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Abstract: Infectious diseases along with various cancer types are among the most significant public
health problems and the leading cause of death worldwide. The situation has become even more
complex with the rapid development of multidrug-resistant microorganisms. New drugs are urgently
needed to curb the increasing spread of diseases in humans and livestock. Promising candidates
are natural antimicrobial peptides produced by bacteria, and therapeutic enzymes, extracted from
medicinal plants. This review highlights the structure and properties of plant origin bromelain and
antimicrobial peptide nisin, along with their mechanism of action, the immobilization strategies, and
recent applications in the field of biomedicine. Future perspectives towards the commercialization of
new biomedical products, including these important bioactive compounds, have been highlighted.

Keywords: bromelain; nisin; bioactivity; antimicrobial agent; biomedicine; carrier

1. Introduction

One of the tremendous burdens on human health worldwide is infectious diseases [1],
where antibiotics act as first-line therapy in treating infections caused by bacteria. Still,
their widespread use, over-utilization and improper consumption in humans and animals
cause an increase in the number of resistant bacterial strains. Furthermore, one pathogen
organism is gaining resistance to more than one antibiotic, leading to the development of
multidrug resistance strains for various species, such as Staphylococcus aureus (S. aureus),
Pseudomonas aeruginosa (P. aeruginosa), Salmonella spp., Enterococcus faecium (E. faecium),
Campylobacter, Neisseria gonorrhoeae (N. gonorrhoeae), Streptococcus pneumonia (S. pneumo-
nia) [2], etc. Consequently, the cost of hospitalization and healthcare, together with morbid-
ity and death are increasing [3]. According to World Health Organization and Organisation
for Economic Co-operation and Development at least 700,000 patients die every year from
infections caused by resistant microorganisms [2] and approximately 2.4 million people
in Europe, North America, and Australia are expected to die due to diseases caused by
drug-resistant pathogens over the next 30 years, which means $3.5 billion in economic
cost per year [4]. Furthermore, multidrug resistance of cancer cells against conventional
chemotherapeutic agents [5] is another problem that needs to be solved. Therefore, it is nec-
essary to search for innovative alternative therapies and new drug candidates [6]. Various
studies exhibit promising results when natural antimicrobial peptides and proteins are used
as therapeutics [7], especially since their conjunction with conventional chemotherapeutic
agents promotes effectiveness, decreases antibiotics use and possibly reduces instances of
chemotherapy resistance [8].

This review gives a comprehensive overview on two compounds obtained from two
different natural sources, i.e., nisin as a bacterial origin representative and bromelain as a
plant origin representative. With nearly 50 years of safe usage in the food industry, and
very little evidence of cross-resistance compared with that of conventional antibiotics [7,8],
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non-toxicity and low immunogenicity [9], researchers have begun to explore the nisin,
an antimicrobial peptide with a broad-spectrum of antibacterial activity [6] as a potential
alternative agent for infectious diseases [7]. On the other hand, the demand for medicinal
plants with therapeutic agents has been rising [10] as natural plant products are increas-
ingly recognized as non-toxic, side-effect free, readily available and affordable [1]. Among
them, pineapple has been identified to possess valuable qualities for medical purposes,
especially its proteolytic enzyme bromelain due to its antimicrobial, anti-inflammatory, anti-
thrombotic, fibrinolytic and anti-cancer functions [11]. The present review comprehensively
discusses the structure, isolation and suggested bioactivity mechanisms, as well as immobi-
lization strategies and application of nisin and bromelain in the last 10 years. Published
reports were collected using the Web of Science and Scopus databases, with search terms
“bromelain”, “nisin”, “bioactive”, “antimicrobial”, “anticancer”, “anti-inflammatory”, “tox-
icity”, “immobilization”, “adsorption”, “encapsulation”, “entrapment” and “carrier”. Our
aim is to emphasize the importance and relevance of these bioactive compounds, where
the researchers and relevant stakeholders may gain the latest fundamental knowledge
to explore the new possibility of bromelain- or nisin-based products in biomedicine and
pharmacy. Moreover, giving comprehensive information for two different origin bioactive
compounds can allow direct comparison of their ultimate properties and action, giving the
ease of selecting the suitable candidate for a particular biomedical application. Relating
to this, we also point to very limited clinical trials (and even fewer approved products)
involving bromelain and nisin, as contradictory to the potential they hold in this segment.
As a hypothetically written, future perspective, the possibility to combine both bioactive
components in an attempt to merge and even boost their multiple bioactivities, utilising
diverse immobilization routes, have been brought forward.

2. Bromelain
2.1. Structural and Biological Properties

Bromelain is a protein purified from a crude aqueous extract of pineapples (Bromeliaceae
family) [1]. Pineapple is a common name of Ananas comosus, also known as Ananassa sativa,
A. sativus, Bromelia ananas or B. comosa, grown in several (sub)tropical countries such as
Costa Rica, Philippines, Brazil, Thailand, China, Indonesia, India, Malaysia, Hawaii and
Kenya [1,12]. In the pineapple plant, bromelain acts as a defensive protein; it protects the
pineapple throughout the development, maturation and ripening process [13,14].

Bromelain was identified for the first time in 1891 by Vicente Marcano, a Venezuelan
chemist, while its isolation and analysis started in 1894. However, its commercial pro-
duction began in 1957 with Heinecke’s discovery that the pineapple fruit contains less
bromelain than the pineapple stem [15], making a waste by-product stem bromelain more
commercialized [13].

Bromelain belongs to the class of proteases also known as proteinases or peptidases,
a group of enzymes that catalyzes proteolytic reactions where the breakdown of proteins
into smaller polypeptides or single amino acids occurs [13,16,17]. More specifically, it is
classified as cysteine proteinase (EC 3.4.22, CP, also known as thiol proteinase) due to the
cysteine thiol in its active site [1,13]. Crude bromelain (crude extract of the pineapple)
contains various cysteine endopeptidases and other components, including phosphatases,
glucosidase, peroxidases, cellulases, glycoproteins, carbohydrates, ribonucleases, protease
inhibitors and organically bound calcium [1,12,15]. Among them, the specific activity of
proteases is the highest, e.g., the specific activity of protease, peroxidase, acid phosphatase,
alkaline phosphatase and amylase studied in the crude bromelain extracted from pineapple
crown leaf was 45 U/mg, 2.19 U/mg, 1.12 U/mg, 0.98 U/mg, 0.65 U/mg, respectively [18].
At least four evolutionarily and structurally related cysteine endopeptidases can be synthe-
sized from crude bromelain: stem bromelain (EC 3.4.22.32), fruit bromelain (EC 3.4.22.33),
ananain (EC 3.4.22.31) and comosain (Table 1) [1,13,15]. Stem bromelain is the major pro-
tease present in the stem of the pineapple plant, and fruit bromelain is the major protease
in the pineapple fruit [1,19]. Ananain and comosain were detected only in minor quantities
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in stem pineapple [1]. All the endopeptidases of the pineapple plant have generally been
referred to as “the bromelains” and the name “bromelain” was originally used to describe
any protease of the Bromeliaceae family [15].

All four cysteine endopeptidases possess distinguished physicochemical properties, as
summarized in Table 1. Fruit bromelain is an acidic protein, unlike stem bromelain, which
is alkaline (isoelectric point 4.6 and ≥9.5, respectively). Generally, the molecular weight
of stem and fruit bromelain is from 23.8 to 37.0 kDa and 23.0 to 32.5 kDa, respectively.
This heterogeneity in molecular weight may be due to heterogeneity of the amino acid
sequence and the glycosylation pattern [20], both being a consequence of the formation
of various forms of bromelain isolated from crude bromelain [21]. Furthermore, different
purification methods and several purification steps could also contribute to molecular
weight heterogeneity. The optimum temperature range for stem bromelain is between 40
and 60 ◦C (37–70 ◦C for fruit bromelain) and its optimum pH range is 4–8 (3–8 for fruit
bromelain) [1,13,15,22–24]. However, its activity is no longer susceptible to the effect of the
pH once it is combined with a substrate [1]. Bromelain preferentially cleaves glycyl, alanyl
and leucyl peptide bonds [25]. Its activity can be determined using different substrates,
including casein [16,26–28], gelatin [1], azocasein [19,29], azoalbumin, hemoglobin, sodium
caseinate [23,30], and synthetic peptide substrates (Nα-CBZ-ι-Lysine p- nitrophenyl ester,
Z-Arg-Arg-pNa, Bz-Phe-Val-Arg-pNA, H-Val-Ala-pNA, Suc-Ala-Ala-Val-pNA, Suc-Ala-
Pro-Leu-Phe-pNA, Suc-Phe-Leu-Phe-pNA, Z-Phe-Arg-pNA and Z-Phe-pNA) [31,32]. The
value of Michaelis–Menten constant (Km) vary significantly when different substrates
(azoalbumin, azocasein, sodium caseinate, casein and hemoglobin) are used for fruit brome-
lain activity determination, being the lowest (0.026 mM) for azoalbumin and the highest
(0.165 mM) for hemoglobin [33]. The most suitable substrate for the fruit bromelain activity
is azocasein, followed by azoalbumin, casein, sodium caseinate and hemoglobin according
to the enzyme catalytic power parameter (Vmax/Km ratio), being 0.104, 0.096, 0.022, 0.020
and 0.014, respectively [33]. Bromelain inactivation rate follows first-order kinetics at 55 ◦C
and 60 ◦C, but not above 70 ◦C, while its thermal deactivation is entirely irreversible and
follows a two-stage mechanism, including the formulation of an intermediate between
native and denatured states [15]. Bromelain retains more than 50% of its original proteolytic
activity after 30 min incubation at 60 ◦C, from 9% to 22% after 15 min incubation at 70 ◦C,
and becomes utterly inactive when heated for 10 min at 100 ◦C [34]. Aqueous proteolytic
activity of bromelain decreases rapidly at 21 ◦C, while its concentrated forms (>50 mg/mL)
are stable for one week at room temperature and can be repeatedly frozen and thawed [35].

Table 1. Physiochemical properties of cysteine endopeptidases derived from pineapple plants
[1,13,15,22–24].

Stem Bromelain Fruit Bromelain Ananain Comosain

Source Pineapple stem Pineapple fruit Pineapple stem Pineapple stem

Molecular weight [kDa] 23.8–37.0 23.0–32.5 23.4–25.0 24.4–24.5

Isoelectric point ≥9.5 4.6 >10 >10

Amino acid sequence 212, 291, 285 326, 351 216 186

Optimum T [◦C] 40–60 37–70 / /

Optimum pH 4–8 3–8 / /

Presence of
Glycoproteins Yes Yes/No No Yes

The activation energy of bromelain is 41.7 kcal/mol [23], and same can be activated
by many chemical agents, including calcium chloride, cysteine, sodium cyanide, bisul-
fate salt, hydrogen sulfide, sodium sulfide and benzoate [13,36,37]. Stem bromelain is
reversibly inhibited during reaction with organic mercury, ions of mercury and tetrathion-
ate. Its irreversible inhibition occurs by reacting with N-ethylmaleimide, N-(4-dimethyl-
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3,5-dinitrophenyl) maleimide, monoiodoacetic acid and 1,3-dibromine acetone due to
alkylation of the thiol group, an essential group for the activity of the enzyme [15].

Until now, several different (fruits or stem) bromelain amino acids sequences have
been deposited in the National Center for Biotechnology Information (NCBI) Genbank
database with around 90–100% similarity. Alanine, glycine and serine are the most abun-
dant amino acids in stem and fruit bromelains, while histidine is present in the lowest
amount [13]. Bromelain amino acid sequence is highly similar to papain, actinidin, pro-
teinase Ω and chymopapain [24]. A single polypeptide chain constitutes the primary
structure of bromelain with amino acids folded into two structure domains: α-helix domain
(domain cathepsin propeptide inhibitor—I29) and antiparallel β-sheet domain (domain
peptidase C1) (Figure 1). Mainly, the I29 domains are located between amino acids number
1 and 100 of the N-terminal sites. The structure domains are stabilized by disulfide bridges
and numerous hydrogen bonds. Stem bromelain differs from the fruit bromelain in the
number of polar amino acids (arginine and lysine), and acidic amino acids (aspartate and
glutamate). The stem bromelain contains more polar amino acids, and the fruit bromelain
has more acidic amino acids, leading to a difference in isoelectric point (4.6 and ≥9.5 for
fruit and stem bromelain, respectively). The active site is located on the surface molecules
between domains and the proposed catalytic residues for the modeled BAA21848 structure
is composed of three amino acids Cys-121, His-254 and Asn-275; for CAA08861 struc-
ture Cys-147, His-281 and Asn-302 are proposed, which fall into approximately the exact
locations as in papain catalytic residues (Cys-25, His-159 and Asn-175) [13,38].

Pharmaceutics 2022, 13, x FOR PEER REVIEW 4 of 39 
 

 

The activation energy of bromelain is 41.7 kcal/mol [23], and same can be activated 
by many chemical agents, including calcium chloride, cysteine, sodium cyanide, bisulfate 
salt, hydrogen sulfide, sodium sulfide and benzoate [13,36,37]. Stem bromelain is 
reversibly inhibited during reaction with organic mercury, ions of mercury and 
tetrathionate. Its irreversible inhibition occurs by reacting with N-ethylmaleimide, N-(4-
dimethyl-3,5-dinitrophenyl) maleimide, monoiodoacetic acid and 1,3-dibromine acetone 
due to alkylation of the thiol group, an essential group for the activity of the enzyme [15]. 

Until now, several different (fruits or stem) bromelain amino acids sequences have 
been deposited in the National Center for Biotechnology Information (NCBI) Genbank 
database with around 90–100% similarity. Alanine, glycine and serine are the most 
abundant amino acids in stem and fruit bromelains, while histidine is present in the lowest 
amount [13]. Bromelain amino acid sequence is highly similar to papain, actinidin, 
proteinase Ω and chymopapain [24]. A single polypeptide chain constitutes the primary 
structure of bromelain with amino acids folded into two structure domains: α-helix 
domain (domain cathepsin propeptide inhibitor—I29) and antiparallel β-sheet domain 
(domain peptidase C1) (Figure 1). Mainly, the I29 domains are located between amino 
acids number 1 and 100 of the N-terminal sites. The structure domains are stabilized by 
disulfide bridges and numerous hydrogen bonds. Stem bromelain differs from the fruit 
bromelain in the number of polar amino acids (arginine and lysine), and acidic amino 
acids (aspartate and glutamate). The stem bromelain contains more polar amino acids, 
and the fruit bromelain has more acidic amino acids, leading to a difference in isoelectric 
point (4.6 and ≥9.5 for fruit and stem bromelain, respectively). The active site is located on 
the surface molecules between domains and the proposed catalytic residues for the 
modeled BAA21848 structure is composed of three amino acids Cys-121, His-254 and Asn-
275; for CAA08861 structure Cys-147, His-281 and Asn-302 are proposed, which fall into 
approximately the exact locations as in papain catalytic residues (Cys-25, His-159 and 
Asn-175) [13,38]. 

(a) (b) 

 

Figure 1. Model domain organisation of (a) fruit bromelain (sequences with the accession number 
of BAA21848 in the NCBI Genbank database and 352 amino acids) and (b) stem bromelain 
(sequences with the accession number of CAA08861 in the NCBI Genbank database and 357 amino 
acids). α-helix domain (domain I29 at the N-terminal region) is colored in green, β-sheet domain 
(domain peptidase C1 at the C-terminal region) is colored in orange. The catalytic amino acids of 
both models are represented as sticks (Reproduced with permission from [13], Elsevier, Amsterdam, 
The Netherlands, 2018). 

2.2. Isolation, Extraction and Purification 
Bromelain can be isolated from all parts of the pineapple plant (stem, core, peel, 

crown and leaves), which affect the concentration and composition. The stem and 

Figure 1. Model domain organisation of (a) fruit bromelain (sequences with the accession number of
BAA21848 in the NCBI Genbank database and 352 amino acids) and (b) stem bromelain (sequences
with the accession number of CAA08861 in the NCBI Genbank database and 357 amino acids). α-
helix domain (domain I29 at the N-terminal region) is colored in green, β-sheet domain (domain
peptidase C1 at the C-terminal region) is colored in orange. The catalytic amino acids of both
models are represented as sticks (Reproduced with permission from [13], Elsevier, Amsterdam,
The Netherlands, 2018).

2.2. Isolation, Extraction and Purification

Bromelain can be isolated from all parts of the pineapple plant (stem, core, peel, crown
and leaves), which affect the concentration and composition. The stem and pineapple
fruit allow the production of high amounts of bromelain, while the pineapple core, peel
and leaves contain smaller quantities, yet, together with pineapple stem and crown, they
represent up to 50% (w/w) of the total pineapple waste [16], making extraction of bromelain
from pineapple waste economically and environmental attractive [28]. Consequently, the
most commercially available bromelain is usually obtained from pineapple stem, which
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is also therapeutically more effective and shows higher proteolytic activity than fruit
bromelain [17].

Numerous strategies have been developed for the extraction and purification of brome-
lain. The bromelain production process consists of several sequential steps, as depicted in
Figure 2. Fresh pineapple stem parts or any other parts of the pineapple are washed, cut
into small pieces, crushed in an industrial blender to disrupt the plant cells and separate
the enzyme from the cells, filtered to remove the fibrous material and centrifugated to
remove insoluble materials [1,38–40]. The obtained supernatant is called crude extract
and is further purified as impurities and by-products (e.g., proteins, pigments, polysaccha-
rides) can react with bromelain and inhibit its activity [17]. Purification can be done using
chromatographic processes (among them ion-exchange chromatography with prior precip-
itation by adding ammonium sulfate is the most relevant), a two-phase aqueous system
(e.g., PEG/K2SO4, PEG/MgSO4, PEG/poly(acrylic acid), PEG/(NH4)2SO4) or a reverse
micellar system [1,17,41], the selection primarily depends on the application. Purification
can also be performed by membrane-based processes (microfiltration, ultrafiltration) [40] or
precipitation, followed by centrifugation and solubilization in phosphate buffer [38]. The
residual specific activity of crude pineapple extract purified by fractionation using ammo-
nium sulfate at 20–50% saturation level is 70 U/mg with the total activity of 167.3 U, total
protein content of 2.39 mg and the purity level of 5.3 fold compared to the crude enzyme
extract [16]. When acetone (50–80% saturation) was used as fractionating agent, the residual
specific activity of bromelain fraction was 19.7 U/mg [16]. The crude bromelain of pineap-
ple fruit purified by high-speed counter-current chromatography coupled with the reverse
micelle solvent system yielded 3.01 g of bromelain from 5.00 g crude extract in 200 min [42].
The choice of a purification method determines the purity of the enzyme and the enzyme
production cost [40]. Commercially available bromelain is produced by a lengthy and
costly purification method that yields bromelain in varying degrees of purity [32]. The
purification steps correspond to 70–90% of the total production costs [38], implying the
need to develop innovative, cost-efficient methods for pure bromelain production in fewer
steps [39].

Isolation of bromelain from pineapple fruit and its various parts is not the only way
to obtain bromelain; researchers are also trying to clone the bromelain gene in multiple
hosts, such as E. coli BL21-AI [32,43,44], E. coli BL21-CodonPlus(DE3) [45], E. coli BL21
DE3pLysS [14], Pichia pastori [46] and Chinese cabbage (Brassica rapa) [47], leading to re-
combinant bromelain—an intracellular enzyme abundant in the cytoplasm of the host cell,
meaning that the host cell wall needs to be disrupted using homogenization, chemical lysis,
sonication with lysozyme or freeze-thawing to release the bromelain [44]. Amid et al. [32]
reported about higher specific activity of recombinant bromelain (1.231 U/mg) in com-
parison to commercial bromelain (0.846 U/mg) when the release of p-nitrophenol from
a synthetic substrate Nα-CBZ-ι-Lysine p-nitrophenyl ester was monitored. The recom-
binant bromelain obtained in a single step immobilized metal affinity chromatography
was purified 41-fold and showed optimum activity at pH 4.6 and 45 ◦C [32]. In contrast,
George and co-workers [14] reported a higher protease activity of native bromelain ob-
tained from Sigma (a purified form of crude stem bromelain) in comparison to recombinant
bromelain when casein was used as a substrate. Crude bromelain showed even higher
proteolytic activity than native bromelain due to its composition of a mixture of protease
complexes which can cleave substrate even more effectively. However, the effectiveness
of the extraction of the (recombinant) bromelain and its residual activity are related to
the choice of buffer, presence of chelating agents (ethylenediaminetetraacetic acid (EDTA),
cyclohexane-1,2-diaminoetetraacetic acid (CDTA), hydroxyethyl ethylenediamine triacetic
acid (HEDTA)), reducing agents and protease inhibitors [44].
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Bromelain has been a valuable compound in traditional medicine in Southeast Asia,
Kenya, India, and China for a long time [28,48] due to its numerous therapeutic effects
(Figure 3), including antimicrobial [16,49,50], anti-inflammatory [30,51], anticoagulant [52],
anticancer [53,54], antiplaque [55,56], and antiulcer properties [50]. Furthermore, it is
also beneficial for wound healing [57–60], dermatological disorders [19], post-surgery
recovery, enhanced antibiotic absorption [1], treatment of osteoarthritis [61], sinusitis and
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2.3. Bioactivity

Bromelain has been a valuable compound in traditional medicine in Southeast Asia,
Kenya, India, and China for a long time [28,48] due to its numerous therapeutic effects
(Figure 3), including antimicrobial [16,49,50], anti-inflammatory [30,51], anticoagulant [52],
anticancer [53,54], antiplaque [55,56], and antiulcer properties [50]. Furthermore, it is
also beneficial for wound healing [57–60], dermatological disorders [19], post-surgery
recovery, enhanced antibiotic absorption [1], treatment of osteoarthritis [61], sinusitis and
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diarrhea [17]. Recently, bromelain is suggested as an antiviral agent against COVID-19
due to the inhibition of different versions of SARS-CoV-2 [62]. Some of its therapeutic
mechanisms are discussed below.
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The mechanism behind the antimicrobial activity of bromelain is not well known,
yet, is believed that bromelain may hinder bacterial growth by hydrolyzing some peptide
bonds in the bacterial cell wall [14]. When bromelain digests the surface proteins, the cell
wall is damaged, allowing the cell to leak, swell, and open [1]. Bromelain also inhibits
the growth of some bacteria by preventing bacterial adhesion to specific glycoprotein
receptors on the surface [1,48]. Furthermore, bromelain inhibits enterotoxin production
of Escherichia coli (E. coli) and prevents diarrhea caused by E. coli [17]. Bromelain shows
antimicrobial activity against both Gram-positive and Gram-negative bacteria, including
E. coli, Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), Porphyromonas
gingivalis (P. gingvalis), Streptococcus mutans (S. mutans) [56], Bacillus subtilis (B. subtilus), (S.
aureus), Pseudomonas aeruginosa (P. aeruginosa), Proteus spp., Acinetobacter spp., . . . [1,63].
Additionally, synergistic use of bromelain and antibiotics increases the antibacterial effect
due to increased absorption of antibiotics induced by bromelain, leading to better drug
distribution in the microbes [1,17]. Bromelain has also been reported to act as an inhibitor
of fungal pathogens [39,64].

Inflammation is the body’s attempt to protect itself [28]. It is a complex biological
mechanism primarily regulated by the disruption of tissue homeostasis [17]. Most of-
ten, non-steroidal anti-inflammatory drugs are prescribed to combat the classic signs of
inflammation (heat, pain, redness and swelling), leading to severe damage to the gastroin-
testinal tract and numerous side effects. In such cases, the bromelain can be used as an
alternative [28] due to its anti-inflammatory activity mediated by (Figure 4):
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• increased serum fibrinolytic activity, reduced plasma fibrinogen levels and decreased
bradykinin levels (resulting in reduced vascular permeability), thereby reducing
edema and pain;

• modulating the formation of pro-inflammatory prostaglandins (by lowering lev-
els of prostaglandin E2 (PGE2) and thromboxane A2 (TXA-2)), enhancing the anti-
inflammatory mediators and the levels of prostaglandin I2 (PGI-2);

• modulating specific immune cell surface adhesion molecules—acting on the migration
of neutrophils to inflammation sites [28,61,65].
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Because of these actions, bromelain is potentially effective in several conditions and
diseases associated with inflammation, including rheumatoid arthritis, osteoarthritis, car-
diovascular diseases, skin wounds and burns, perioperative sports injuries and chronic
rhinosinusitis [65]. Furthermore, inflammation is also associated with cancer; suppress-
ing chronic inflammation may inhibit cancer progression due to reduced PGE-2 and
prostaglandin-endoperoxide synthase 2 (COX-2) after bromelain administration [17]. The
anti-inflammatory effect of bromelain is also the most traditional and established one [17].

Bromelain affects blood clotting by increasing the fibrinolytic capacity of serum and
inhibiting the synthesis of the blood-clotting protein fibrin (Figure 4). It also decreases
prekallikrein—a proenzyme that must be converted to kallikrein to help in coagulation.
Consequently, it inhibits the generation of bradykinin, leading to pain and edema reduction,
and increased circulation on the side of the injury [17,28,39].

The molecular mechanisms of bromelain’s anticancer activity are also not fully under-
stood [11]. However, some research has suggested that the bromelain anticancer mechanism
is mainly attributed to its protease components and proteolysis [11,35]. One of the described
anti-tumor mechanisms of bromelain includes induced differentiation of leukemic cells,
leading to apoptosis of tumor cells [1]. Bromelain inhibits the growth of cancer cells by
increasing the expression of two activators of apoptosis in mouse skin—p53 and Bax [66].
It also decreases the activity of cell survival regulators such as Akt and Erk, promoting
apoptotic cell death in tumors. Expression of promoters of cancer progression—nuclear
factor kappa B (NF-κB) and Cox-2 are also inhibited by bromelain in mouse papillomas
and models of skin tumorigenesis [1,11].

Bromelain is well tolerated and considered a safe nutraceutical with no serious ad-
verse effects [30,65]. It has already received FDA approval for clinical use as an orally
administered anti-inflammatory and anticoagulant therapeutic [52]. Its oral administration
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is well tolerated even in high doses (up to 3 g/day) for prolonged therapy periods, even
up to several years [11]. It has a very low level of toxicity [48]. The lethal dose (LD50) for
intraperitoneal administration is 37 mg/kg and 85 mg/kg for mice and rabbits, respectively,
and 30 mg/kg and 20 mg/kg for intravenous administration [65], with no immediate toxic
reactions [25]. Daily oral administration of 500 mg/kg of bromelain did not provoke any al-
teration in food intake, growth, histology of the heart, kidney and spleen, or hematological
parameters in rats [25]. After daily bromelain administration up to 750 mg/kg no toxicity
was observed in dogs after 6 months [17]. No relevant side effects have been observed in
humans at doses of up to 2000 mg/kg, even with prolonged oral administration [65]. How-
ever, clinical trials have reported some side effects, mainly gastrointestinal (i.e., diarrhea,
nausea and flatulence), headache, tiredness, dry mouth, allergic reactions, and bleeding
risk, especially in individuals treated with other anticoagulant drugs [17,61,65].

2.4. Immobilization Strategies

One of the issues related to enzymes (such as bromelain) utilization is a decline of
their activity with time or after processing. Indeed, enzymes, isolated from their natural
environments, are susceptible to process conditions, such as pH, temperature, strong acids
and bases, and non-aqueous solvents, which may affect their activity [67], health benefits
and pharmaceutical applicability [68]. A promising strategy to secure their efficiency is
immobilization [69], which requires selecting supporting material (inorganic components,
synthetic polymers or natural polymers) with suitable surface chemistry for controlled
enzymatic attachment. The next step is optimizing the immobilization process towards
desired immobilization yield, activity retention of even amplification, stability and reusabil-
ity [69] (Figure 5). Successful immobilization requires thorough knowledge and control
of the interactions between the carrier and the enzyme [70]. The choice of immobilization
method and carrier depends on the nature of the immobilized compound and the goal of
immobilization (resistance against high temperature, pH, controlling the release, preventing
negative interactions . . . ) [71].
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Immobilization methods and carriers utilized for immobilization of bromelain in the
last 10 years are summarized in Table 2 and Figure 6. Bromelain has been combined mostly
with nanoparticles, hydrogels, fibers and matrices with the aim to improve the properties
of the final formulation [29]. Baker and co-workers [72] encapsulated bromelain in silica
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nanosphere aggregates, using sodium metasilicate as a silica precursor and ethyleneamines
(diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA),
and pentaethylenehexamine (PEHA)) of different chain lengths as initiators. They found
out that increased loading mass of bromelain resulted in the increased activity of bromelain,
being 61.7% when 10 mg of bromelain was encapsulated in silica and only 12.1% when
2 mg of bromelain was used. The encapsulation also increases the thermostability with
maximum activity at 40 ◦C for free bromelain and at 50 ◦C for encapsulated bromelain. At
70 ◦C free bromelain lost its activity while encapsulated bromelain retained approximately
30% of its activity [72]. Chitosan-methyl cellulose hydrogel [73], freeze-dried chitosan
nanoparticles [29], chitosan microspheres [74], poly(lactide-co-glycolic) acid nanoparti-
cles [75] and katira gum nanoparticles [76] have also been studied for encapsulation of
bromelain, showing various immobilization yield and bromelain activity. Esti et al. [77]
covalently immobilized stem bromelain on chitosan beads by direct mechanism, involving
the bromelain carboxyl groups of Asp or Glu residues and the amino groups of the chi-
tosan. Ataied et al. [78] studied bacterial nanocellulose as a support material for physical
adsorption of bromelain and reported about 9-times increased antimicrobial activity of
adsorbed bromelain. Holyavka et al. [70] also used the adsorption method for immobi-
lization of cysteine proteases onto chitosan and observed significant loss of the bromelain
catalytic activity due to: (a) nonspecific binding, (b) structural changes of bromelain upon
interaction with the carrier, and (c) diffusional and steric limitations, leading to impeded
access of the active bromelain center [70]. All the studies clearly show the influence of the
carrier and immobilization method on bromelain’s immobilization yield, residual activity,
and thermal stability. By choosing a suitable carrier and immobilization method, it is
possible to significantly reduce the influence of the carrier on the structural and functional
properties of the bromelain [70], enhance its stability and activity upon exposure to a wide
range of pH and high temperatures and improve its antimicrobial and anti-inflammatory
activity. However, there is not yet a standard, highly efficient immobilization approach for
bromelain delivery [29].

Table 2. Review of bromelain immobilization methods.

Immobilization
Method

Carrier/Support
Material

Crosslinking Agent or
Initiator Outcomes References

Covalent
immobilization

APTES–
modified mesoporous

silica nanoparticles
(MSN)

1-ethyl-(3-
dimethylaminopropyl)

carbodiimide/N-
hydroxysuccinimide

(EDC/NHS)

- Enhanced diffusion of MSN
within the tumor extracellular
matrix

[52]

Chitosan beads
(Chitopearl BCW-3010) /

- 22% immobilization yield
- Higher resistance to the SO2, skin
and seed tannins

[77]

Lyocell fibres
Epichlorohydrin +

glutaraldehyde (GA),
EDC, and APTES + GA

- 88.14% activity yield of
immobilized bromelain at pH 7
- High stability of immobilized
bromelain at pH range 6–8
- pH 7 is ideal for immobilization

[79]

Chitosan–cobalt–
magnetite

nanoparticle
GA

- 77% immobilization binding
- 85 ± 2% of the initial catalytic
activity retained
- 50% of the initial catalytic activity
after the fifth use

[80]

Chitosan—clay
(montmorillonites/bentonites

or sepiolite)
nanocompositefilm

GA
- Increased immobilization yield,
decreased catalytic activity of the
immobilized bromelain

[81]



Pharmaceutics 2022, 14, 76 11 of 39

Table 2. Cont.

Immobilization
Method

Carrier/Support
Material

Crosslinking Agent or
Initiator Outcomes References

Adsorption

Chitosan matrix /

- Increased stability of bromelain
concerning UV irradiation in
comparison with free enzymes
- Chitosan matrix acts as
photoprotector

[82]

Chitosan
colloidal
particles

/

- Destruction of a part of the
helical structure
- Decreased catalytic activity of
bromelain

[70]

Magnetic carbon
nanotubes /

- Adsorption followed
second-order kinetics
- Bromelain (c = 100 µg/mL) alone
and in combination with
nanotubes efficiently inhibited the
HT-29 colorectal cancerous cells

[66]

Ag
nanoparticles /

- Spontaneous interaction of AgNP
with bromelain
- Main forces are electrostatic and
hydrophobic interactions
- Adsorption follows
pseudo-second-order kinetics

[83]

Magnetic
nanoparticles with

chitosan and reactive
red 120

(Red 120-CS-MNP)

/

- Red 120-CS-MNP are suitable
carrier
- Adsorption isotherm fitted the
Freundlich model well

[84]

Spores of the
probiotic Bacillus /

- Improved stability and activity of
the bromelain upon exposure to a
wide range of pH and high
temperatures

[85]

Bacterial
nanocellulose / - Improved antimicrobial activity [78]

Entrapment

N-
isopropylacrylamide

(PNIPAAm) hydrogels
/

- New release system evolving
hydrogels and bromelain for
wound healing

[86]

Alginate—arabic gum
hydrogels /

- 19% of bromelain was
incorporated, 227% swelling ratio
of final hydrogel

[87]
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Table 2. Cont.

Immobilization
Method

Carrier/Support
Material

Crosslinking Agent or
Initiator Outcomes References

Encapsulation

Silica nanoparticles DETA, TETA, TEPA, or
PEHA - Increased thermal stability [72]

Chitosan—methyl
cellulose hydrogel GA - Bromelain as a drug for digestion

problem [73]

Freeze-dried chitosan
nanoparticles

Sodium
tripolyphosphate

- 85.1 ± 1% encapsulation
efficiency
-
Chitosan-bromelain-nanoparticles
presented 4.9 U/mL of enzymatic
activity (104.7% of free bromelain
activity)
- Freeze-dried
chitosan-bromelain-nanoparticles
improve bromelain and
nanoparticle stability (maltose as
lyoprotectant)

[29]

Katira gum
nanoparticles /

- Enhanced anti-inflammatory
activity of bromelain against
carrageenan

[76]

Glutaraldehyde
crosslinked chitosan

microspheres
/ - 84.75% encapsulation efficiency [74]

Poly(lactide-co-
glycolic) acid
nanoparticles

/ - 48 ± 4.81% entrapment efficiency
- Enhanced antitumor effect [75]

Poly(lactide-co-
glycolic) acid
nanoparticles

/

- Oral administration of
encapsulated nanoparticles
reduced the tumor burden of
Ehrlich ascites carcinoma in mice
and increased their life-span
(160.0 ± 5.8%) when compared
with free bromelain (24 ± 3.2%)
- Enhanced anti-carcinogenic
potential upon oral administration

[53]

Eudragit L 100
nanoparticles /

- 85.42 ± 5.34% entrapment
efficiency
- Lyophilized formulation ensured
2-year shelf-life at room
temperature
- Oral bromelain delivery in
inflammatory conditions

[88]

Nanostructured lipid
carrier (lecithin-steric

acid-Span-80)
emulsified with PVA

solution

- ~77% entrapment efficiency
- Diminished of paw edema, joint
stiffness, mechanical allodynia,
tissue damage
- Alleviation of oxidative stress
and immunological markers
- Application in rheumatoid
arthritis

[89]
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Figure 6. Schematic illustration and SEM micrographs of immobilization methods of bromelain:
(a) entrapment into hydrogels (Reproduced with permission from [86], Elsevier, Amsterdam, The
Netherlands, 2018); (b) adsorption onto chitosan matrix (Reproduced with permission from [70],
Elsevier, Amsterdam, The Netherlands, 2021); (c) covalent immobilization (Reproduced with per-
mission from [81], Elsevier, Amsterdam, The Netherlands, 2018); (d) entrapment into nanoparticles
(Reproduced with permission from [29], Elsevier, Amsterdam, The Netherlands, 2021); (e) SEM
micrographs of encapsulated silica nanoparticles formed without bromelain (left) and with bromelain
(right) (Reproduced with permission from [72], John Wiley and Sons, Hoboken, NJ, USA, 2014).

2.5. Applications

Bromelain finds widespread applications in several areas, including medicine, health,
food, and cosmetics [15]. In the food industry, it is used for meat tenderization [90–92]
(together with papain representing 95% of the enzymes used to tenderize meat in the



Pharmaceutics 2022, 14, 76 14 of 39

USA [32]), baking process [93], protein hydrolysate production [94], as a food supple-
ment [95–97] and as an anti-browning agent in fruit juices [98]. Furthermore, bromelain
also shows antimicrobial activity against Alicyclobacillus acidoterrestris (A. acidoterrestris),
Gram-positive bacteria often related to the deterioration of acidic products (citrus juices,
iced tea, isotonic drinks and tomato extract) [99]. Still, its main application continues to be
in the pharmaceutical industry [24].

Several experimental data and clinical studies showed better burns and wound healing
under the influence of bromelain due to its proteolytic, anti-inflammatory, antibacterial,
and anti-edematogenic effects [58,59,73,86,100–102]. Recently, Chen et al. demonstrated
reduced inflammation and improved wound healing rate in a rat model when treated with
bromelain-immobilized electrospun poly(ε-caprolactone) fibres [100]. These fibres also
effectively prevented wound infections due to their antibacterial activity against Gram-
positive bacteria S. aureus, dominant in the initial stage of chronic wound formation, and
Gram-negative bacteria E. coli [100]. Aichele et al. confirmed the effect of bromelain
on myofibroblast reduction, resulting in attenuated fibrotic development [58]. Topical
application of bromelain is effective in the eschar removal (debridement) of uncomplicated
gunshot wounds when used as an adjunct to a simple wound incision and simplifies the
conventional wound excision treatment [103]. Bromelain treatment has a characteristic of
attacking mainly necrotic tissue, while healthy tissue seems unaffected [58]. One example is
bromelain-based enzymatic debridement product NexoBrid (produced by MediWound Ltd.,
Yavne, Israel), which reduced infection, blood loss, length of hospital stays, and the need
for skin grafting in treating deep partial and full-thickness burns due to early non-surgical
eschar removal without harming surrounding viable tissue (Figure 7) [59,101,104,105]. The
NexoBrid, a topically-applied concentrate of proteolytic enzymes enriched in bromelain,
was clinically approved in 2012 by the European Medicines Agency (EMA) to remove
dead tissue in severe skin burns, and until now is the only clinical-approved application of
bromelain [106]. Moreover, EscharEx (MediWound Ltd., Yavne, Israel) is another bromelain-
based enzymatic debridement currently in development for chronic wounds [107,108].
Several researchers have also incorporated bromelain into various hydrogels [73,86,87,102]
to create a dressing that ensures a moist environment around the wound and provides a
barrier against infection [87].

Bromelain has clinical potential for the treatment of skin problems such as acne
owing to its antimicrobial activity against microbial flora that is often associated with acne
infection, including P. acne, S. aureus, C. diphtheria and E. coli, among which S. aureus was the
most susceptible organism to the action of bromelain extracts, followed by P. acne [16,19].

In addition, bromelain can be used to inhibit the growth of bacteria that causes dental
caries due to the intense antimicrobial activity against P. gingvalis (diameter of clear zone
of 21 mm) [56]. The minimum inhibitory concentration (MIC) of bromelain against mi-
croorganisms associated with periodontal diseases was also determined by Praveen and
co-workers, being 2 mg/mL, 4.15 mg/mL, 16.6 mg/mL and 31.25 mg/mL for S. mutans,
P. gingivalis, A. actinomycetemcomitans and Enterococcus fecalis (E. fecalis), respectively [50].
The minimum bactericidal concentration (MBC) of crude bromelain of pineapple fruit to
multidrug-resistance Gram-negative P. aeruginosa is 0.75 g/mL [109]. P. aeruginosa is a lead-
ing cause of nosocomial infections, responsible for 10% of hospital-acquired infections [109].
Crude bromelain, extracted from pineapple fruit, exhibited a 12 mm zone of inhibition
against Streptococcus pneumoniae (S. pneumoniae), P. aeruginosa and S. aureus at a concen-
tration of 1.0 g/mL [63]. Crude bromelain extracted from pineapple crown leaf (aqueous
extract of pineapple crown leaf) showed 70–95% inhibition of microbial growth with MIC
range of 1.65–4.95 mg/mL against laboratory strain Saccharomyces cerevisiae (S. cerevisiae)
and E. coli XL1 blue, type strain S. aureus, drug-resistant strain E. coli DH5α pet16b Ampr

and two pathogenic strain B. subtilis and Candida albicans (C. albicans) [18]. It is also hypothe-
sized that bromelain inhibits the development and progression of periodontitis through the
elimination of important cell surface molecules (CD25) in leucocytes (proteolytic activity
of bromelain), decreased growth of periodontal microorganisms (anti-adhesion property),
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reduced migration of neutrophils to periodontal sites (the hyperactivity of the neutrophils
leads to damage of the periodontium), downregulating of inflammatory mediators (COX-2,
tumor necrosis factor (TNF)), decreased osteoclastogenesis process with reduction in alveo-
lar bone loss (Figure 8a,b) [110,111]. A clinical study conducted by Odresi et al. confirmed
the anti-edematous action of bromelain in third molar surgery. The group treated with
bromelain showed a reduced inflammatory response compared to the control group [112].
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Figure 7. Bromelain-based treatment (BBT): (a) venous insufficiency ulcer; 1—pre-existing for
5 months, 2—after first BBT 4-h application, 3—after fourth BBT 4-h application (16 h total ex-
posure to bromelain-based debridement), 4—one week post-split-thickness skin grafting, 5—seven
weeks post-split-thickness skin grafting (Adapted with permission from [108], John Wiley and Sons,
Hoboken, NJ, USA, 2018); (b) large venous leg ulcers; 1—venous leg ulcer pre-existing 10 weeks,
2—after 7 BBT, and 3—two months after split-thickness skin grafting (Reproduced with permission
from [107], John Wiley and Sons, Hoboken, NJ, USA, 2021); (c) hand burn; 1—before BBT, 2—after
BBT, 3—outcome 38 days post-burn (Reproduced with permission from [104], Baoshideng Publishing
Group Inc., Pleasanton, CA, USA, 2017).

The anticarcinogenic effect of bromelain has been investigated through in vitro studies
involving various cancer cell lines [66]. It can inhibit the growth and proliferation of mouse
breast carcinoma 4T1, human breast adenocarcinoma GI-101A and MCF7, human prostate
carcinoma PC3 and human gastric carcinoma AGS in a dose-dependent manner [43,113–115].
Bromelain concentration >75 µg/mL remarkably decreased cell viability in MCF7, PC3 and
AGS human cell lines as a single therapy [113]. Moreover, it is also effective as an anticancer
agent against cell lines of melanoma (A375), epidermoid carcinoma (A431) [116], gastric
carcinoma (KATO-III and MKN45) [117], colorectal cancer (human colon adenocarcinoma
(Caco-2)) [118], ovarian cancer (A2780), colon cancer (HT29) [119], lung cancer [120], pan-
creatic [121] and liver cancer (hepatocellular carcinoma HepG2) [10]. The absorption and
efficiency of chemotherapy drugs (5-fluorouracil, vincristine, cisplatin, idarubicin, doxoru-
bicin), antibiotics (amoxicillin and tetracycline) or blood pressure medication (captopril and
lisinopril) [17,122–124] can be potentiated when combined with oral, subcutaneous or intra-
muscular administration of bromelain [17]. Higashi et al. [121] investigated whether bromelain
could be used to degrade the barrier of dense extracellular matrix (ECM), a characteristic
inhibitor of penetration of anticancer drugs in the treatment of pancreatic cancer. Due to
the short half-life of the bromelain in the blood, they prepared reversibly PEGylated brome-
lain using “self-assembly PEGylation retaining activity (SPRA)” technology, thus retaining
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high bromelain activity and causing ECM degradation and increase of anticancer drugs in
tumor tissue of pancreatic cancer (Figure 8c) [121]. Encapsulated bromelain also enables slow
delivery, thus being favorable for cancer treatment [66].
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0.05 indicates the Periodontitis groups versus the Control group and # p < 0.05 indicates the 
Periodontitis groups versus the Bromelain group (Reproduced with permission from [111], John 
Wiley and Sons, Hoboken, NJ, USA, 2020); (c) the scheme of the SPRA-bromelain suggested a 
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Figure 8. (a) Comparison of the control group (normal gingiva), periodontitis group and group
treated with bromelain 15 mg/kg (arrow shows the first molar and the letter T shows the tongue).
Group treated with bromelain indicates improvement of gingival papilla staining, reduction in edema,
absence of bleeding and moderate bone loss (Reproduced with permission from [111], John Wiley and
Sons, Hoboken, NJ, USA, 2020); (b) morphometric analyses of alveolar bone height; * p < 0.05 indicates
the Periodontitis groups versus the Control group and # p < 0.05 indicates the Periodontitis groups
versus the Bromelain group (Reproduced with permission from [111], John Wiley and Sons, Hoboken,
NJ, USA, 2020); (c) the scheme of the SPRA-bromelain suggested a mechanism of ECM-degradation
in pancreatic cancer (Reproduced with permission from [121], ACS Publications, Washington, DC,
USA, 2020).

Bromelain effectively reduces the risk of clots-associated problems, including stroke or
heart attack [15,17,25] due to the breaking down of the blood-clotting protein fibrin [125].
Bromelain has been shown to be effective in treating rheumatoid arthritis [86], exercise-
induced muscle injuries [125] and edema caused by post-surgical trauma [19]. It was
also used in treating patients with osteoarthritis, where it worked similarly to diclofenac
treatments [126]. In combination with Boswellia serrata (B. serrata), bromelain improved the
quality of life of patients suffering from different forms of osteoarthritis [96].
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3. Nisin
3.1. Structural and Biological Properties

Antimicrobial peptides (AMPs) are cationic, hydrophobic or amphipathic natural
antibiotics, consisting of amino acid residues of varying lengths (up to 100) in a linear or
cyclic arrangement [127], derived from bacteria, insects, plants, birds, amphibians, fish,
and mammals [128–130]. AMPs have attracted much attention because of their potent
antibacterial activity against a broad spectrum of microorganisms, multiple modes of
action, a low bacterial resistance rate, ability to destroy target cells rapidly and low cyto-
toxicity [127,131–134], therefore showing potential to overcome the growing problems of
antibiotic resistance [135,136]. An example of AMPs is also an odorless, colorless, tasteless
substance—nisin [131]. It is a cationic, amphiphilic, antimicrobial polypeptide [137,138], ri-
bosomally synthesized and posttranslationally modified to its biologically active form [139].
It is a member of bacteriocins, classified as a Type A (I) lantibiotic [140], identified in 1928
in fermented milk cultures [6]. It contains the hydrophobic residues at the N—terminus
and hydrophilic residues at the C—terminus (Figure 9a) [138], five thioether rings and
four amino acids, usually not found in nature: lanthionine (Lan), β-methyl lanthionine
(MeLan), and two dehydrated amino acids—dehydroalanine (Dha) and dehydrobutyrine
(Dhb) (Figure 9b,c) [141,142]. These amino acids result from posttranslational modification
of serine, threonine, and cysteine [143]. Moreover, the thioether rings give nisin unique
properties, including nanomolar antimicrobial activity, resistance against proteolytic degra-
dation and high heat stability [135]. The first two thioethers rings can bind lipid II, the
flexible hinge region together with the last two thioethers rings can flip into the membrane
and create a pore [3]. Unmodified prenisin contains 57 amino acids: the first 23 from the
leader peptide and the last 34 residues from the core peptide [144]. The leader peptide
renders the propeptide inactive and must be cleaved for a nisin to gain antimicrobial
activity [142]. Therefore, active nisin consists of only 34 amino acids [3].
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Figure 9. (a) Primary structure of nisin Z with highlighted residues involved in crucial aspects of the
antimicrobial activity (Adapted with permission from [145], Elsevier, Amsterdam, The Netherlands,
2018); (b) chemical formula of dehydroalanine (Dha), dehydrobutyrine (Dhb), lanthionine (Lan),
and β-methyl lanthionine (MeLan) (Adapted with permission from [145], Elsevier, Amsterdam, The
Netherlands, 2018); (c) chemical structure of nisin A (Reproduced with permission from [146], RSC,
Cambridge, UK, 2012).

Nisin is mainly produced by Gram-positive bacteria that include Lactococcus and
Streptococcus species [7] (e.g., Lactococcus lactis (L. lactis) [137], Streptococcus hyointestinalis
(S. hyointestinalis) [147], . . . ). Various production strains also lead to different naturally
occurring variants of nisin (nisin A, nisin Z, nisin F, . . . ). The molecular weight of nisin
depends on the production strain; usually, it is between 3.0 and 3.5 kDa [147]. This
polypeptide has an amphipathic property [140], is cationic at neutral pH and has an
isoelectric point above 8.5 [148]. Nisin has no absorbance at 280 nm due to the absence of
aromatic amino acids [149].

Nisin has been approved by the Joint Food and Agriculture Organization World Health
Organization (FAO/WHO, 1969), the US Food and Drug Administration (FDA, 1988) [7],
the European Food Safety Authority (acceptable uptake of 0.13 mg/kg/day/person [150])
and the Food Standards Australia New Zealand [151]. It was generally regarded as safe
(GRAS) [151,152]. So far, it is the only bacteriocin in the market allowed to be used as a
food additive [153].
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3.2. Isolation

Since the first discovery of nisin (nisin A) in fermented milk cultures, several natural
and bioengineered variants of nisin have been identified [7,147], which differ in their
structure and properties (solubility, chemical reactivity, and spectra) [154]. Up to now,
there are eleven reported natural occurring nisin analogues: nisin A, nisin Z, nisin F,
nisin Q, nisin H, nisin O A1-A3, nisin O A4, nisin U, nisin U2, nisin P, nisin J (Table 3),
isolated from various bacterial genera such as Lactococcus, Streptococcus, Staphylococcus,
and Blautia, located in dairy products, human gastrointestinal tract, bovine mammary
secretions, human skin microflora, porcine intestine, an alimentary tract of ruminants, fish
gut and river water in Japan [7,155]. Nisin analogues from the same genera are more like
each other than analogues from different genera. Nisin A and nisin Z are both isolated from
L. lactis, found in dairy products, and differ only in one amino acid at position 27; histidine
(His) in nisin A is substituted with asparagine (Asp) in nisin Z (Table 3, highlighted in
yellow). This substitution mainly affects the solubility of the polypeptide. It causes nisin Z
to be more soluble at neutral pH than nisin A due to a more polar side chain of the Asp in
comparison to His at neutral pH; it has minimal effect on antimicrobial activity, resistance
to pH changes, sensitivity to proteolytic enzymes and thermal stability [149,155]. Nisin F
differs from nisin A due to Asp and valine (Val) at positions 27 and 30. Nisin Q differs in
comparison to nisin A in three amino acids at four positions: valine (Val, in position 15
and 30), leucine (Leu, in position 21), and asparagine (Asp, in position 27) [155]. Nisin O
(A1-A3 and A4), nisin U and U2, and nisin P are shorter than previously described nisin
analogues; they contain 33, 32, and 31 amino acids, respectively. With 35 amino acids, nisin
J is the longest natural nisin analogue identified to date [147].

Table 3. Primary structures of nisin natural analogues. The changes in amino acids compared to nisin
A are highlighted in yellow (not valid for Nisin J).

Natural nisin analogues represented with a primary structure
(Reproduced with permission from [147,155], ASM Journals, Washington, USA, 2020

and Springer Nature, London, UK, 2020)

Production strain
[7,155]

Molecular weight
[Da] [147]

Nisin A
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Table 3. Cont.

Natural nisin analogues represented with a primary structure
(Reproduced with permission from [147,155], ASM Journals, Washington, USA, 2020

and Springer Nature, London, UK, 2020)

Production strain
[7,155]

Molecular weight
[Da] [147]

Nisin Q
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forms of nisin revealed that modifying amino acids at the hinge-region (three amino acids
asparagine-methionine-lysine at position 20–21–22 in the center of the peptide, Figure 9a)
and at position 29, respectively, displayed an essential role in enhancing activity against
Gram-negative bacteria, and both Gram-positive and Gram-negative pathogens [7,156].
Nisin A K22T, A N20P, A M21V, A K22S, A S29A, A S29D, A S29E, A S29G, Z N20K and Z
M21K are some genetically modified nisin derivatives with changes in those positions and
more significant activity against foodborne and clinical pathogens [6,7,156]. The names indi-
cate the substitution position and the replaced amino acid; for example, nisin A K22T means
that the amino acid sequence is the same as in Nisin A, the only difference is at position 22,
where lysine (K) is substituted with threonine (T). Nisin derivative Z N20K and Z M21K
showed enhanced activity against Gram-negative bacteria, including Shigella, Pseudomonas
and Salmonella species, and displayed more significant thermal stability and solubility at
neutral or alkaline pH [7]. Nisin A K22T exhibit enhanced activity against human and
bovine pathogen Streptococcus agalactiae (S. agalactiae). Nisin A M21V showed enhanced
antimicrobial activity against medically significant pathogens, including heterogenous Van-
comycin intermediate S. aureus (hVISA), methicillin-resistant S. aureus (MRSA), Clostridium
difficile (C. difficile), S. agalactiae and Listeria monocytogenes (L. monocytogenes). The S29G and
S29A nisin variants showed enhanced activity against Gram-positive and Gram-negative
pathogens, differentiating them from all nisin derivatives generated to date [156].

3.3. Bioactivity

Nisin is known for its broad-spectrum of antibacterial activity against a wide range
of Gram-positive bacteria [7,140], even better than conventional antibiotics [157], due to
its stability at a higher temperature, tolerance to low pH, and dual-mode of antimicrobial
activity [6]. The latter includes binding of nisin molecule to an essential precursor for bacte-
rial wall biosynthesis (the lipid II) through electrostatic interaction between the positively
charged nisin and the negatively charged membrane phospholipids. This results in the
formation of the complex within the bacterial cell membrane, which creates 2 nm wide
pores, thus preventing the growth of the peptidoglycan network and increased membrane
permeability, leading to leakage of essential cellular components, and eventually to cell
death (Figure 10) [71,139,149,158,159].

Nisin is active against a wide variety of Gram-positive Lactococcus, Enterococcus, Strep-
tococcus, Staphylococcus, Listeria and Micrococcus bacterial strains, as well as the vegetative
forms and outgrowing spores of Bacillus and Clostridium species [138,142,158]. The Gram-
negative bacteria (e.g., E. coli) are usually resistant to nisin due to their outer lipopolysac-
charide membranes, which act as a barrier/shield and impede its access to the cytoplasmic
membrane [160,161]. Additionally, nisin shows no inhibitory activity against yeast cells,
filamentous fungi and viruses [149]. However, many studies [6,7,142,156,158,160,162–164]
demonstrate that bioengineered variants of nisin, high purity nisin, nisin-antibiotics, nisin-
chelating agents (e.g., EDTA), nisin-inorganic nanoparticles (silver, gold, magnesium oxide,
. . . ) or other outer membrane destabilizing component/processes (e.g., heat treatment,
freezing) could also be effective against Gram-negative bacteria.

Required nisin concentration for efficient bacteria inhibition depends on several param-
eters, such as pH, heat treatment intensity, storage time and storage conditions. Aqueous
solubility and structural stability of nisin are also pH dependent. The antimicrobial activity,
solubility, and thermal stability of nisin are higher at acidic pH and deactivate under alka-
line conditions due to irreversible structural changes of the nisin molecule. Nisin has higher
antimicrobial activity in a liquid medium than a solid medium. Nisin is highly stable at
low temperatures (e.g., during freezing), but undergoes a loss of activity during long-time
heating. Proteolytic enzymes such as pancreatin, α-chymotrypsin and ficin can inactivate
nisin due to their ability to break down the peptide chain of nisin. Other enzymes such as
trypsin, pepsin and carboxypeptidase have no significant effect on its antimicrobial effect.
The antimicrobial activity of nisin is also inhibited by the titanium dioxide and sodium
metabisulphite due to the oxidation of disulfide bridges in the nisin molecule [149,165].
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Figure 10. Schematic representation of the bactericidal mechanism of nisin: (a) nisin reaches the
bacterial membrane; (b) adsorption of nisin to docking molecule (lipid II) via electrostatic interactions;
(c) stable transmembrane orientation of nisin (cationic region of nisin interact with the negatively
charged phospholipid heads, while the hydrophobic region of nisin interacts with the membrane
core); (d) assembly of nisin-lipid II pore complex (consisting of 4 lipids II and 8 nisin molecules)
(Reproduced with permission from [71,149], Elsevier, Amsterdam, The Netherlands, 2019 and Taylor
& Francis, Abingdon, UK, 2016).

3.4. Immobilization Strategies

Various immobilization methods have been developed to protect nisin from envi-
ronmental stresses, degradation by biological fluids or biocomponents (i.e., proteolytic
enzymes) or deactivation under alkaline conditions [4,165], including covalent immobiliza-
tion, encapsulation, entrapment, adsorption and co-culture fermentation, summarized in
Table 4 and Figure 11. Most of the reported strategies for nisin immobilization required
special pre-treatment of used support material/carrier, chemical modifications, crosslinking
agents (carbodiimide/N-hydroxysuccinimide (EDC/NHS), hexamethylene diisocyanate,
glutaraldehyde, . . . ) or a variety of other spacer molecules to obtain a composite with
optimal, target-directed antimicrobial action against pathogenic bacteria [4,9,161]. In re-
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cent years, great emphasis has been placed on developing innovative nano-engineered
approaches and nanostructured materials with enhanced antimicrobial activity in com-
parison to free nisin, including lipid-based nanoencapsulated nanoparticles (nanolipo-
somes, nanoemulsions, nanomicelles, solid lipid nanoparticles and nanostructured lipid
carriers, Figure 12a), polymeric-based nanoencapsulated nanoparticles (nanocapsule and
nanosphere, Figure 12b) and nanofibers [71,166]. Natural and synthetic materials studied as
carrier or support material for immobilization of nisin includes liposomes [164,167], silica
xerogels [168], polystyrene sheets [138], polyethylene oxide brush layer [169], soy lecithin
liposomes [170], bacterial cellulose nanocrystals [151], chitosan nanoparticles [171], alginate
beads [172] or a mixture of pectin-chitosan microcapsules [165], alginate-starch microcap-
sules [173], alginate-pectin microbeads [174] or chitosan-alginate microparticles [175],...
having antimicrobial activity against various Gram-positive and Gram-negative bacteria
(Table 4).
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Figure 11. Schematic illustration of immobilization methods of nisin: (a) covalent immobilization
onto multi-walled carbon nanotubes with PEG1000 as a linker and hexamethylene diisocyanate as
a crosslinking agent (Adopted with permission from [176], RSC, 2011); (b) co-culture fermentation
of nisin-producing (Lactococcus lactis N8) and bacterial cellulose-producing (Enterobacter sp. FY-
07) bacteria (Adopted with permission from [153], Elsevier, Amsterdam, The Netherlands, 2021);
(c) covalent immobilization onto plasma-treated, EDC/NHS ester functionalized polystyrene sheets
(Adopted with permission from [138], RSC, 2017); (d) covalent immobilization onto plasma-treated
polystyrene sheets (Adopted with permission from [138], RSC, 2017); (e) nisin loaded chitosan-
poly-γ-glutamic acid nanoparticles (encapsulation) (Reproduced with permission from [179], RSC,
Cambridge, UK, 2016); (f) adsorption of nisin on blank and HGFI-coated polystyrene surface together
with antimicrobial activity of both surfaces (Adopted with permission from [9], Elsevier, Amsterdam,
The Netherlands, 2021).
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Table 4. Immobilization methods of nisin and antimicrobial activity against Gram-positive and
Gram-negative bacteria.

Immobilization
Method

Carrier/Support
Material

Crosslinking Agent or
Initiator

Antimicrobial Property
against References

Covalent
immobilization

Multi-walled carbon
nanotubes grafted with

poly(ethylene glycol)
(PEG1000)

Hexamethylene
diisocyanate

E. coli,
P. aeruginosa,

S. aureus,
B. subtilis

[176]

Polystyrene (PS) sheets Atmospheric-pressure
plasma

Gram-positive S. aureus
and L. monocytogenes [138]

Poly(vinyl alcohol) films Glutaric acid Gram-positive S. aureus
and Gram-negative E. coli [177]

Sodium alginate/gelatin
wet-spun porous fibers GA S. aureus [4]

N-succinyl chitosan films EDC
S. aureus, E. coli, S.

enteritidis, Pseudomonas
tolaasii (P. tolaasii)

[178]

Encapsulation

Silica xerogel / B. cereus, L. monocytogenes,
S. aureus, E. coli, S. enterica [168]

Bacterial cellulose
nanocrystals / L. rhamnosus LBM1 [151]

Chitosan nanoparticles / E. coli and
S. aureus [171]

Ca-alginate microparticles / Brochothrix thermosphacta (B.
thermosphacta) 7R1 [172]

Pectin-chitosan
microcapsules /

S. aureus, weak bactericidal
effect on E. coli under

acidic conditions
[165]

Alginate-starch
microcapsules / Pediococcus acidilactici (P.

acidilactici) UL5 [173]

Chitosan-alginate
microparticles / N/A [175]

Chitosan-poly-γ-glutamic
acid nanoparticles / E. coli and L. monocytogenes [179]

Phosphatidylcholine
liposomes containing

chitosan or chondroitin
sulfate

/ L. monocytogenes [180]

Soybean lecithin or
Phospholipon® liposomes /

L. monocytogenes,
Clostridium perfringens (C.
perfringens) and Bacillus

cereus (B. cereus)

[181]

Co-encapsulation

Phosphatidylcholine (PC)
nanoliposomes coated with
pectin or polygalacturonic

acid

/ L. monocytogens, Salmonella
Enteritidis (S. Enteritidis) [167]

Phosphatidylcholine (PC)
nanoliposomes /

L. monocytogenes, S.
Enteritidis, E. coli and S.

aureus
[164]
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Table 4. Cont.

Immobilization
Method

Carrier/Support
Material

Crosslinking Agent or
Initiator

Antimicrobial Property
against References

Adsorption

Low density polyethylene
films treated with acrylic

acid
/ Listeria innocua (L. innocua) [182]

Montmorillonite
suspension / E. faecium C1 [183]

Polyethylene oxide brush
layers / N/A [169]

HGFI (class I
hydrophobin)-coated

polystyrene films
/ S. aureus [9]

ZnAl layered double
hydroxides nanohybrids / N/A [184]

Co-culture
fermentation None S. aureus, E. coli [153]

Entrapment

Polyethylene oxide brush
layer / Pediococcus pentosaceous (P.

pentosaceous) [185]

PET (polyethylene
terephthalate) woven

fabrics with thin alginate
coating

/ S. aureus [186]

Poly-ethylene-co-vinyl
acetate films /

Staphylococcus epidermidis
(S. epidermidis) ATCC

35984, S. aureus 815 and L.
monocytogenes ATCC 7644

[187]

Guar gum gel (biogel) /

Canine oral enterococci
collection (including E.

faecalis and E.
faecium)

[188]

However, different hydrophilic/hydrophobic surface properties of these carriers affect
the orientation of the nisin (Figure 13). It is proposed that the hydrophobic region of the
nisin binds to the hydrophobic surface, leading to the reduced number of hydrophobic
regions available to interact with the bacterial cell membrane. Similarly, the hydrophilic
region of nisin binds to the hydrophilic surface, allowing the hydrophobic region to interact
with the bacterial cell membrane [138]. Furthermore, nisin reacts with EDC/NHS function-
alized surface through its amine group at the N-terminus, which could cause inefficient
adsorption to the carrier due to steric barriers of the hydrophobic region [138].

3.5. Applications

Nisin’s properties, such as inhibitory efficiency against a wide range of microorgan-
isms, low probability of developing microbial resistance, no effect on the normal microbiota
of the intestine, non-toxicity, colourless and tasteless, enable its use in both the biomedicine
and food industry [137,189], especially in the second segment, where use as food bio preser-
vative is already much exhausted [190]. Nisin is used to preserve pasteurized milk, aged
cheeses, canned soups, juice, meat and vegetables [71,149]. It shows a better choice for
prolonging the shelf life of meat (Tan sheep meat) in comparison to preservative potas-
sium sorbate due to reduced nutrient loss [191]. Furthermore, it can be combined with
other pasteurization preservation treatments to increase inhibition effectiveness against
heat-resistant spore-former and extend the food shelf life [149]. As a food additive, it is
assigned as E234 [149] and has been approved for use in over 60 countries around the
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world as a natural agent to prevent food spoilage due to its low toxicity or non-toxicity,
high efficiency [153], thermal stability, and colourless and tasteless properties [157]. Saini
et al. [150] studied covalent immobilization of nisin on the surface of TEMPO-oxidized
CNF and thus developed antimicrobial films, which could be used as active food pack-
aging. Nisin was also studied to develop impedimetric label-free biosensors for bacterial
contamination detection of Salmonella spp. [192].
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In light of biomedical potential, the nisin already demonstrates promising results as
an alternative to traditional antimicrobial therapeutics due to its activity against specific
(antibiotic-resistant bacterial) pathogens and disease conditions, particularly concerning mas-
titis in lactating women and dairy cows (inhibition of S. aureus and S. epidermidis [193–198]),
respiratory infections (inhibition of S. aureus [199]) and skin infections, e.g., atopic dermati-
tis [200] and MRSA skin infections (inhibition of S. aureus) [147,201–204]. It can be used
either as a single agent or in combination with other agents [7,157,189,201,205]. Furthermore,
it showed potential in oral diseases, such as caries and periodontal diseases, due to inhi-
bition of oral bacteria, including Streptococcus sanguinis (S. sanguinis), Streptococcus sobrinus
(S. sobrinus), Streptococcus gordonii (S. gordonii), P. gingivalis, Prevotella intermedia (P. intermedia),
A. actinomycetemcomitans and Treponema denticola (T. denticola) [140,206,207]. Shin and co-
workers [140] studied nisin’s antimicrobial efficiency against the formation of saliva-derived
multi-species oral biofilms. They reported on reduced biofilm biomass in a dose-dependent
manner (Figure 14); no apoptotic changes of human oral cells were observed at nisin con-
centration <200 µg/mL [140]. Nisin also has the potential to control periodontal disease in
dogs [208].

Additionally, nisin has been studied as a possible anticancer agent due to the multidrug
resistance of cancer cells and drastic side effects of traditional chemotherapeutics [209,210].
Hosseini and co-workers reported a significant decrease in the growth rate of SW480
colorectal cancer cell line after being treated with nisin [211]. Similar conclusions are re-
ported by Tavakoli et al. [212]. Nisin also showed a significant efficiency as an adjuvant
to conventional chemotherapeutic agents. Preet et al. studied synergism between dox-
orubicin, a chemotherapeutic drug traditionally used to treat breast cancer, lymphoma,
bladder cancer, acute lymphocytic leukemia [8], and nisin against skin carcinogenesis [209].
They reported on augmented anticancer activities when both these agents were used in
conjunction with each other [209]. Rana and colleagues studied the possible use of a 5-
fluorouracil-nisin combination as a topically applied chemotherapeutic drug against skin
cancer [210]. They observed faster clearance of tumors and a reduced dose of 5-fluorouracil
when a 5-fluorouracil-nisin combination was used [210]. Joo et al. reported on increased
cell apoptosis and decreased cell proliferation at head and neck squamous cell carcinoma
by nisin treatment [159]. Furthermore, nisin A has been demonstrated to have a potential
for treating nonhealing wounds, as it increases the mobility of skin cells, dampens the effect



Pharmaceutics 2022, 14, 76 28 of 39

of lipopolysaccharide and proinflammatory cytokines, and decreases bacterial load in the
wound [157].
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4. Combination of Bioactive Compounds

Simultaneous use of (bio)active agents is common practice to collect multiple activities
and even augment their efficiency to a higher level than their simple sum. The use of
enzymatic mixtures, comprising enzymes with wide diversity in the reactions they are
catalyzing, is one frequent case of simultaneous use of multiple bioactive compounds.
Moreover, the ˝crude enzymatic cocktails˝ (as crude bromelain itself) are more frequently
present in nature than a single, specific type. Aside from simple mixtures, more than
one enzyme’s co-immobilization was found very efficient in terms of product yield and
thermal stability increment, as present in the triple enzyme system [213]. Another example
is antibiotics, where the combined therapy utilizing more than one antibiotic at the time
is practiced in particular cases in order to broaden the antibacterial spectrum, to treat the
polymicrobial infections, to obtain synergistic effect bringing higher efficiency at lower
doses and finally, to tackle the emergence of bacterial resistance [214].

The bacteriocin nisin offers a range of advantageous features that include protease and
heat stability; its efficacy can be further boosted via combination with other antimicrobials
or membrane-active substances. Nisin demonstrates synergistic activity with the antibiotics
colistin and clarithromycin against P. aeruginosa [215] with ramoplanin and other-β-lactam
antibiotics against many strains of MRSA and VRE [216] with penicillin, streptomycin,
chloramphenicol and rifampicin against Pseudomonas fluorescens [217]. Combinations of
derivatives nisin V + penicillin or nisin I4V + chloramphenicol had an enhanced inhibitory
effect against S. aureus SA113 and S. pseudintermedius DSM21284, respectively, compared to
the equivalent nisin A + antibiotic combinations or when each antimicrobial was adminis-
tered alone [218].

Reported studies demonstrate that such mixtures boost the antimicrobial action, but
the same does not introduce new bioactive functions. One-pot (co-immobilisation, simulta-
neous immobilisation), or successive immobilization of bioactive compounds, together with
diverse immobilisation strategies, all together present modalities to be used in obtaining a
multi-active system including different types of bioactive compounds. Such an example is
a two-step polydopamine-based surface modification strategy, used to co-immobilize an
antimicrobial peptide Palm and an enzyme targeting an important component of biofilm
matrix (DNase I). This immobilization approach imparted polydimethylsiloxane surfaces
with both anti-adhesive and antimicrobial properties against the adhesion of relevant
bacteria as single and dual-species, with excellent stability and biocompatible and anti-
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biofilm properties, holding, therefore, great potential in the development of catheters able
to prevent the catheter-associated infections [219].

To date, the co-immobilization of bromelain and nisin as proteolytic enzymes and
protease-resistant antimicrobial peptide, respectively, has not been trialled. Aside from
obstacles anticipated to such an experimental design, the potential success may offer a
merge of an extensive portfolio of bioactive functions brought by both components. Both
components are complementary in many terms, including the type of bacteria they are
acting against, i.e., Gram-positive for nisin and Gram-negative for bromelain.

5. Conclusions and Prospects

Bromelain and nisin are undoubtedly among more perspective, natural bioactive
components with outstanding potential in biomedicine due to diverse therapeutic benefits,
demonstrated by several research groups in the recent decade. In vitro studies of bromelain
and nisin show their potential in human medicine and healthcare, in the treatment of
skin infections, caries, periodontal diseases, and many other conditions. Importantly, the
bromelain shows promise within several in vitro studies involving cancer cell lines, yet,
the clinical trials in this segment are in a premature stage, with only two examples at the
moment (one for treatment of solid tumors in advanced stage of lung, breast, colon, ovary,
cervix, uterus, prostatic, and liver and second for treatment of Pseudomyxoma Peritonei,
Peritoneal Cancer, Mucinous Adenocarcinoma and Mucinous Tumor) [220]. The plant
extract bromelain interacts with several biological processes that lead to its multi-action
bioactivity, including antimicrobial, anti-inflammatory, anticarcinogenic and antithrombotic
activity. Unlike bromelain, which has already gained FDA approval in topical product
NexoBrid, the nisin is only approved as a food additive despite its effectiveness against
drug-resistant organisms also in biomedical research. Nonetheless, much effort has been de-
voted to widening the nisin efficiency from Gram-positive bacteria towards Gram-negative
bacteria, where biotechnological approaches or combination with other components (an-
tibiotics, inorganic nanoparticles, chelating agents, . . . ) have been applied, which paves its
way towards use in more demanding clinical set-ups. Further, the production of different
variants (from native and gene-modified bacterial species) with a high degree of purity,
securing the safeness of final products are evidencing recognized the potential of this
bioactive compound.

To the best of our knowledge, the synergistic action of both bioactive components is
yet to be explored as an attractive topic. Before going ahead with a cost-demanding clinical
translation of bromelain- or nisin-containing materials developed in a lab, much remains
to be learned, particularly about different variants and combinations with conventional
antibiotics and cancer drugs, their complex mechanism of action on the human body
and pathogens, consequences of long-term clinical trials and choosing suitable optimized
immobilization method with high immobilization yield and secured activity/efficiency.
As said, most data for bromelain and nisin demonstrated an in vitro efficiency, and the
extrapolation of in vitro to in vivo outcome is not that straightforward, yet, same present
a solid background, important in future translation in a clinic. With all this, it will be
possible to offer novel, safe and efficient natural therapeutic solutions to our society without
significant risks to developing resistance in pathogenic organisms and cells.
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Abbreviations

AMP antimicrobial peptide
APTES (3-aminopropyl)-triethoxysilane
Asp asparagine
BBT bromelain-based treatment
CDTA cyclohexane-1,2-diaminoetetraacetic acid
COX-2 prostaglandin-endoperoxide synthase 2
CP cysteine proteinase
DETA diethylenetriamine
Dha dehydroalanine
Dhb dehydrobutyrine
ECM extracellular matrix
EDC 1-ethyl-(3-dimethylaminopropyl) carbodiimide
EDTA ethylenediaminetetraacetic acid
EMA European Medicines Agency
GA glutaraldehyde
HEDTA hydroxyethyl ethylenediamine triacetic acid
IL interleukin
Lan lanthionine
LD50 lethal dose
Leu leucine
Km Michaelis–Menten constant
MBC minimum bactericidal concentration
MeLan β-methyl lanthionine
MIC minimum inhibitory concentration
MRSA methicillin-resistant Staphylococcus aureus
MSN mesoporous silica nanoparticles
NCBI National Center for Biotechnology Information
NF-κB Nuclear factor kappa B
NHS N-hydroxysuccinimide
PC phosphatidylcholine
PEG poly(ethylene glycol)
PEHA pentaethylenehexamine
PET polyethylene terephthalate
PGE-2 prostaglandin E2
PGI-2 prostaglandin I2
pI isoelectric point
PS polystyrene
SEM scanning electron microscopy
SPRA self-assembly PEGylation retaining activity
TEPA tetraethylenepentamine
TETA triethylenetetramine
TNF tumour necrosis factor
TXA-2 thromboxane A2
Vmax maximum reaction velocity
Val valine
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