonstrated
prominent anti-cancer potential [13,15,67,68]. Attenuated Salmonella with modification on
lipopolysaccharide has been reported to have an anti-tumor effect [69]. ST with a modified
lipid A (ST VNP20009) has achieved anti-tumor responses in dogs [70]. Lipid A-modified
ST replicated more than 1000 times in tumors compared to normal tissue [68]. Auxotrophs
for aromatic compounds, such as tryptophan [13] and purine, revealed Salmonella to be a
good candidate for cancer therapeutics.

6. ST VNP20009 Strain

Several ST mutants have been evaluated for cancer therapy. The strains that are
studied most frequently are ST VNP20009, A1-R, and other mutants. Among them, the
ST VNP20009 strain was generated to obtain stable attenuated virulence by deletion of
the purl gene for purine auxotrophy, and endotoxicity was reduced by the deletion of the
msbB gene with a lipid-A modification [32]. ST VNP20009 renders selective accumulation
at a ratio of >1000:1 over normal organs and specificity toward the tumor tissue, and is
highly attenuated with a virulence reduction of about 10,000-fold [12]. This strain has been
used in many studies and is the only strain to be evaluated in phase I clinical trials for
metastatic melanoma or renal cell carcinoma in humans [33,71]. Mice were implanted with
murine melanoma, and tumor growth was inhibited in the human tumor xenografts by
57–95% with a single dose of ST VNP20009 [72]. Aside from solid tumors, ST VNP20009
can induce apoptosis in multiple types of leukemia cells and prolong the survival of
the MLL-AF9-induced acute myeloid leukemia-carrying mice [73]. Zheng et al. have
demonstrated transgenic expressions of proteins by ST VNP20009 [74], and it has been
used for the delivery of cycle-inhibiting factor genes for the treatment of colon cancer [75].
The lack of tumor regression in clinical trials of ST VNP20009 [33] compelled further
modification, and the phoP/phoQ system was deleted in order to enhance tumor-targeting
ability [76]. Complete genome sequencing of ST VNP2009 revealed nonsynonymous single
nucleotide polymorphisms and purM deletion, demanding further study for effective
human application [77].

A new method for tumor localization and improved safety has been demonstrated by
coating VNP20009 with tumor cell-derived nanoshells [78]. The carcinoma cell-mimetic
bacteria (CCMB) were released from carcinoma cells using UV irradiation, with an extra
membrane from apoptotic bodies of invaded tumor cells as coating shells. The presence of a
tumor cell-derived membrane in CCMB elicits low inflammation and enhances homologous-
targeting tumor localization. This strategy exhibited tumor regression and metastasis
inhibition and stands as a promising biotherapy for tumor treatment [78].
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7. ST A1-R Strain

ST A1-R strain is a tumor-seeking leucine-arginine auxotrophic mutant developed by
nitrosoguanidine mutagenesis that grows in viable as well as necrotic regions of tumors, but
is restricted to normal tissue. It has been characterized to treat various tumor models in mice
such as prostate, breast, pancreatic, and ovarian cancer, as well as sarcoma and glioma [79].
Mice implanted with metastatic PC-3 human prostate tumors were cured by nearly 70%
when injected weekly with ST A1-R [80]. Likewise, mouse models with disseminated and
metastatic human ovarian cancer cell line SKOV3-FGP demonstrated remarkable tumor
size reduction and survival compared to untreated mice [81]. Administration of ST A1-R to
nude mice with primary osteosarcoma and lung metastasis was highly effective, especially
against metastasis [79]. Bone metastasis is a lethal and morbid late stage of breast cancer.
ST A1-R treatment reduced bone growth in highly metastatic human breast cancer in
nude mice, and also helped to prevent and inhibit breast cancer bone metastasis [82]. This
strain also has the capability of decoying quiescent cancer cells to the S/G2/M phase and
sensitizing them to cytotoxic chemotherapy [83].

8. Other Auxotrophic Mutant Strains

Auxotrophic mutant strains are an attractive alternative modulation of Salmonella for
killing tumor cells. We engineered ST auxotrophic for tryptophan as a candidate for cancer
therapy. This engineered mutant has improved the ability to target and colonize the tumors,
reduced the fitness in healthy tissues, and inhibited primary tumor growth and lung
metastases [13]. Liang et al. modified the auxotrophic Salmonella vector harboring ∆aroA
and ∆purM mutations to deliver antitumor molecules, including the angiogenesis inhibitor
endostatin and apoptosis inducer TRAIL, then evaluated anti-tumor efficacy. This strain
significantly suppressed tumor growth and prolonged the survival of colon carcinoma
and melanoma-bearing mice [84]. Attenuated ST aroA strains that secrete prostate-specific
antigens in combination with cholera toxin subunit B induced cytotoxic CD8+ T cells, which
efficiently prevented tumor growth in mice [85]. Another application of aroA deleted ST
(∆dam, ∆aroA) demonstrated the suppression of tumor angiogenesis, tumor growth, and
metastasis while delivering a murine MHC class I antigen epitopes of Legumain, a protein
highly expressed in tumor-associated macrophage (TAM) [86].

9. Anti-Tumor Mechanism of Salmonella

The anti-cancer activities of Salmonella have been well documented, but the details of
killing tumor cells are still under debate, and accumulated evidence supports the different
mechanisms proposed. Various intrinsic features of Salmonella and the tumor microenvi-
ronment play a crucial role during the proliferation, progression, and metastasis of tumor
cells (Figure 2).
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ized than the corresponding normal tissue [102]. Such a high and unruly vascularizing 
tumor microenvironment enhances the chance of Salmonella invasion. Higher localization 
of such facultative anaerobic bacteria starts killing tumor cells for their nutrients and sur-
vival, which is further supported by chaotic vasculature. A positive correlation between 
higher vascularity and destruction of tumor blood vessels by the tumor-targeting double-
auxotrophic mutant ST A1-R has been demonstrated [39]. 

Figure 2. Schematic diagram illustrating the mechanism of Salmonella to manipulate host immune
response for tumor inhibition. Transformation of the tumor microenvironment from immunosuppres-
sive to immunogenic occurs through increased infiltration and reprogramming of anti-tumor immune
cells, upregulating the expression of proinflammatory cytokines and inducing a shift in the phenotypic
and functional characteristics of immune cells. (1) A niche full of micronutrients supports the aggres-
sive growth of Salmonella [87]. (2) Salmonella invasion increases the infiltration of macrophages [88],
CD4+ T cells, CD8+ T cells, NK cells [89], and B cells [90] in the tumor microenvironment. (3) Bacterial
invasion upregulates the expression of proinflammatory cytokines [91]. (4) Salmonella infection upreg-
ulates the Cx43 protein to enhance an antigenic presentation by dendritic cells [92]. (5) Activation of
CD8+ T cells and NK cells downregulates Treg cells [93,94]. (6) Downregulation of immunosuppres-
sive factors favors better immune protective response [95,96]. (7) Cytotoxic T cells release perforin to
lyse the tumor cells [38,97]. (8) Transition of M2 macrophage to M1 macrophage orchestrates the pro-
tective anti-tumor immune response [88,98]. (9) Salmonella induces apoptosis and autophagy through
its intrinsic properties [99–101]. (10) Chaotic vasculature is disrupted by inhibition of angiogenesis
via downregulation of hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth
factor (VEGF) [38]. All of the steps are summarized in the text. MΦ: macrophage; IL: interleukin,
G-CSF: granulocyte colony-stimulating factor; GM-CSF: granulocyte-macrophage colony-stimulating
factor; MIP-1α: macrophage inflammatory protein-1 alpha; ARG-1: arginase-1; TGF-β: transforming
growth factor-beta; IDO: Indoleamine 2,3-dioxygenase; TAMs: tumor-associated macrophages; DC:
dendritic cell; M1: M1-like macrophage; M2: M2-like macrophage.

9.1. Hypoxic Environment and Tumor Vasculature

Chronic and acute hypoxia occurs in the tumor due to unevenly distributed and
chaotic tumor vasculature, which is associated with decreased oxygen supply and dis-
turbed cell proliferation. A hypoxic environment favors facultative anaerobic bacteria
such as Salmonella. Tumor angiogenesis can cause an abnormal vasculature that is more
vascularized than the corresponding normal tissue [102]. Such a high and unruly vas-
cularizing tumor microenvironment enhances the chance of Salmonella invasion. Higher
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localization of such facultative anaerobic bacteria starts killing tumor cells for their nutri-
ents and survival, which is further supported by chaotic vasculature. A positive correlation
between higher vascularity and destruction of tumor blood vessels by the tumor-targeting
double-auxotrophic mutant ST A1-R has been demonstrated [39].

9.2. Abundant Nutrients and Competitive Nature of Salmonella

The tumor microenvironment hosts diverse micronutrients. A study in murine pan-
creatic and lung adenocarcinoma models revealed that nutrients available to tumors differ
from those present in circulation that influence cancer cell metabolism [87]. Metabolic
adaptation in tumors accumulates metabolites that serve as a substrate for the generation
of energy and biomass, as well as altering normal gene expression [103]. This creates an
immunosuppressive microenvironment inside the tumor that could ease the survival and
growth of attenuated auxotrophic bacteria by supplying nutrients and providing protection
from the immuno-surveillance of the host [104]. By using this knowledge, auxotrophic
Salmonella for leucine, arginine, and tryptophan has been exploited for the treatment of
prostate cancer and breast cancer in mice models [13,105].

9.3. Tumor Penetration

The potential for deep tumor penetration has made Salmonella the best candidate
for BMCT. Conventional chemotherapeutic drug distribution relies on passive transport,
limiting uniform delivery in the inner tumor region. Live Salmonella gathers energy from
surrounding abundant nutrients and invades deep tumor tissue. After systemic admin-
istration of ST, it is dispersed in all the regions of the solid tumor from the edge to the
core center, and apoptosis is induced [99]. Such a spatial distribution of bacteria within
tumor tissue is influenced by bacterial motility; bacteria with higher motility penetrate
deeper [106]. Other groups believe that ST migration in the tumor is a passive process that
is independent of motility and chemotaxis, however, they have used different strains and
time points post-infection to examine the tumor-colonization events [35]. Other factors in-
cluding host immune response can determine tumor penetration. Neutrophils prevent the
spread of bacteria from the necrotic region into tumor tissue, and their depletion increases
intra-tumor bacterial colonization [107].

9.4. Apoptosis and Autophagy-Inducing Intrinsic Anti-Tumor Action

Numerous investigations have shown that Salmonella has direct killing effects on cancer
cells. Accumulation of Salmonella in tumors induces apoptosis [99]. High-resolution multi-
photon tomographic images have revealed that genetically engineered ST A1-R infected
cancer cells expanded, burst, and finally lost viability [101]. Salmonella has an intrinsic
ability to kill cancer cells by inducing both cellular apoptosis and autophagy [100,108].
Although the exact mechanism underlying the induction of apoptosis by Salmonella is
less defined, competition for nutrients with cancer cells and the release of bacterial toxins
may induce apoptosis. It could also induce autophagy, a scavenger process that is present
at a lower level in tumor cells than in their normal counterparts. Salmonella induces the
autophagic signaling pathway in a dose- and time-dependent manner via downregulation
of the protein kinase B (AKT)/mammalian target of the rapamycin (mTOR) pathway [109].
The AKT/mTOR pathway plays a significant role in cellular physiology and homeostasis.
Downregulation of this pathway reduces the expression of matrix metalloproteinase 9
(MMP-9), an oncoprotein involved in metastasis [110].

9.5. Inhibition of Angiogenesis

Angiogenesis plays a vital role in the development and progression of tumors. HIF-1α
and VEGF play a significant role in tumor angiogenesis. Salmonella invasion in a tumor can
downregulate the expression of HIF-1α and VEGF, and inhibits tumor angiogenesis via
the AKT/mTOR pathway [38]. Another mechanism for the suppression of angiogenesis
involves a recently identified tumor angiogenesis inhibitor protein, connexin 43 (Cx43),
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which functions by downregulating VEGF via HIF-1α [111]. Furthermore, higher tumor
vasculature has been correlated with the destruction of tumor blood vessels with the
tumor-targeting double-auxotrophic mutant ST A1-R [39,112].

9.6. Immunomodulation in Tumor Tissue

Salmonella can manipulate immune components of the tumor niche in favor of tumor
inhibition by shifting the tumor microenvironment from immunosuppressive to immuno-
genic (Figure 1). This process involves alterations to both cellular and soluble components
of the immune system which, in turn, affects the phenotypic and functional properties
of immune cells. Salmonella infection has been reported to increase the infiltration of
macrophages [88], natural killer (NK) cells, CD4+ helper T cells, CD8+ cytotoxic T cells [89],
and B cells [90]. Tumor cells release chemo-attractants such as colony-stimulating factor 1
(CSF-1) and the chemokine C-C motif chemokine ligand 2 (CCL2) to recruit monocytes that
differentiate into M2 macrophages [113]. M2 macrophage polarization supports the growth
and malignancy of tumors by suppressing the anti-tumor immune responses of the host by
secreting immunosuppressive molecules, such as arginase 1 (Arg1) [96] and the cytokine
IL-10 [114]. Upon Salmonella invasion, TAMs increase the expression of M1 macrophage
activation markers, such as the IFN-γ-dependent Sca-1 and MHC class II proteins [88].
This is a paradigm for shifting M2 to M1. These M1 macrophages orchestrate protective
anti-tumor immune responses through the expression of nitric oxide synthase (NOS2) and
TNF-α [98].

Regulatory T (Treg) cells mitigate anti-tumor immunity by inhibiting tumor antigen-
specific cytotoxic T-lymphocytes (CTL) [115]. Intra-tumoral injection of attenuated Salmonella
has immunotherapeutic potential, as it reduces Treg cells in a colon cancer model [93].
Salmonella treatment downregulates the cell surface molecule, CD44 present in both Treg
and cancer cells [94]. Cx43 is a ubiquitous protein for gap junction formation but is nor-
mally lost during melanoma progression. It has been reported to suppress the growth of
melanoma and is involved in peptide transfer to activate T cells and induce anti-tumor
immunity [116]. Salmonella infection can induce the upregulation of Cx43 and facilitate
gap junction formation. Dendritic cells can collect peptide antigens via gap junctions and
present antigenic peptides from the tumor cells. Antigenic presentation activates cyto-
toxic T cells against the tumor antigen, which can ultimately control the growth of distant
uninfected tumors [92].

9.7. Orchestration of TAM Function and Polarization

TAMs are a major component of the leukocytic infiltrate of tumors, and have served as
a paradigm for cancer-related inflammation, promotion tumor growth, invasion, metastasis,
and drug resistance [117]. TAM has an M2-like phenotype, although there is a state of
constant transition between the two forms (M1 and M2) [118]. M1 macrophages are well-
known for anti-tumor functions, whereas the M2 macrophages promote the occurrence and
metastasis of tumor cells, tumor angiogenesis, and tumor progression [119]. TAM functions
as a double-edged sword, with the ability to express pro- and anti-tumor activity, and has
excellent reprogramming potential toward immunological stimuli such as IFN-γ or IFN-α.
Upon bacterial invasion, TAM is associated with an innate response compelled to produce
inflammatory cytokines. This stimulation in TAM re-programs immunosuppressive M2
macrophages into immunostimulatory M1 macrophages [120,121]. Salmonella invasion
increases high mobility group box 1 (HMGB1) secretion in tumors to coax the polarization
of macrophages in favor of an M1-like phenotype, which is reflected by increased inducible
nitric oxide synthase (iNOS) and interleukin 1 Beta (IL-1β) production [122]. In a separate
investigation, the M2 macrophage phenotype was reversed into the M1 macrophage in a
co-culture of M2 macrophage with a genetically engineered ST YB1 strain. This suggests
that ST redirects M2:M1 macrophage transition in TAM by switching the macrophage
from the CD206high/HLA-DRlow phenotype to the CD206low/HLA-DRhigh phenotype
in order to undermine breast tumor growth [123]. Thus, generated M1 macrophages
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mediate cytotoxicity by releasing tumor-killing molecules ROS and NO [124], as well as by
antibody-dependent, cell-mediated cytotoxicity [125]. This event orchestrates the tumor
microenvironment toward protective anti-tumor immune responses.

In a different approach, suppression of TAMs can be achieved through designing
cancer vaccines against proteins which is overexpress by TAMs, such as Legumain and
others. Legumain encodes an asparaginyl endopeptidase that is highly upregulated in
murine and human tumor tissues [86]. Administration of Legumain or its MHC class I
antigen epitopes as a minigene vaccine through Salmonella induces specific CD8+ T-cell
response and suppresses tumor angiogenesis, tumor growth, and metastasis [86,126].

9.8. Release of Cytotoxic Chemicals

The release of cytotoxic compounds such as perforin and granzyme is a defense
mechanism during Salmonella treatment which helps to kill cancer cells. The expression
of immunomodulatory molecules, such as cytokines and chemokines, stimulates the host
immune system to clear tumors. As a consequence, Salmonella has been explored as a vector
for the expression of cytotoxic agents such as cytolysin A, Fas ligand (FASL), TNF-α, TRAIL,
IL-2, and IL-18 [53,54,66,127,128]. ST engineered to express the proapoptotic cytokine FASL
inhibited the growth of primary tumors by an average of 59% for breast tumors and 82% for
colon tumors [53]. Likewise, cytotoxic protein (HlyE) was expressed in the hypoxic regions
of murine mammary tumors with the aid of a highly hypoxia-inducible promoter that
increased tumor necrosis and reduced tumor growth [65]. ST engineered for the secretion
of murine TRAIL under the control of the prokaryotic radiation inducible RecA promoter,
activated apoptosis, delayed mammary tumor growth, and reduced mortality by 76% [54].
Chen et al. demonstrated similar results for suppressing melanoma by TRAIL under the
control of the hypoxia-induced nirB promoter [63].

9.9. Role of the Type III Secretion System

Salmonella harbors a well known virulence factor, the type III secretion system (T3SS)
encoded by “Salmonella pathogenicity island 1” (SPI1) to facilitate direct injection of effector
proteins into host cells, interfere with intracellular signaling pathways, manipulate host
cell cytoskeleton network, and enable colonization [129]. They are adapted to produce and
store most of the effector proteins to secrete through the T3SS into the host cells [130]. This
powerful system can be manipulated in order to translocate heterogeneous antigens by
fusion with effector proteins. Cellular invasion promoted by SPI1 is supported by injecting
bacterial effector molecules encoded by Salmonella pathogenicity island 2 (SPI2), which
attempt to restore themselves inside the host by restructuring endosomes into Salmonella-
containing vacuoles (SCVs) to evade host defense mechanisms and enable intracellular
survival [131,132]. Thus, the invasion of the native form or bacterial delivery system is
facilitated by the combined function of SPI1 and SPI2. Thus, the established Salmonella can
induce apoptosis, and it has been supported by the apoptotic tumor cell death through
the expression of Salmonella effectors such as a virulence factor SpvB (an ADP-ribosyl
transferase enzyme) through the activation of caspases 3 and 7 [133]. Salmonella effector
SipA has been reported to downregulate the expression of P-glycoprotein which is highly
expressed in several cancers such as colon, breast, kidney, and lymphoma [134,135].

Regions of T3SS proteins such as needles, inner rod proteins, and flagellins are per-
ceived by nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family
apoptosis inhibitory protein (NAIP) to activate the NAIP-NLR family caspase-associated
recruitment domain-containing protein 4 (NLRC4). This results in NLRC4 inflammasome
assembly and triggers the cleavage and activation of caspase-1 and caspase-8. Activation
of caspase-1 mediates pyroptosis and stimulation of caspase-8 triggers caspase-3/7 pro-
moting apoptosis that ultimately results in inflammatory death of host cells termed as
PANoptosis [136–138]. Internalization of effector proteins modulates the host immune
response and secretes proinflammatory cytokines or rearranges the host cell cytoskeleton,
facilitating bacterial invasion [91,129]. In order to strengthen the antigen delivery for cancer
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vaccine development, Salmonella T3SS is a promising strategy. It was demonstrated that the
delivery of the NY-ESO-1 tumor antigen through T3SS elicited the regression of established
NY-ESO-1-expressing tumors in mice [139]. T3SS from Salmonella has been exploited in
order to translocate heterologous antigens MHC class I-peptide p60 (217–225) from Lis-
teria monocytogenes into the cytosol of host cells, which induced antigen-specific CD8 T
cells, for significant tumor regression [140]. SPI2 effector protein SseF was used to deliver
tumor-associated antigens (TAAs) survivin into the cytosol of antigen-presenting cells for
optimal immunogenicity [141]. Likewise, another SPI2 effector protein, SspH2, was used to
produce a chimeric construct with the p60 protein of Listeria monocytogenes, which induces
a p60-specific CD4 and CD8 T-cell response in vaccinated mice [142]. The assisted delivery
of TAA via SPI-2-regulated T3SS produced anti-tumor activity in a mouse model.

10. Current Approach with Combination Therapy

Salmonella has been used with other therapeutic agents to enhance the efficacy of
anti-cancer activities. It has been used in combination with chemotherapy, radiotherapy,
immune checkpoint inhibitors, and immunomodulatory cytokines. The combined adminis-
tration of Salmonella with chemotherapy reduces toxicity compared with individual therapy
with bacteria or chemotherapeutics. For this, a murine melanoma model was treated with
VNP20009 and cyclophosphamide, which induced a significant decrease in microvessel
density and serum VEGF levels compared with either treatment alone. [143]. Similarly, the
combination of anti-angiogenic agent HM-3 (a polypeptide inhibiting angiogenesis) and
VNP20009 harboring expression plasmids for siRNA targeting Sox2 demonstrated efficient
treatment for lung cancer [144]. Another well known ST A1-R strain was implemented
in combination with the chemotherapeutic drugs temozolomide, doxorubicin, and anti-
angiogenic agents, which significantly suppressed the growth of tumors in patient-derived
orthotopic xenograft models [59,60,145]. The co-administration of radiotherapy and BMCT
produced prominent anti-tumor effects compared to either of the treatments alone. The
combination of X-rays either with VNP20009 or ∆ppGpp ST expressing cytolysin A (ClyA)
or γ-radiation with Salmonella BRD509 induced a significant suppression of the tumor
or delayed tumor growth [146–148]. In addition, the treatment with A1-R post-surgical
excision of tumors significantly inhibited surgery-induced breast cancer metastasis [149].
In combination therapy, the use of prodrug strategy along with Salmonella-expressing,
prodrug-activating enzymes such as HSV TK, carboxypeptidase G2 (CPG2), and cytosine
deaminase have more promising tumor retardation capabilities compared to the use of the
therapeutic strain alone [15,56,150].

11. Cancer Vaccines Delivered by Salmonella

Being an intracellular pathogen, with vast survival in different organs of the host,
attenuated Salmonella has been widely used as a vaccine delivery system against var-
ious diseases [151]. As mentioned earlier, Salmonella is a multifaceted antagonist for
cancer [152,153], apart from that, using auxotrophic Salmonella as a therapeutic and prophy-
lactic vaccine delivery system is also an ideal strategy. Medina et al. have demonstrated
the anti-cancer effect of auxotrophic ST (∆aroA) as a vaccine delivery system that expresses
β-gal as a model TAA against aggressive fibrosarcoma [154]. In another study, SPI-2 and
T3SS of Salmonella were used to deliver survivin as a TAA into antigen-presenting cells, and
the PsifB::sseJ promoter/effector combination was found to have an excellent anti-cancer
immune response of CD8 infiltration in the tumor environment [155]. Similarly, elevated
effector-memory CTL responses against CT26 colon cancer and orthotopic delayed brain
tumor glioblastoma in mice were found after immunization with survivin, which was fused
to the SseF effector protein and kept under the regulation of SsrB, the key regulator of
SPI2 [141]. Heat shock protein 70, as an immuno-chaperone fused with SopE of Salmonella
T3SS, has elicited a considerable CTL response against murine melanoma [156]. A multi-
antigen DNA vaccine encoding fusion antigenic domains of tyrosine hydroxylase, survivin,
and PHOX2B, delivered by auxotrophic ST (∆aroA, ∆guaAB), has been demonstrated to ex-
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hibit significant elicitation of the CTL response, INFγ production, and excellent suppression
of neuroblastoma in a mouse model [157]. In addition to the CTL responses, the elicitation
of humoral response by a Salmonella-based oral DNA vaccine with a MG7-Ag mimotope
against gastric cancer was confirmed [158]. An H2O2-inactivated S. Typhimurium RE88
(∆aroA, ∆dam) has been established to induce anti-cancer immunity by using ovalbumin
as a model antigen [159]. Salmonella has also been studied for the expression of oncogenic
virus antigens. A recombinant ST that produced Human Papillomavirus Type 16 (HPV16)
L1 Virus-like Particles (VLPs) induced the anti-tumor immune response in prophylactic
as well as therapeutic contexts [160]. The same group has constructed a Salmonella that
has expressed major capsid protein L1 of HPV16 virus via plasmid, and has shown the
induction of anti-HPV16 neutralizing and humoral immune responses [161]. They have
also demonstrated the intravaginal immunization of the HPV16-L1 Salmonella construct
and its innate, adaptive, Th1, and Th2 mucosal immune responses [162]. Thus, Salmonella
can be used to deliver oncogenic viral antigens for prophylactic vaccine development. In
addition, Salmonella infection triggers the formation of gap junctions in melanoma that are
typically lacking in tumor cells. The transfer of tumor antigens to dendritic cells and the
resultant induction of immune responses depend on these gap junctions [92]. Moreover,
Salmonella has the ability to induce MHC class I and II immune responses by delivering
cancer-related antigens via bacterial surface and translocating the antigen or its gene to the
antigen-presenting cells, respectively. Salmonella has the virtue of being used as a delivery
vehicle for extrinsic cancer antigens, oncogenic viral antigens, and to display the intrinsic
antigens of the active tumor to achieve anti-cancer immunity based on these aspects.

12. Application of Salmonella in Tumor Targeting and Detection

Tumor targeting and accumulation phenotypes have made Salmonella the best player
in the creation of genetically engineered strains for detecting tumors. Strains expressing
fluorescent proteins are well studied for the purpose of visualizing and locating the tumor
region in vivo [16]. Another approach for positioning tumor-specific Salmonella used
positron emission tomography which locates the engineered ST VNP20009 strain in tumors
by expressing the HSV1-TK reporter gene that can selectively phosphorylate radiolabeled
2′-Fluro-1-β-D-arabinofuranosyl-5-iodo-uracil [163].

Salmonella was engineered to express the fluorescent protein ZsGreen. It has a high
sensitivity that can detect tumors 2600 times smaller than the current limit of tomographic
techniques [164]. Since Salmonella preferentially accumulates in tumors and microscopic
metastases, this approach would provide a method to detect a tumor, monitor treatment
efficacy, and identify metastatic onset.

13. Clinical Trials

The success of attenuated ST strain VNP20009 with chromosomal deletion of the purI
and msbB genes in order to target tumor and inhibit its growth in mice takes the lead for a
Phase I human clinical trial in metastatic cancer patients through intravenous infusion [33].
In this study, none of the patients experienced tumor regression, although VNP20009 could
be safely administered to patients. Tumor localization was noted at the highest tolerated
dose in only 3 patients [33]. Further improvement on the VNP20009 was incorporated
by inserting a gene encoding E. coli cytosine deaminase (CD) and designated the strain
as TAPET-CD [165]. Three patients received an intratumoral injection of TAPET-CD; two
patients had intratumor evidence of bacterial colonization that persisted for at least 15 days
after the initial injection. The conversion of 5-fluorocytosine to 5-fluorouracil as a result of
CD expression was demonstrated in these two patients with a tumor-to-plasma ratio of 3:1.
This signifies the localization of TAPET-CD in tumors with minimal systemic spread. In
another study, oral vaccination with live attenuated Salmonella typhi, carrying an expression
plasmid encoding VEGFR2, increased vaccine-specific T cell responses in patients with
advanced pancreatic cancer [166]. Aside from human clinical trials, VNP20009 has been
administered in a Phase I trial on dogs. The study revealed bacterial tumor localization in
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42% of cases and major anti-tumor response in 15% of cases [70]. The exciting anti-tumor
activity in tumor-bearing dogs or mice models was not reflected in human clinical trials.
This discrepancy in anti-tumor effects of engineered ST in animal and human models
demand an in-depth study on the anti-tumor mechanism, especially in humans. Human
clinical trials for anti-cancer treatment using Salmonella are listed in Table 2.

Table 2. List of Salmonella strains under human clinical trials for cancer therapy.

Bacteria Strain Cancer Model Result Phase References

S. Typhimurium VNP20009

Metastatic
melanoma and

renal cell
carcinoma

Focal tumor
colonization was
recorded without
tumor regression

I [33,167]

S. Typhimurium

VNP20009
expressing
TAPET-CD
(Cytosine

deaminase)

Squamous cell
carcinoma and

adenocarcinoma

Intratumoral
bacterial

colonization in 2
out of 3 patients

I [165]

S. Typhimurium VNP20009 Solid tumors Not provided I
https://clinicaltrials.gov/ct2

/show/NCT00006254 (accessed
on 1 September 2022)

Salmonella typhi
(Express
VEGFR2)

Ty21a (VXM01) Pancreatic cancer

VXM01
vaccination
increased

vaccine-specific T
cell responses

I [166]

14. Limitations of Bacteria-Mediated Cancer Therapy

The race for bacteria-mediated tumor therapy is at its peak, as it holds potential for
the treatment of different tumors. The main concern while using bacterial vaccines is their
ubiquitous nature. Since many bacteria, including Salmonella and Listeria, used in BMCT
are prevalent in the environment, and their pre-exposure commonly induces immunity
against these pathogens. Therefore, the preexisting or vaccine-induced vector-specific
immunity could potentially block therapeutic genes and vaccine delivery. In a survey, it
was found that there was a preexisting cellular immunity to L. monocytogenes in 60% of
human donors tested [168]. The current practice of genetic modification by deletion of
genes responsible for the biosynthesis of lipopolysaccharide, amino acids, or purines affects
bacterial virulence that modulates bacterial invasion, tumor localization, and immune
stimulation. Excessive attenuation downregulates invasive potential, while less attenuation
is pathogenic. Thus, balanced attenuation is a major concern for the development of
effective anti-tumor ST strains, since insufficient attenuation might result in proliferation at
non-designated organs, and may even cause severe septic shock while excessive attenuation
affects its invasion potential and immunogenic presentation. While administering ST for
treatment, termination of bacteria from the treated patient is another issue that needs to be
resolved. Although antibiotics are the remedy, there is a high chance of acquiring antibiotic
resistance. So far, bacterial application for cancer therapy needs to address safety issues
despite having a promising success rate. SMCT is still facing many problems, and as a
result, most phase I clinical trials have not been satisfactory. Furthermore, intrinsic factors
such as tumor architecture, growth rate, and blood supply, as well as extrinsic factors,
especially the entry of bacteria into tumors, their growth within tumors, and clearance from
the peripheral circulation and tumors, might have a pivotal role in the success of SMCT in
clinical application. Therefore, the complicated interactive mechanism between Salmonella,
tumor cells, host immune cells, and inflammatory reactions needs maximum exploration to
understand the process so that SMCT could be applied to human cancer therapy.

https://clinicaltrials.gov/ct2/show/NCT00006254
https://clinicaltrials.gov/ct2/show/NCT00006254


Pharmaceutics 2022, 14, 2100 16 of 23

15. Future Perspectives and Conclusions

In this review, we elaborated on the anti-cancer therapeutic potential of Salmonella.
Special features such as tumor-targeting capacity, tumor tissue penetration, immunomodu-
latory effects, genomic engineering plasticity, and delivery efficacy highlighted Salmonella
as a genuine candidate for cancer therapy. Current knowledge was elaborated on in order to
facilitate the development of safer and more effective Salmonella bacterial strains for cancer
treatment. Although the anti-tumor potential of Salmonella has been elucidated, the precise
mechanism of immune activation against cancer by Salmonella is still not clear. Even though
the anti-tumor potential of Salmonella has been established in murine models and dog phase
trials, clinical trials in human patients have not been effective. The success rate of tumor
suppression by Salmonella in humans is still inadequate. Thus, Salmonella-based human
oncotherapy still demands immense immunological and molecular mechanism studies on
human prospects. Cancer patients and animals are highly immuno-compromised; thus,
even mild systemic bacterial infection may lead to serious adverse effects. Hence, aviru-
lent, non-endotoxic Salmonella strains are highly envisaged. Moreover, Salmonella-based
oncotherapy requires consecutive inoculation. Upon subsequent inoculation, Salmonella
should not be nullified by host immunity. Therefore, strains which are less immunogenic
but highly invasive to tumors have a good scope. Genetic manipulation of Salmonella
by simple genetic engineering or synthetic bioengineering is well known to induce the
production of anti-cancer drugs. Furthermore, BMCT is the proof of concept that can either
be used as a monotherapy or in combination with other anti-cancer therapies in order to
achieve better clinical outcomes. The ongoing continuous development and innovation
of Salmonella-based cancer therapy possesses great promise for a new paradigm of cancer
therapy that could pave the way for its succeeding emergence as one of the mainstream
therapeutic interventions to tackle various types of cancer.
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