
Citation: Giuliani, A.; Fais, S.

Proposal to Consider

Chemical/Physical

Microenvironment as a New

Therapeutic Off-Target Approach.

Pharmaceutics 2022, 14, 2084.

https://doi.org/10.3390/

pharmaceutics14102084

Academic Editor: Huile Gao

Received: 1 August 2022

Accepted: 28 September 2022

Published: 29 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Perspective

Proposal to Consider Chemical/Physical Microenvironment as a
New Therapeutic Off-Target Approach
Alessandro Giuliani 1 and Stefano Fais 2,*

1 Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
2 Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
* Correspondence: stefano.fais@iss.it; Tel.: +39-0649903195; Fax: +39-0649902436

Abstract: The molecular revolution could lead drug discovery from chance observation to the
rational design of new classes of drugs that could simultaneously be more effective and less toxic.
Unfortunately, we are witnessing some failure in this sense, and the causes of the crisis involve a
wide range of epistemological and scientific aspects. In pharmacology, one key point is the crisis of
the paradigm the “magic bullet”, which is to design therapies based on specific molecular targets.
Drug repurposing is one of the proposed ways out of the crisis and is based on the off-target
effects of known drugs. Here, we propose the microenvironment as the ideal place to direct the
off-targeting of known drugs. While it has been extensively investigated in tumors, the generation of
a harsh microenvironment is also a phenotype of the vast majority of chronic diseases. The hostile
microenvironment, on the one hand, reduces the efficacy of both chemical and biological drugs; on
the other hand, it dictates a sort of “Darwinian” selection of those cells armed to survive in such
hostile conditions. This opens the way to the consideration of the microenvironment as a convenient
target for pharmacological action, with a clear example in proton pump inhibitors.

Keywords: drugs; off-targeting; microenvironment; proton pump inhibitors; proton exchangers
inhibitors; diseases

1. Introduction

Notwithstanding the ever-increasing expenditure in pharmacological research and the
claimed ever-increasing and detailed knowledge of biological mechanisms, the number
of newly marketed drugs and the ratio between new drugs and expenditure have been
rapidly falling since the 1980s [1]. Moreover, despite the promises of a “druggable genome”
set forth by the rise of the genomic (and post-genomic) era, the majority of newly marketed
drugs interact with “old” receptors discovered well before this era [2].

The crisis encompasses a wide range of epistemological issues related to the general
crisis of reductionism in science. This crisis, in the case of drug discovery, has its focus on
the paradigm of a “magic bullet” capable of interfering with a supposed “critical step” of a
largely deterministic chain of events that goes from the molecular to the organismic layer
of organization [3].

The feasibility of drug repurposing stems from the presence of a huge “dark side of
pharmacology” that involves the off-target (and, in general, unexpected) effects of known
drugs coming from the presence of intermingled interaction networks preventing any effort
of developing drug molecules endowed with a single molecular mechanism of action [4,5].

In the first part of this article, we briefly set out why a strategy rooted in the quest for
the “correct receptor to hit” cannot work in the case of intermingled interaction networks [6],
with a particular emphasis on cancer [7,8]. In this section, we outline the essentials of the
complex network paradigm and the consequent acquiring of a conscious approach in
facing complexity [9]. The network paradigm indicates the emergence of “bio-dynamic
interfaces” [10] as the only way to mediate the interaction between complex systems, such
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as the organism and its environment, at all layers of biological organization. In contrast,
the network pharmacology approach is strictly linked to rational drug re-purposing [11] by
promoting a process-focused disease description over the usual phenotype-based one.

In the second section of the article, the prevailing role of context (microenvironmental
cues and physical forces) with respect to receptor-based mechanistic rules is demonstrated
as one of the main drivers of cancer treatment failure [12,13]. Other relevant issues, such
as the dependence of the microenvironment on the successes and failures of antibiotic
therapies [14] and in the management of gut functionality [15], are also outlined.

The last part of the review is devoted to the analysis of diverse successful cases of
drug repurposing spanning different application fields, with a particular emphasis on
non-canonical pharmacodynamics [16,17] and newly proposed computational hypothesis
testing approaches [18–20].

The term microenvironment indicates the entire context that the biological system is
involved in, even the chemical/physical forces impinging on (and, in turn, being modified
by) the system, and throughout this work we concentrate on these forces. This choice was
dictated by both the impossibility of exhaustively taking into consideration all the intricacies
of microenvironment factors and of highlighting a still largely unexplored avenue of drug
action different from the usual molecular organization layer taken into consideration by
pharmacological research.

2. The Network Paradigm

The multi-level organization of nature is self-evident: at the very basic level of bi-
ological organization, proteins interact among themselves to give rise to an organized
metabolism, while, at the same time, each protein (a single node of such an interaction net-
work) is itself a network of interacting amino acid residues. Similar pictures can be drawn
for the structure and function of cells, organs, tissues, and ecological systems. The network
paradigm indicates a circular causation pattern in which bottom-up (the perturbation of
more basic layers influences higher level layers) and top-down (the global architecture of
the network impinges on the behavior of a single node) causation models are both relevant
for the same phenomenon.

This evidence is in sharp contrast to the usual way of approaching pharmacology by
an exclusive bottom-up quasi-deterministic approach: causally relevant events originate
from the lower level (the molecular one) in the form of perturbations that “climb up” the
hierarchy, reaching the ultimate layer of macroscopic behavior (e.g., causing a specific
disease) [21]. The rising interest in complex network studies allows scientists to further
the pure qualitative observation of the existence of both non-linear and non-bottom-up
processes, and to uncover the deep nature of multi-level organization. As pointed out
by Nicosia et al. [22], “Networks are the fabric of complex systems”. Only a network
organization, essentially consisting of a set of nodes (elementary players) linked by edges
(mutual interactions), can give rise to the classical attributes of living matter: the presence
of multiple equilibrium states, robustness, and the possibility to adapt to an ever-changing
environment [23]. In a network system, the single players do not work in isolation: the
“passage of scale” from the microscopic level (e.g., single node perturbation) to the global
response of the system (e.g., the organism outcome) emerges from the re-arrangement
of the entire network in which the activities of the single nodes are influenced by local
perturbation. In the majority of cases, this perturbation is buffered by means of the rapid
extinction of the initial stimulus [23], which dissipates while spreading across the network.
This phenomenon is both the basis of biological system resilience and of the missed promise
of a “druggable genome”. Being only a strict minority and, in most cases, already “drugged”
in past decades [2], the nodes whose stimulation provokes a persistent perturbation are
able to initiate a regime shift of the entire system. The recognition of this fact fostered two
new pharmacological lines of research: an approach mimicking allostery, the most evident
“global reorganization” of a network system by an effective stimulus [24], and the search for
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“network drugs” that, instead of targeting a single molecular entity, act as “weak binders”
at multiple sites of the interaction network [25].

Biological networks are embedded into an ever-changing microenvironment that, in
turn, can be considered a network of mutual interactions among its constituents. This
embedding is far from being a uni-directional relationship. Rather, it is a continuous bi-
directional accommodation of the microenvironment. In these “microcosmo” cells, vesicles,
soluble factors, vessels, and chemical and physical factors crosstalk continuously in an
unceasing modification of the biological system. This implies the existence of a “field”
encompassing both the biological system and its microenvironment. The concept of a “field”
is crucial to catch the essence of considering a microenvironment as a target for drug action.
From basic physics, we know that a point charge embedded into an electromagnetic field
both “senses” (i.e., is influenced by the field) and modifies (i.e., influences) the field. This is
exactly what happens with a microenvironment, in which environmental cues influence the
biological system, and, consequently, the biological system modifies its microenvironment
(e.g., pH modifications triggered by the Warburg effect and the continuous acidification
supported by the H+ extracellular elimination by proton pumps). This mutual interaction
is made possible by a shared biodynamic interface that changes in both time and space [10].

3. Microenvironment and Diseases

The role of the microenvironment in disease pathogenesis and, most of all, in response
to therapies based on drugs is sadly neglected. An example, among many, is cancer. While
cancer is commonly described as “a disease of the genes”, it is also associated with massive
metabolic re-programming, which is now accepted as a disease hallmark [26,27]. This
programming is complex and often involves metabolic cooperativity between cancer cells
and their surrounding stroma. Indeed, there is emerging clinical evidence that interrupting
a cancer’s metabolic program can improve patients’ outcomes [28–30]. The most commonly
observed and well-studied metabolic adaptation in cancers is the fermentation of glucose
to lactic acid, even in the presence of oxygen, also known as “aerobic glycolysis” or the
“Warburg effect”. Much has been written about the mechanisms of the Warburg effect, and
this remains a topic of great debate [27,31]. Independently from the mechanism underlying
this phenomenon, the ultimate outcome of aerobic glycolysis is the acidification of the tumor
microenvironment. Rather than being an epiphenomenon, it is now appreciated that this
acidosis is a key player in cancer somatic evolution and progression to malignancy [26,32].
Adaptation to acidosis induces and selects malignant behaviors, such as increased invasion
and metastasis, chemoresistance, and the inhibition of immune surveillance. However, the
metabolic reprogramming that occurs during the adaptation to acidosis also introduces
therapeutic vulnerabilities. Thus, tumor acidosis is a relevant therapeutic target, and there
are some reasonable approaches for accomplishing this: (1) neutralizing acid directly with
buffers, (2) targeting the metabolic vulnerabilities revealed by acidosis, (3) developing
either acid-activatable drugs or acid-sensible nanocarriers, and (4) inhibiting the metabolic
processes responsible for generating acids. Several cellular functions are dictated by the pH
differences between extracellular and intracellular spaces. These differences are called “pH
gradients”, and they are, for instance, crucial for the uptake of chemical drugs by target
cells. Figure 1 illustrates a rudimentary portrait of this phenomenon.

However, some strategies have been used to exploit these potentially very powerful
approaches [26,33]. These strategies include (i) the use of simple buffers, such as sodium
bicarbonate; (ii) more complex buffers, such as some mixes of carbonates and bicarbonates
(e.g., Basenpulver); and (iii) the use of a series of inhibitors of ion/proton exchangers. The
vast majority of the studies involving either buffers or exchange inhibitors are confined to
pre-clinical studies, but proton pump inhibitors (PPIs), which are being extensively used
worldwide as anti-acidic drugs, have been combined with chemotherapy in some clinical
trials. The results of both pre-clinical and clinical studies have convinced scientists to think
about the re-purposing of these classes of drugs as anti-tumor drugs [33,34].
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Figure 1. Differences in the pH gradients between normal (A) and tumor (B) cells. Notably, the
presence of a deranged pH gradient in tumor cells does not allow chemical drugs to enter the cells
and carry out their effects; instead, they are entirely protonated and, therefore, blocked outside
the cells.

Epidemiological studies have shown that numerous risk factors are shared by diabetes
and several cancer sites. Among these primarily are obesity and smoking status, but
they also include low physical activity and alcohol consumption. The pathophysiological
mechanisms implicated in the association between Type 2 Diabetes (T2D) and cancer
have been proposed for colorectal, pancreas, and liver cancers. These include the T2D
microenvironment, as represented by advanced glycation end-products; chronic local
inflammation; hyperlipidemia; extracellular matrix disorders; and altered microbiota that
could predispose the development of colorectal cancer. However, despite the strong
epidemiological evidence, the mechanistic bases of the association between diabetes and
cancer are still not understood [35].

The major sub-type of T2D is peripheral insulin resistance associated with obesity and
central adiposity, leading to hyperinsulinemia and chronic inflammation, both of which
have the potential to exacerbate the risk of cancer. Hyperinsulinemia, together with hyper-
glycemia, also contributes to the accumulation of keto acids, leading to chronic systemic
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acidosis, which is compensated for by reducing HCO3 and by reducing the metabolic
interstitial buffering capacity, making interstitial pH more fragile. Hyperinsulinemia is also
associated with increased circulating levels of insulin-like growth factor-1 (IGF1), which is
a potent mitogenic factor for neoplastic epithelial cells. The binding of IGF1 to its receptor
triggers the activation of the PI3K→Akt→mTOR pathway, inducing metabolic activation
and mitogenesis [35].

What cancer and diabetes have in common is the increased reliance on glucose fermen-
tation. Continuous glucose fermentation leads to lactate production and significant local
acidosis in both diabetic peripheral tissues and tumors. Acidosis is exacerbated if combined
with decreased perfusion, which can be a consequence of inflammation, peripheral vascular
resistance, and dysangiogenesis, all common syndromes in cancer and diabetes. There is
significant evidence, presented below, that this local acidosis in cancer can promote tissue
re-modeling, local invasion, metastasis, and the inhibition of immune surveillance. In
diabetes, local and systemic acidosis reduces insulin’s affinity for its receptor, exacerbating
the spiral of peripheral insulin resistance. Consequently, targeting acidosis is an important
therapeutic approach in both T2D and cancer, as discussed below.

The same principles hold true for another major health treatment: the rising resistance
to antibiotic therapy. In [14], the authors explicitly take into account the consideration
of a microenvironment as a target of antibiotic treatment in terms of the modification of
microenvironmental cues so as to inhibit the emergence of biofilms, organized colonies
of bacterial cells, which are very difficult to eradicate with antibiotics. It is worth noting
that antibiotic efficacy is routinely assessed by antibiograms, in which the sensitivity of
the bacterial strains responsible for an infection in a given patient is tested in vitro. The
puzzle resides in the fact that bacteria behave substantially differently in standard labora-
tory conditions from actual infections. The infectious microenvironment imposes changes
in growth and metabolic activity that result in increased protection against antibiotics
(e.g., biofilm production). Therefore, an improved antibiotic treatment of chronic infec-
tions is achievable when antibiotics are recommended based on susceptibility testing in
relevant in vitro conditions that resemble actual infectious microenvironments, with a par-
ticular focus on fostering direct interventions on the microenvironment that could prevent
biofilm formation.

Along a similar vein (after all, we are dealing with ecological systems, and, again, we
can safely consider cancer as an ecological threat with a species going out of control), we
can posit direct intervention on the microenvironment of microbiota [15]. The microbiome
can be considered a complex biocenosis stemming from a network of interactions between
thousands of bacterial and yeast species. It is not by chance that microbiome research is
based on the same computational and theoretical principles as ecology [36]. The microbiome
is involved in the creation of complex biodynamic interfaces with host tissues, e.g., the
ability to colonize and thrive within the mucous layer that covers the colon epithelium.
These mucosal microbes intimately interact with the intestinal tissue and are important
modulators of human health. Embedded in the host-secreted mucous matrix, they form
a “mucosal biofilm” with a distinct composition and functionality that, in turn, shapes
the mucosal microenvironment. This implies the need to actively consider the mucosal
microenvironment as a target for any therapeutic intervention for re-establishing the correct
microbial ecology.

4. Rethinking off-Targeting for Treating Microenvironment—An Eco-evolutionary
Way of Thinking

In dealing with microenvironments, tumors represent an emblematic issue. As intro-
duced above, tumors survive in extreme conditions due to the upregulation of a series
of proton extrusion pumps [34], which release protons and lactate into the extracellular
environment; this avoids the acidification of the cytosol, which inevitably kills any cells.
Among the proton flux regulators are vacuolar H+-ATPases (V-ATPases), Na+/H+ ex-
changers (NHE), monocarboxylate transporters (MCTs), carbonic anhydrase IX (CA-IX),
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and Na+/HCO3 co-transporters (NBCs) [34]. However, it is a common belief that this phe-
nomenon is not the result of transformation but rather the result of “cell clone selection”. In
fact, uncontrolled growth, lactic and carbonic acid production, and low blood and nutrient
supply contribute to the generation of a tumor microenvironment that is extremely toxic
for either normal or more differentiated cells, thus progressively selecting cells capable of
surviving in these adverse conditions. This phenomenon occurs independently from the
tumor histotype.

Notably, normal cells at a pH ranging from very acidic to weakly acidic inevitably die
or are entirely blocked in their functions [35].

For these reasons, a therapy based on a combination of existing proton or ion efflux
pump inhibitors is under investigation in order to determine whether the implementation
of molecules targeting several mechanisms underlying tumor acidification may have a
significant effect on tumors. To do this, a series of drugs, whose main target is not tu-
mors, have been considered. This list includes (i) proton pump inhibitors (Lansoprazole,
Omeprazole, Esomeprazole, Rabeprazole, and Pantoprazole), whose main purpose is to act
as an anti-acidic treatment for gastroprotection; (ii) carbonic anhydrase inhibitors (Acetazo-
lamide), whose main target is glaucoma; (iii) inhibitors of Na+/H+ exchangers, including
Amiloride, whose main purpose is to act as anti-hypertensive treatment for their diuretic
activity, and Cariporide, whose main target is myocardial ischemia; (iv) monocarboxylate
transporters inhibitors with multiple indications, such as the prevention of cardiac graft
rejection; and (v) Na+/HCO3 co-transporters inhibitors thought to counteract heart failure.

However, at least as far as tumors are concerned, there is a general hypothesis support-
ing the progressive establishment of a sort of clonal cell selection induced by the setting
of a very hostile microenvironment. This has also been called the “eco-evolutionary the-
ory” of tumors, and it is considered a major actor in dictating the progressive isolation of
growing tumors from the rest of the body [37], as well as in leading to an unresponsiveness
to therapies [38]. One piece of evidence supporting this hypothesis is the discovery of
cannibalism and, more generally, the “cell-in-cell” phenomena in cancers [39], witnessing a
sort of primeval behavior in malignant tumor cells. It must also be considered that canni-
balism is an almost exclusive phenotype of cells deriving from metastatic lesions [40]. This
introduces a new concept in cancer therapy: to cure the microenvironment by re-tuning the
eco-evolutionary selection of very malignant cells.

In a similar vein, the targeting of microenvironments has been invoked to deal with
bacterial biofilms [41]. Inorganic nanoparticles with intrinsic antibacterial activity and
inert nanoparticles assisted by external stimuli, including heat, photons, magnetism, or
sound, have been found to be efficient against persistent infections [42]. These strategies
are explicitly designed to target the unique microenvironment of bacterial infections.

Off-target experimentation is strictly connected to the consideration of a microenvi-
ronment as a proper therapeutic “target”. Here, we wish to stress the fact that this “target”
is substantially different to a receptor molecular entity (e.g., there is no specific receptor to
modify pH) and requires the abandoning of a strict reductionist approach to pharmacology.

5. Discussion

Here, we wish to propose a new paradigm in pharmacology that puts together the
following well-established and recognized issues: (i) many known drugs have off-targets
that very often may be recognized by their side effects [40]; (ii) changes in the extracel-
lular microenvironment may represent one phenotype common to many diseases [34];
(iii) some features of the microenvironment may well represent a target for some known
drugs, as has been shown for PPIs [34]; and (iv) the example of proton pump inhibitors
should be taken into careful consideration when designing new drugs. In fact, as has been
extensively shown for tumors, the vast majority of drugs once ending in a H+-enriched
microenvironment are protonated and blocked outside tumor cells. PPIs are administered
as prodrugs that are transformed in their active molecule (tetracyclic sulphenamide) only
following protonation, and both pre-clinical and clinical evidence suggests that they are
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extremely active in the tumor microenvironment [34]. In fact, both pre-clinical and clinical
investigations have shown that pre-treatment with PPIs allows other drugs, which are
mostly ineffective in single therapies, to work [43].

To further emphasize the importance of one of the major microenvironmental pheno-
types (i.e., extracellular acidosis) in conditioning the efficacy of past and new therapies, it
has been shown that the same cell lines cultured at either a “physiological” (7,4) or acidic
(6,5) pH display a very different lipid composition of the cell’s plasma membrane [44],
which, together with increasing exosome release [12], reducing chemical drug efficacy [45],
and inhibiting immune reaction against tumors [46], make tumor microenvironmental
acidity a major determinant in anti-tumor therapy failure.

However, as is clearly emphasized in this article, a harsh microenvironment is a major
determinant in the pathogenesis of many diseases [35,47], strongly supporting a new era
in which the microenvironment may well represent a major target for new therapeutic
molecules, while also considering the off-targeting of old drugs. Scientific evidence sup-
ports the role of acidity in impairing the immune response. In fact, systemic buffering
improves the immune reaction against tumors [48]. However, the solid literature supports,
either directly or indirectly, a key role of microenvironmental acidity not only in tumors
but also in a series of pathological conditions involving metabolism, the cardiovascular sys-
tem, the nervous system, infectious diseases, inflammation and the immune system, renal
function, pain, and other pathological conditions. Table 1 summarizes these data with the
appropriate references. However, some reviews have emphasized the importance of acidity
in tumors, proposing some approaches to counteract it [26,27,49]. Many of the purposes
behind newly treated microenvironmental acidity come from the new paradigm of using
the off-targeting of old drugs [5], but some interesting and novel approaches to finding
new anti-cancer drugs in the panel of available drugs have recently been proposed [50],
thus opening a promising future for this issue. Lastly, two recent papers have shown that
an anti-acidic treatment may reduce the risk of lung cancer [51] and that urine acidity
is associated with poor prognosis in advanced bladder cancers [52], further suggesting
that targeting microenvironmental acidity may represent a future strategy in both the
prevention and treatment of diseases.

Table 1. pH and diseases. Direct and indirect evidence that microenvironmental acidity is involved
in human diseases.

Disease Histology Type of Evidence References

Tumor Melanoma

Pre-clinical [45]
Pre-clinical [53]
Pre-clinical [48]
Pre-clinical [54]
Pre-clinical [55]
Pre-clinical [56]
Pre-clinical [57]
Pre-clinical [58]
Pre-clinical [59]

Lymphoma

Pre-clinical [60]
Pre-clinical [61]

Clinical [62]
Clinical [63]

Myeloma Pre-clinical [64]
Pre-clinical [65]

Colon
Pre-clinical [45]
Pre-clinical [66]
Pre-clinical [67]
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Table 1. Cont.

Disease Histology Type of Evidence References

Breast

Pre-clinical [68]
Pre-clinical [69]
Pre-clinical [70]
Pre-clinical [71]
Pre-clinical [72]
Pre-clinical [73]
Pre-clinical [74]
Pre-clinical [75]

Clinical [29]

Ovary Pre-clinical [45]
Pre-clinical [76]

Pancreas
Pre-clinical [70]
Pre-clinical [77]

Clinical [78]

Gastrointestinal

Pre-clinical [79]
Pre-clinical [80]
Pre-clinical [81]
Pre-clinical [82]
Pre-clinical [83]
Pre-clinical [84]
Pre-clinical [85]

Clinical [30]

Prostate
Pre-clinical [86]
Pre-clinical [87]

Liver

Pre-clinical [88]
Pre-clinical [89]
Pre-clinical [90]
Pre-clinical [91]

Clinical [92]

Lung Clinical [62]
Clinical [63]

Osteosarcoma Clinical [28]

Sarcomas
Pre-clinical [93]

Clinical [62]
Clinical [63]

Nervous system Pre-clinical [94]
Pre-clinical [95]

Sensitivity to radiation therapy Pre-clinical [96]
Pre-clinical [97]

Cardiovascular
diseases

Pre-clinical [98]
Clinical [99]
Clinical [100]
Clinical [101]

Metabolic diseases

Pre-clinical [102]
Pre-clinical [103]
Pre-clinical [104]
Pre-clinical [105]
Pre-clinical [106]
Pre-clinical [107]

Clinical [108]

[101]
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Table 1. Cont.

Disease Histology Type of Evidence References

Nervous system

Pre-clinical [109]
Pre-clinical [110]
Pre-clinical [111]
Pre-clinical [112]
Pre-clinical [113]
Pre-clinical [114]

Inflammation and
Immune system

Pre-clinical [115]
Pre-clinical [116]
Pre-clinical [117]
Pre-clinical [118]
Pre-clinical [119]
Pre-clinical [120]

Renal function Clinical [121]

Pain
Clinical [122]
Clinical [123]
Clinical [124]

Infectious
agents Viruses

Preclinical [125]
Preclinical [126]
Preclinical [127]
Preclinical [128]

Translational [129]

Candida and other yeasts

Preclinical [130]
Preclinical [131]
Preclinical [130]
Preclinical [132]

Bacteria

Preclinical [133]
Preclinical [134]
Preclinical [135]
Preclinical [136]
Preclinical [137]
Preclinical [138]
Preclinical [139]

Parasites

Preclinical [140]
Preclinical [141]
Preclinical [142]
Preclinical [143]

Other conditions Pre-eclampsia Translational [144]
Translational [145]

Genetic diseases Preclinical [146]
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