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Abstract: Naturally inspired biomaterials such as calcium carbonate, produced in biological systems
under specific conditions, exhibit superior properties that are difficult to reproduce in a laboratory.
The emergence of microfluidic technologies provides an effective approach for the synthesis of such
materials, which increases the interest of researchers in the creation and investigation of crystallization
processes. Besides accurate tuning of the synthesis parameters, microfluidic technologies also enable
an analysis of the process in situ with a range of methods. Understanding the mechanisms behind the
microfluidic biomineralization processes could open a venue for new strategies in the development
of advanced materials. In this review, we summarize recent advances in microfluidic synthesis and
analysis of CaCO3-based bioinspired nano- and microparticles as well as core-shell structures on its
basis. Particular attention is given to the application of calcium carbonate particles for drug delivery.

Keywords: microfluidic chip; calcium carbonate; vaterite; core-shell structures

1. Introduction

Recent years have shown considerable progress in the development of approaches for
the synthesis of materials for drug delivery systems. Moreover, the demands of biomedicine
have led to a current tendency towards the fabrication of drug delivery carriers with a
complex structure. Much development has been driven by a need to perform synthesis of
highly uniform and homogeneous nano- and microcarriers. Although notable progress
has been made on the synthesis of such materials, the real biomedical challenges require a
further breakthrough in the synthesis of complex and multicomponent carriers with high
reproducibility and homogeneity to perform efficient therapy even on a single-cell level.
One of the promising ways of overcoming these limitations is the application of microfluidic
technology, which opens new routes for the synthesis of advanced nanostructured materials.
The emerging interdisciplinary technologies based on microfluidics are at the forefront
of the lab-on-chip approach as a unique way to produce nano- and microparticles. The
microfluidic technique offers a variety of advanced features, such as high reproducibility,
low batch-to-batch variation, fine control over particle characteristics, and an easy way
to scale-up. Considerable progress in the synthesis of such systems has been achieved
at the intersection of modern technologies and biomimetic approaches. The microfluidic
approach has contributed greatly to the synthesis of a range of drug carriers, from natural
macromolecules, synthetic polymers, inorganic, and hybrid nano- and microparticles [1–4].
Calcium carbonate (CaCO3) is among the potential materials for biomedicine that have
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attracted considerable attention in the context of microfluidics synthesis and study. It is one
of the most widespread minerals that exhibit a range of highly important properties in vast
fields, from bio-geochemical technologies to nanomedicine. Calcium carbonate is applied
in many areas, including global CO2 exchange and industrial water treatment energy
storage, and is employed as a core molecule in the formation of the shells and skeletons of
organisms. Calcium carbonate has been employed in the production of cement, glasses,
paints, plastics, rubbers, ceramics, and steel. It is also a key material in oil refining and iron
ore purification. Although CaCO3 has been known for hundreds of years, one remarkable
application was found recently and has been extensively developed over the past few
decades. Biomedicine has employed calcium carbonate for a different purpose due to its
unique mesoporous structure and stiffness accompanied by good biocompatibility [5,6].

Calcium carbonate exhibits complex polymorphic behavior, and each one of its poly-
morphic modifications has a variety of features that govern the application field. The
typical crystallization pathway of calcium carbonate in the biomineralization procedure
begins with the infiltration of ions from the surrounding medium by a matrix, followed
by the formation of solid precursors composed of amorphous calcium carbonate. In the
next step, precursor particles undergo a crystallization process resulting in polymorphic
modifications in dependence on the external factors [7–12]. Calcium carbonate represents a
promising drug delivery carrier due to its high porosity, loading capability, and ability to
template formation of the polymeric shells. One of the most promising polymorph modifi-
cations of calcium carbonate is polycrystalline vaterite in the form of spherical mesoporous
particles [13]. Vaterite particles of micron and submicron scale range have demonstrated a
high drug loading capacity, biocompatibility, and long-term and safe storage of the loaded
drugs [14,15]. In general, the synthesis of CaCO3 is a simple procedure of mixing salt
solutions under agitation followed by aging, and it results in particles of 0.3 to 10 µm in di-
ameter with a porosity of about 40% [16]. However, the reproducibility of the crystallization
and homogeneity of the particles remain challenging, as their formation depends on many
factors which can hardly be controlled [17]. At the same time, biomedical applications
generally require particles of sub-micrometer size, for example, for active coating [18] or
drug delivery [19], since this size ensures efficient penetration of the particles into tissues
and internalization of the particles by cells. The loading of calcium carbonate particles
with bioactive substances is mostly based on the co-precipitation procedure, which enables
loading of low-molecular-weight compounds, polymers, and even nanoparticles with an
average efficiency of about 2–4 wt.%. In general, loading efficacy can be tuned by control-
ling CaCO3 porosity, which has been shown to depend on the temperature of crystallization
under supersaturated conditions, since the spherulitic crystal growth is accompanied by
Ostwald ripening of the nanocrystallites [20]. Using this method, calcium carbonate has
been loaded with a variety of functional species, including magnetite and silver nanopar-
ticles, for implementing functions of targeting and probing by surface-enhance Raman
signals [21]. Besides, recent progress in the development of CaCO3-based microcarriers has
allowed for the design of systems for transdermal delivery of antimycotics [22], delivery
of antimicrobials [23], multifunctional proteins [24], and enzymes [25]. Along with the
strategies for loading the vaterite particles with a functional cargo, a trend in the synthesis
of the core-shell structures is of great interest. A variety of CaCO3-templated microcarriers
have been developed, including those using calcium carbonate as a functional core [26]
or hollow capsules with the core to be removed [27–29]. However, further prospects for
the application of calcium carbonate in the biomedical field are limited by technological
factors: first of all, by the low reproducibility of the crystallization (size, shape, disper-
sity, polymorph composition, and porosity of the product). Additionally, the synthesis of
nanosized carriers, which are highly demanded in biomedical applications, has turned out
to be a significant challenge. Understanding the mechanisms that drive the formation of
CaCO3 promises to result in the ability to produce tailor-made particles suitable for various
biomedical applications. From our point of view, the latest progress in microfluidic devices
opens up the possibility not only of analysis of calcium carbonate formation in situ, but
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also of a customized synthesis in a highly controlled manner from the beginning to the
drug-loaded carrier with appropriate surface modification. Here, we review the results
on microfluidic synthesis and analysis of the calcium carbonate particles themselves and
core-shell structures on their base.

2. Microfluidic CaCO3 Synthesis

The first simplest microfluidic techniques for the synthesis of calcium carbonate parti-
cles employed continuous-flow mixing of reagents in T-shaped channels (Figure 1) [30,31].
Although polymorphic modifications of the resulting particles were limited by calcite with
poor homogeneity, these studies demonstrated the possibility in principle for easy crystal
formation within the channel. The main problem with this approach was the uncontrollable
time of the reaction associated with continuous-flow reactors, which led to broad size
distributions of the resulting crystals and calcite polymorph modification.
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2− side of the stream; and (D) uniform distribution of crystals over
that laminar flow. Image reproduced from Huabing Yin et al., with permission from Anal. Chem. [30].

More advanced microfluidic techniques for the synthesis of CaCO3 are based on
laminar Y-shaped channels, which provide a mixing of the salts followed by aging, with
ions movement governed only by diffusion (Figure 2) [32]. This effect is referred mainly to
the laminar flow and low Reynolds number, which are the main parameters of microfluidic
devices that determine chemical processes in the channel.
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Simulation of the fluid dynamics revealed the supersaturation ratio in the CO3
2− side

of the channel to be larger in comparison with Ca2+ ions due to deference in diffusion
coefficients. This results in the tendency of CaCO3 formation at the CO3

2− side [32].
Evidently, this effect prevails at low rates of flow, while at high rates the crystal formation
mainly occurs on the contact interface.
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The crystalline phase, in the form of either calcite or aragonite, forms as a result of
dissolution–recrystallization of the amorphous calcium carbonate that acts as a transient
precursor [33,34]. Investigation of the process in the microfluidic channel revealed an
important dependence of polymorph CaCO3 modifications on the concentration of the
salts. In particular, the concentrations of reactants above 6 mM corresponded to the critical
supersaturation and resulted in the rapid crystallization of calcite, while concentrations
below 6 mM led to the formation of metastable amorphous calcium carbonate followed
by the formation of crystalline vaterite-CaCO3 after a period of crystallization induction
time [32]. Synthesis of aragonite modification was achieved by the application of a continu-
ous microfluidic system with a complex structure of a “Christmas tree”-like configuration,
which provides a gradient of reagent concentrations [35]. Laminar streams of solutions
containing calcium and magnesium ions flowed in the channel with different concentration
gradients, and it was found that the initial crystallization time increased exponentially and
that the crystal density decreased with increasing concentration of Mg2+ ions. This result
indicates the importance of additives in controlling the CaCO3 formation process. All pre-
cipitated particles were of a snowman-like or spherical shape; they were later transformed
into a spinose sphere-shaped crystal, which was their final shape in this study.

Detailed investigation of the amorphous phase formation revealed additional metastable
amorphous modifications. After mixing the reactant solutions, the precipitation of the initial
branched aggregate of amorphous calcium carbonate (ACC) (I) was first observed (Figure 3).
This was followed by the formation of a more ordered whisker-like ACC (II) phase based on
the originally branched aggregates as a result of their dehydration and aggregation [36]. At
the next stage, the complex behavior of ACC (II) occured, leading either to its gradual trans-
formation into spherical crystallites and the subsequent vaterite formation through spherulitic
growth, or to rhombohedral calcite as a result of the well-known dissolution–recrystallization
process. In addition to the obvious dependence of these processes on the concentration of
the reagents, the recrystallization path was also found to be pH-dependent [37] and size-
dependent [38,39].
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The amount of water contained in the particles is another important characteristic
of amorphous calcium carbonate, which determines the evolution of its structure and
composition in the early stages of crystallization in microfluidic devices [33,40]. Huachuan
Du et al. employed a microfluidic spray-dryer device to reveal a strong correlation between



Pharmaceutics 2022, 14, 139 5 of 14

the amount of mobile water contained in the ACC particles and the formation time, which
means an increase in the amount of mobile water with increasing particle size. This effect
has been demonstrated using formation times from 100 ms to 10 s with corresponding
particles sizes of 30 nm to 130 nm [41]. In particular, an increase in the content of mobile
water in calcium carbonate particles with a diameter of 130 nm by 30%, in comparison with
particles with a diameter of 30 nm, leads to a significantly reduced thermal stability with
respect to solid crystallization.

Biomineralization has potential for various engineering applications, e.g., improving
soil strength, reducing the hydraulic conductivity of soils, immobilizing groundwater
contaminants, enhancing oil recovery, increasing storage security of CO2, and fugitive dust
control [42]. Biomineralization can be stimulated through microbially or enzymatically
induced carbonate precipitation by stimulating urea hydrolysis in presence of dissolved
calcium ions [42–44]. For this study, a special microfluidic system has been developed.
Microfluidic CaCO3 precipitation was studied in the porous medium (soil particles) con-
taining bacterial cells and a cementation solution (urea and calcium chloride) [43,44]. The
overall microbial-induced CaCO3 precipitation processes from the beginning up to 12 h
after the mixing of the bacterial suspension and the cementation solution can be divided
into the following three main stages: (1) bacterial aggregation, which occured immediately
after the mixing of the bacterial suspension with the cementation solution; (2) growth of
irregularly shaped CaCO3 precipitates (0–1 h); and (3) dissolution of irregularly shaped
CaCO3 precipitates (1–2 h) at the expense of the growth and formation of regularly shaped
CaCO3 crystals (1–12 h). In general, the observable process is consistent with classical
nucleation and growth theory and with Ostwald’s step law. There is an assumption that
bacterial cell walls are negatively charged and can adsorb calcium ions from the environ-
ment, and that, therefore, once the bacterial cells hydrolyze urea and produce carbonate
ions, they precipitate with the calcium cations attached to the bacterial cell walls. In this
way, bacterial cells have been shown to serve as CaCO3 nucleation centers, so that CaCO3
crystals precipitate and continue growing around bacterial aggregates [44]. The irregularly
shaped CaCO3 precipitates continued growing for approximately 1 h, and after that, the
irregularly shaped CaCO3 that was smaller than a certain critical size started dissolving
and the bacterial cells became free to move again. Between 2 and 12 h, all of the existing
CaCO3 precipitates were formed as regularly shaped crystals. It was established that an
injection time interval of 3–5 h is beneficial for the production of 5–10 µm particles, while
at a longer injection interval (23–25 h) the crystals were larger—10–80 µm. Unfortunately,
there is no information about the polymorphic composition CaCO3 and recrystallization
during the dissolution–precipitation process, but the shapes of the crystals were found to
be either spherical or prismatic, which might represent vaterite or calcite, respectively [43].
Importantly, it is not only the polymorphic modification that affects the loading efficiency
of CaCO3; the shape and morphology of amorphous calcium carbonate also affect both the
loading capacity and the activity of the entrapped therapeutic [45]. In particular, elliptical
particles exhibit the highest loading efficiency in comparison with the spherical carriers.
The size of the particles was also found to affect the encapsulation capability: smaller parti-
cles exhibited higher loading efficiency in comparison with larger ones. Star-like particles
were found to be advantageous due to the large surface area, which can be employed for
adsorbing large molecules onto the surface [46]. In this way, star-like particles had only
a slightly higher loading capacity in comparison to spherical ones but exhibited a signifi-
cantly higher activity of the encapsulated therapeutics [45]. Furthermore, the therapeutic
activity increased with an increase in the loading capacity of the CaCO3 particles.

It is known that a small number of additives can significantly inhibit both the nu-
cleation and the growth of calcium carbonate crystals; however, the presence of organic
compounds in the media can inhibit growth, while favoring nucleation [42]. Proteins
(enzymes) may also act as chelating compounds, lowering the concentration of free calcium
ions available for precipitation. The crystal size typically demonstrates an exponential
distribution, which gradually changes with multiple cycles of treatment (10 times of in-
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filtration with a reactive solution) in a patterned microfluidic device. At the first cycle of
treatment, the range of crystal size was relatively narrow (15–105 µm). Upon subsequent
flushes of the reactant solutions to the microfluidic system, variation in crystal size became
wider, reaching 20–455 µm at the ninth cycle of treatment. Besides an increase in the size,
the number of crystals also increased with multiple cycles of treatment, which implies
that nucleation of new crystals and growth of existing minerals took place simultaneously
throughout each cycle. The number of crystals within the range of 20–60 µm increased
most significantly from the first cycle to the fifth cycle, which confirms that the nucleation
of new crystals is most dominant within the first five cycles of treatment. The volume of
crystals gradually increased until about 14 h, after which time no further significant change
in crystal volume was observed [42]. Although the naturally driven system excites interest,
the results presented are poor in terms of homogeneity and reproducibility.

These results mean that calcium carbonate exhibits complex behavior from the nu-
cleation to the crystalline phase and depends on many factors, some of which are inter-
dependent. However, naturally derived CaCO3 exhibits superior properties desired in
artificial synthesis, in this regard mimicking natural presses, and is of high interest in the
synthesis of calcium carbonate particles. One of the natural conditions is the formation
of the particles in confinement, represented either by a confined volume in a polymer
matrix or by lipid bilayer vesicles. In biomineralization processes, amorphous particles
act as precursor particles that are encapsulated within the vesicles, stabilizing and trans-
porting them to the site of crystallization [7,9,47]. Confined conditions also ensure the
accumulation of high concentrations of calcium ions without cytotoxic effects. In this way,
particles of high reproducibility and homogeneity can be formed in such a way as to have
properties unobtainable in other ways, such as curved surfaces [7]. A range of works
have demonstrated efficiency of methods based on application of picoliter droplets [48],
micropores [49], and polymersomes in the synthesis [50]. These studies show artificial
confinements to efficiently guide and control the calcium carbonate crystallization process
and polymorphism.

In this regard, biomineralization-mimicking procedures using droplet-based microflu-
idics were developed to produce amorphous calcium carbonate particles within fluid-phase
unilamellar vesicles. In this case, the vesicles frame a confined volume for amorphous par-
ticle growth limited by the size of the vesicle, which can be varied from tens and hundreds
of nanometers to tens of micrometers. To address these biomimetic ideas, Hannes Witt et al.
developed a microfluidic system for the synthesis and analysis of calcium carbonate inside
giant vesicles (Figure 4). This technique allowed reaching high concentrations of CaCl2
(100 mM), which cannot be easily achieved, and demonstrated calcium carbonate particles
formed in the confinement to be in conformal contact with the lipid bilayer. Thus, strong
interaction and colocalization between the particles and the membrane were suggested [51].
Detailed analysis of the CaCO3 crystals’ nucleation and growth in the confinement was
performed by Jack Cavanaugh et al. using microfluidic polydimethylsiloxane (PDMS)
chambers and liposomes, and revealed a steady-state nucleation rate of 1.2 cm−3·s for the
crystal nucleation rate [52].

Another possibility for avoiding the limitations in the artificial production of CaCO3
is the adoption of a segmented flow regime employing reagents encapsulated within
a large number of small identical picoliter droplets that move at a constant linear rate.
These droplets represent artificial confinements that can be obtained using microfluidic
water-in-oil emulsions, which provide nucleation and growth of CaCO3 within droplets
(Figure 5) [53,54]. For example, CaCO3 nucleation kinetics was studied during 10,000 si-
multaneous reactions in identical droplets within a multilayer microfluidic chip [54]. This
study revealed the nucleation to follow a double exponential function and to be 20 times in
magnitude slower in droplets in comparison with bulk conditions. In contrast to droplet-
based systems and vesicles, this approach does not require the application of surfactants,
and allows the implementation of long-term processes such as slow nucleation.
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Figure 5. (a) Schematic of the Y-shaped microfluidic system used for the segmented flow synthesis
of calcium carbonate. Droplets are generated by an FC-40 oil flow from the additional channels.
(b) Bright-field Image of droplets. (c) Image of aqueous droplets of calcium carbonate. Image
reproduced from Yashina, A. et al., with permission from Biomicrofluidics [53].

Polymorph compositions of the resulting calcium carbonate were shown to be strongly
dependent on the concentration of salts in the droplets: a concentration of 4 mM reagents in
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250 pL droplets uniquely resulted in the formation of calcite, while 8 mM reagents enabled
the formation of vaterite and the reaction in bulk conditions always resulted in the mixture
of polymorphs in a different ratio [53].

The segmented-flow approach allowed the application of synchrotron X-ray tech-
niques to study CaCO3 crystallization processes (Figure 6) [55]. M.A. Levenstein et al.
described a versatile and re-usable microfluidic platform to study crystallization processes
using synchrotron X-ray techniques, and their reported results demonstrated bioactive
glass and NX illite to be effective nucleating agents for the synthesis of calcite, thereby
offering a tool for control over the reaction within droplets in the channel. The droplet-
based approach in segmented-flow conditions suggests minimization of the influence of
impurities on the process of nucleation and crystallization, which prevail in a bulk solution.
Droplet microfluidic-coupled X-ray diffraction enables the collection of time-resolved, serial
diffraction patterns from a stream of flowing droplets containing growing crystals.
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Figure 6. (a) Schematic image of the experimental set-up with an X-ray beam held at the fixed position.
(b) Images of 500 consecutive diffraction patterns of the droplets during the calcite particles formation.
(c) Diagram of the 2d patterns processing and analysis; (i) frames containing oil are discarded;
(ii) background are subtracted from the selected frames; (iii) processed frames are combined to obtain
a composite diffraction pattern; (iv,v) the composite pattern is integrated to obtain the diffraction
profile. Image reproduced from Levenstein, M. A. et al., with permission from Adv. Funct. Mater. [55].

An interesting approach was reported by Seung Goo Lee et al., who developed a
system with dynamically tunable geometry, porosity, and wettability. They employed
a photolithographic technique accompanied by site-selective mineralization that allows
mimicking of real carbonate reservoir properties throughout heterogeneous geometries [56].
Specifically, the authors controlled CaCO3 growth and dynamically adjusted the structure’s
geometry by flowing Ca2+ and CO3

2− ions in rich/supersaturated solutions. Once the initial
structure of CaCO3 particles is formed, the geochemistry of their surface can be altered by
the flow of various fluids, including oil, water, CO2, and acids. Duy Le-Anh et al. showed
an improved oil recovery from CaCO3 with the help of a newly developed microfluidic
chip containing a 3D-packed bed of calcite particles [57]. They demonstrated no significant
dependence of calcium carbonate loading with oil on the capillary number. Nevertheless,
a chemical modification of the pore space via adsorption of water-extracted crude oil
components led to significantly higher loading values, which indicates a good potential
for using packed beds on a chip as an efficient screening tool for the optimization and
development of different oil recovery methods. It should be noted that the porosity of
calcium carbonate microparticles is an important parameter in biomedical applications, as
it affects the encapsulation processes of biomolecules [58,59] and nanoparticles [60], and
the porosity affects the processes of core-shell particle fabrication [61,62].
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The small volume and the identity of the droplets allow for synthesis of the particles
with a high reproducibility and homogeneity, as well as for carrying out the crystallization
without convection and contamination, which are typical for the processes in bulk condi-
tions. Combined with several analytical methods, the droplet-based approach has been
successfully employed to synthesize high-quality CaCO3 particles with precise control over
the nucleation kinetics, polymorphism, and particle properties.

3. CaCO3-Based Core-Shell Structures

Calcium carbonate has several properties that set it apart from many other minerals.
Besides high biocompatibility, CaCO3 has a mesoporous structure capable of loading with
different cargo. In addition to the surface modification of CaCO3 by different polymers,
CaCO3 demonstrates unique results for biomedical applications, e.g., in bone tissue engi-
neering. For this, P. Xu et al. synthesized CaCO3/gelatine methacrylate microspheres in a
one-step in situ process using a non-planar flow-focusing microfluidic device, and demon-
strated that human umbilical vein endothelial cells and immortalized mouse embryonic
fibroblasts can easily attach and adhere to the surface of these microspheres and maintain
high viability [63].

The in situ gelation process in combination with microfluidic technology offers the
production of highly homogeneous microcarriers with precisely tunable size and structure,
and allows for control over the crosslinking process. Usually, alginate gel can be cross-
linked by two main approaches, the first of which suggests the application of divalent
cations such as Ca2+, Sr2+, and Ba2+, or by covalent chemical reactions [64]. Besides, alginate
is a thermally stable polymer that undergoes a rapid gelation process and is able to form
hydrogels at room temperature [65]. However, traditional methods to produce alginate
microstructures most commonly lead to a high level of polydispersity, which significantly
limits potential applications in biomedicine. It should be noted that carriers of smaller size
possess a larger surface-area-to-mass ratio and, as a result, exhibit higher encapsulation
efficiency [66,67].

A promising application of CaCO3 was found in combination with sodium alginate,
which undergoes gelation under the influence of Ca2+ ions. In this regard, a variety of
configurations were investigated for employing calcium carbonate as both a functional
core and a donor of Ca2+ ions to induce the gelation process. Monodispersed spherical
calcium alginate microgels with uniform and controllable sizes from 40 to 700 µm were
prepared using a microfluidics technique [68]. In comparison with conventional external
crosslinking, this method can avoid the deformation of microgels. Alginate hydrogels are
the promising material for the production of microcarriers for delivery systems, which en-
able encapsulation of both proteins and substances of low molecular weight, accompanied
by the possibility of controlled release. Alginate microgel exhibits excellent biocompati-
bility, biodegradability, and mild gelation process. Furthermore, such spherical calcium
alginate microgels can improve their movement and packing state in a microchannel, which
is beneficial for their use as embolic materials for interventional therapy.

Application of CaCO3 as a Ca2+ depo was employed to produce spherical and bullet-
like alginate microcapsules with a core-shell structure by the deformation of double-
emulsion droplets [69]. In this regard, the water phase was filled with the mixture of
alginate and calcium carbonate particles followed by treatment with acetic acid, which led
to the burst release of Ca2+ ions and the gelation of alginate (Figure 7).

Spontaneous release from these spherical and bullet-like capsules was tested using the
antioxidant food additive α-tocopherol. The results show that the bullet-like microcapsules
with a single inner core exhibit a faster release rate than do spherical microcapsules in a
phosphate buffer solution. Remarkably, the shape of the shell and the number of cores
were shown to affect the kinetics of the release. A thinner local alginate shell and a high
surface area are considered to be among the reasons for this phenomenon, based on the
investigations on the release mechanism of alginate microcapsules [70]. These point to
the release from alginate shell as being driven by three processes: burst release, swelling
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and erosion release, and diffusion release. Nevertheless, carrier erosion is considered the
predominant mechanism of drug release from CaCO3-based alginate microcapsules [69].

Pharmaceutics 2022, 13, x FOR PEER REVIEW 10 of 15 
 

 

CaCO3 demonstrates unique results for biomedical applications, e.g., in bone tissue engi-
neering. For this, P. Xu et al. synthesized CaCO3/gelatine methacrylate microspheres in a 
one-step in situ process using a non-planar flow-focusing microfluidic device, and 
demonstrated that human umbilical vein endothelial cells and immortalized mouse em-
bryonic fibroblasts can easily attach and adhere to the surface of these microspheres and 
maintain high viability [63]. 

The in situ gelation process in combination with microfluidic technology offers the 
production of highly homogeneous microcarriers with precisely tunable size and struc-
ture, and allows for control over the crosslinking process. Usually, alginate gel can be 
cross-linked by two main approaches, the first of which suggests the application of diva-
lent cations such as Ca2+, Sr2+, and Ba2+, or by covalent chemical reactions [64]. Besides, 
alginate is a thermally stable polymer that undergoes a rapid gelation process and is able 
to form hydrogels at room temperature [65]. However, traditional methods to produce 
alginate microstructures most commonly lead to a high level of polydispersity, which sig-
nificantly limits potential applications in biomedicine. It should be noted that carriers of 
smaller size possess a larger surface-area-to-mass ratio and, as a result, exhibit higher en-
capsulation efficiency [66,67]. 

A promising application of CaCO3 was found in combination with sodium alginate, 
which undergoes gelation under the influence of Ca2+ ions. In this regard, a variety of 
configurations were investigated for employing calcium carbonate as both a functional 
core and a donor of Ca2+ ions to induce the gelation process. Monodispersed spherical 
calcium alginate microgels with uniform and controllable sizes from 40 to 700 μm were 
prepared using a microfluidics technique [68]. In comparison with conventional external 
crosslinking, this method can avoid the deformation of microgels. Alginate hydrogels are 
the promising material for the production of microcarriers for delivery systems, which 
enable encapsulation of both proteins and substances of low molecular weight, accompa-
nied by the possibility of controlled release. Alginate microgel exhibits excellent biocom-
patibility, biodegradability, and mild gelation process. Furthermore, such spherical cal-
cium alginate microgels can improve their movement and packing state in a microchan-
nel, which is beneficial for their use as embolic materials for interventional therapy. 

Application of CaCO3 as a Ca2+ depo was employed to produce spherical and bullet-
like alginate microcapsules with a core-shell structure by the deformation of double-emul-
sion droplets [69]. In this regard, the water phase was filled with the mixture of alginate 
and calcium carbonate particles followed by treatment with acetic acid, which led to the 
burst release of Ca2+ ions and the gelation of alginate (Figure 7). 

 
Figure 7. Schematic picture of the Ca-alginate core-shell microcapsule formation by means of inter-
nal gelation in monodisperse double emulsions. Oil/Water/Oil droplet templates were obtained via 

Figure 7. Schematic picture of the Ca-alginate core-shell microcapsule formation by means of internal
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the shearing force of the outer oil phase. Image reproduced from Huang, L. et al., with permission
from Colloids Surf. A Physicochem. Eng. Asp. [69].

The shape of the particles is an important parameter in drug delivery applications, as
it was shown to affect intracellular uptake [71]. The application of anisotropic particles
as a template in the synthesis of capsules enables the obtaining of capsules characterized
by anisotropic properties [72], which is essential in a range of applications [73], such as
oxygen delivery [74], shape-controlled cellular uptake [75,76], or flow dynamics [77].

The authors of another study improved the microfluidic approach to increase the
barrier properties of the CaCO3-templated alginate shells by coating the alginate shells
with a layer of oppositely charged polymer (polyethyleneimine and chitosan), which can
act as a diffusion barrier [78]. This study showed an encapsulation efficiency of up to
90%, although the spherical shape of the alginate shells was achieved by finishing the
formation of the shells in the bulk conditions. A recent study has shown the synthesis of the
monodisperse alginate shells by templating the formation with CaCO3 particles in confined
volume, following the Ca2+-assisted crosslinking procedure described above [79]. Low
pressure (400 mbar) and correct surfactant concentration were shown to be crucial for the
synthesis of monodisperse core-shell structures with a small diameter and high stability.

4. Outlook

A number of chemical approaches for CaCO3 particle synthesis and surface modifica-
tion have been developed in recent decades. While it might be challenging to predict the
future developments in CaCO3 nano- and microparticles synthesis, the general trend in
state-of-the-art science and technologies is evident. Artificial intelligence (AI) approaches
are the next round in developing the solution for practical problems in science and tech-
nologies, including the development of new materials. Such technologies go far beyond
the borders of computer science and provide new insights to distant areas of expertise with
chemical applications. One of the attractive applications is an automated material-synthesis
laboratory driven by AI. The introduction of high-level laboratory automation and the AI
approaches to microfluidics will determine the future of the synthesis of new materials
and the optimization of known reactions [80]. We believe that the combination of in situ
synchrotron techniques [55] with AI synthesis in microfluidic systems will determine the
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development of CaCO3 nano- and microparticles synthesis, surface modification, and even
drug delivery applications.

5. Conclusions

In conclusion, microfluidics offers a wide variety of tools and new technological
opportunities for implementing physical and chemical processes in a highly controlled
manner accompanied by in situ analysis of the reactions. Several studies have shown
the possibility in principle of the microfluidic synthesis of calcium carbonate particles
to enable control over a range of properties such as size, shape, porosity, polymorphic
modification, and others, which are crucial for biomedical applications. Great progress
has been achieved by the application of biomimetic approaches in microfluidic devices,
such as synthesis in confinement and, in some cases, synthesis mediated by an organic
matrix or by modulation of the concentration of the reactants in time. Confinements
represented by either vesicles or water-in-oil droplets suggest minimization of the influence
of impurities on the nucleation and crystallization process that dominates in bulk conditions.
The small volume and identity of the droplets allow for the synthesis of CaCO3 particles
with high reproducibility and homogeneity, as well as for carrying out crystallization
without any contamination. Microfluidic systems are also beginning to be explored as
platforms for the development of more complex core-shell structures, where CaCO3 often
serves as a core material. Indeed, microfluidic devices allow for the effective generation of
alginate microparticles and microcapsules while controlling the morphology and chemical
properties to improve the physical properties, solubility, and biocompatibility of alginate,
accompanied by the ability to store and deliver drugs. However, progress in the synthesis
of core-shell structures is still far from ideal. In general, the microfluidic approach enables
precise control over the shape of CaCO3 particles and its morphology, which in turn affects
the activity of encapsulated therapeutics.

Microfluidic synthesis of functional core-shell structures, including those based on
CaCO3, is a poorly developed area that has prospects for further progress. The first works
on the microfluidic synthesis of calcium carbonate were published more than 10 years
ago; however, templating of functional core-shell structures has been shown only just
recently. Most of the studies have been conducted from the fundamental point of view
either of estimating the processes of CaCO3 formation or of showing the possibilities in
principle of its templating. However, these studies reveal crucial parameters that offer new
knowledge and possibilities for improving current techniques, and open up a venue for
further progress in the development of drug delivery systems.
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