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Abstract: Tumor-homing peptides (THPs) are small peptides that can recognize and bind cancer 

cells specifically. To gain a better understanding of THPs’ functional mechanisms, the accurate iden-

tification and characterization of THPs is required. Although some computational methods for in 

silico THP identification have been proposed, a major drawback is their lack of model interpreta-

bility. In this study, we propose a new, simple and easily interpretable computational approach 

(called SCMTHP) for identifying and analyzing tumor-homing activities of peptides via the use of 

a scoring card method (SCM). To improve the predictability and interpretability of our predictor, 

we generated propensity scores of 20 amino acids as THPs. Finally, informative physicochemical 

properties were used for providing insights on characteristics giving rise to the bioactivity of THPs 

via the use of SCMTHP-derived propensity scores. Benchmarking experiments from independent 

test indicated that SCMTHP could achieve comparable performance to state-of-the-art method with 

accuracies of 0.827 and 0.798, respectively, when evaluated on two benchmark datasets consisting 

of Main and Small datasets. Furthermore, SCMTHP was found to outperform several well-known 

machine learning-based classifiers (e.g., decision tree, k-nearest neighbor, multi-layer perceptron, 

naive Bayes and partial least squares regression) as indicated by both 10-fold cross-validation and 

independent tests. Finally, the SCMTHP web server was established and made freely available 

online. SCMTHP is expected to be a useful tool for rapid and accurate identification of THPs and 

for providing better understanding on THP biophysical and biochemical properties. 

Keywords: tumor-homing peptide; therapeutic peptide; scoring card method; propensity score;  

machine learning; bioinformatics 

 

1. Introduction 

Tumor-homing peptides (THPs) are short peptides ranging in size from 3 to 30 resi-

dues that specifically target tumor cells [1]. THPs may be used in the near future for tumor 

diagnostic and therapeutic applications due to their low antigenicity, lack of significant 

cytotoxicity to normal cells, rapid incorporation into target cells as well as their ease of 
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modification and redesign [2]. THPs’ motifs frequently contain RGD (Arg-Gly-Asp) and 

NGR (Asn-Gly-Arg), which are known to favor receptor-mediated interaction in cancer 

cell recognition with high specificity and low cross-reactivity [3,4]. Furthermore, the RGD 

function is compatible with KGD [5], RYD [6] and RHDS [7] motifs in integrin binding 

sites [8]. Hundreds of THPs could identify tumors in vivo and deliver anticancer drugs to 

the tumor site, thereby resulting in cancer treatment and diagnosis [9]. THPs were devel-

oped as a targeted vehicle for gene therapy of solid tumors such as the sodium-iodide 

symporter (NIS) [10]. So far, several THPs have been experimentally tested in clinical tri-

als. For example, in a phase I/II trial testing for safety and immunogenicity, a multipeptide 

vaccine (IMA950) formulated the nine antigens by peptide elution from the surface of gli-

oblastoma [11,12]. THPs’ experimental characterization, on the other hand, is still a time-

consuming and labor-intensive endeavor. As a result, approaches based on machine learn-

ing (ML) that can accurately identify THPs based on primary sequence information would 

be beneficial. Furthermore, these methods may reveal important information about THPs’ 

functional mechanisms. 

To the best of our knowledge, only two computational methods in the field have been 

made (TumorHPD [13] and THPep [14]). These two approaches have been developed to 

identify THPs solely based on their sequence information (e.g., amino acid composition 

(AAC) and dipeptide composition (DPC)). Sharma et al. [13] proposed the first THP pre-

dictor (TumorHPD) in 2013, which was created using a support vector machine (SVM) 

algorithm in conjunction with AAC, DPC and binary profile patterns (BPP). Furthermore, 

in this research work Sharma et al. shared two benchmark datasets namely Main and 

Small datasets. Our group proposed the second THP predictor (referred to as the THPep 

[14]) by combining the use of the random forest (RF) algorithm with three popular se-

quence-based feature descriptors (e.g., AAC, DPC and pseudo amino acid composition 

(PAAC)). THPep was found to improve the overall performance in terms of accuracy 

(ACC), sensitivity (Sn), Matthew’s Correlation Coefficient (MCC) and area under the re-

ceiver-operating curves (AUC) when compared to TumorHPD (i.e., as measured by the 

cross-validation test on the two benchmark datasets) [13]. Although the performance of 

these two existing THP predictors was generally good, there was a strong need for new 

approaches that can yield good prediction performance while also providing biologists 

mechanistic interpretation of tumor homing activities of peptides that can be used for 

guiding the design of robust peptides. 

To address the aforementioned issues, we have developed SCMTHP as a novel, sim-

ple and interpretable method for in silico identification and characterization of peptide 

tumor homing activities using primary sequence information. Figure 1 summarizes the 

SCMTHP schematic framework for THP identification and characterization. Particularly, 

the major contributions of SCMTHP can be summarized as follows. 

1. To the best of our knowledge, SCMTHP is the first propensity score-based predictor 

that is employed to create and optimize several new propensity scores of 20 amino 

acids in becoming THPs via the scoring card method (SCM) [15–17]. In the meantime, 

a single feature descriptor (i.e., AAC) and a single threshold value were implemented 

in the SCMTHP predictor, and it was found that the approach could easily distin-

guish THPs from non-THPs. 

2. Extensive benchmarking experiments show that SCMTHP could outperforms almost 

all ML-based predictors (e.g., decision tree (DT), k-nearest neighbor (KNN), multi-

layer perceptron (MLP), naive Bayes (NB) and partial least squares regression (PLS)) 

as well as state-of-the-art THP predictors in terms of accuracy, cost-effectiveness and 

simplicity. 

3. In order to characterize tumor-homing activities of peptides, SCMTHP-derived pro-

pensity scores of 20 amino acids were employed to determine informative physico-

chemical properties (PCPs) of amino acids as provided in the AAIndex database [18]. 
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The importance of Cys residue in stabilization and the preference for high extinction 

coefficients are revealed by an analysis of SCMTHP-derived propensity scores. 

4. A user-friendly online web server was built and deployed publicly at http://pmlab-

stack.pythonanywhere.com/SCMTHP (accessed on 27 December 2021) in order to fa-

cilitate online high-throughput THP identification. We believe that the SCMTHP pre-

dictor and SCMTHP-derived propensity scores will be helpful in facilitating THP 

identification as well as improving our understanding of their biophysical and bio-

chemical properties. 

 
Figure 1. Schematic framework of the development of SCMTHP. This can be broken down to four 

major steps: (i) training and independent datasets preparation, (ii) SCMTHP-based propensity 

scores generation and optimization, (iii) THPs characterization and (iv) SCMTHP webserver con-

struction. 

2. Materials and Methods 

2.1. Dataset Preparation 

In order to conduct a fair test, the proposed method was optimized and evaluated 

using the same benchmark datasets (i.e., the Main and Small datasets) as performed in 

our previous work [14]. Sharma et al. [13] originally compiled these two benchmark da-

tasets. Particularly, there are 1302 sequences in the Main dataset (651 THPs and 651 non-

THPs) and 938 sequences in the Small dataset (469 THPs and 469 non-THPs). The THP 

samples in the Main dataset were obtained from the TumorHoPe [19] database and were 
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experimentally validated THPs whereas non-THP samples were obtained by randomly 

selecting peptides from SwissProt [13]. Particularly, the Small dataset was created by tak-

ing a subset of the Main dataset and selecting peptides in the range of 4 and 10 residues. 

To test the model’s effectiveness, 161 THPs and 161 non-THPs were chosen at random 

from the set of 1302 sequences that will be referred to as the independent dataset (Main-

IND) while the remaining sequences were used as the training dataset (Main-TRN) (490 

THPs and 490 non-THPs). Similarly, 119 THPs and 119 non-THPs were chosen at random 

from the set of 938 sequences to form the independent dataset (Small-IND) while the re-

maining sequences formed the training dataset (Small-TRN) (350 THPs and 350 non-

THPs). Note that the two benchmark datasets along with their training and independent 

datasets can be downloaded from http://pmlabstack.pythonanywhere.com/da-

taset_SCMTHP (accessed on 27 December 2021). 

2.2. Scoring Card Method 

SCM has been shown to afford good predictive performance as well as achieve com-

parable results to those of popular ML classifiers [20–23]. The contribution of the SCM 

method is summarized in the following three aspects. First, unlike complex methods such 

as SVM and RF, the SCM method can discriminate positive samples from negative sam-

ples using only the simple weighted-sum function. This emphasizes its ease-of-use and 

interpretability [24,25]. Second, as the SCM method is based on a single feature descriptor 

(i.e., AAC or DPC) and a threshold value, which suggests that this method could achieve 

better computational efficiency as compared to other conventional complex methods 

[26,27]. Third, the estimated propensity scores of 20 amino acids and 400 dipeptides ena-

bles an automatic identification of informative PCPs provided in the AAIndex database 

[18] that might be useful for characterizing and analyzing various functions of proteins 

and peptides. Below is a detailed description on the estimation of SCM-derived propen-

sity scores and construction of the SCMTHP model using the Main dataset. 

Phase 1: The training (Main-TRN) and independent (Main-IND) datasets are pre-

pared. Particularly, the Main-TRN dataset was employed to determine the optimized pro-

pensity scores of 20 amino acids (Optimized-APS). Afterwards, the Optimized-APS was 

used to estimate the threshold value for the identification of unknown peptides as THPs 

or non-THPs. 

Phase 2: Computing the ratio between each amino acid by the occurrence frequency 

of aa(i) for THP and non-THP classes to generate the initial propensity scores of 20 amino 

acids (Initial-APS). Taking Cys as an example, the frequency of Cys in THP and non-THP 

classes was 650 and 200, respectively. The normalized Cys compositions in THP and non-

THP classes were 0.6 and 0.2, respectively. Finally, we normalized the score of each amino 

acid to be in the range of 0–1000 in order to facilitate the feature analysis. Our previous 

studies provide more information on how Initial-APS are calculated [15,17]. 

Phase 3: Genetic algorithm (GA) was used for optimizing the Initial-APS in order to 

maximize the predictive performance and to preserve the original information of THPs 

[17,28]. Particularly, the GA’s fitness function (Fit(APS)) was defined by the area under 

the receiver-operating curve (ROC) curve (AUC) value and the Pearson’s correlation co-

efficient (R value) between the Initial-APS and Optimized-APS. 

Fit(APS) = W1 × AUC + W2 × R (1) 

where W1 = 0.9 and W2 = 0.1. Weights for W1and W2 were directly obtained from our 

previous studies [16,17]. Note that the Fit(APS) function was performed using a 10-fold 

cross-validation procedure in order to avoid the overfitting issue. A detailed description 

on the determination of Optimized-APS by means of the GA algorithm is provided in the 

Supplementary information. 

Phase 4: Constructing a scoring function SF(P) based on the Optimized-APS. The 

SF(P) function was used to calculate THP scores for query peptides P. The SF(P) function 

can be defined as follows: 
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SF(P) =∑aai

20

i=1

APSi (2) 

where 𝑎𝑎𝑖  and 𝐴𝑃𝑆𝑖  represent the occurrence frequency and propensity score of the ith 

amino acid. 

Phase 5: Identifying the biological function of a query peptide P and determining the 

optimal threshold value (Cutoff) yielding the highest cross-validation performance. For a 

given unknown peptide P, it is classified as THP if SF(P) is greater than the Cutoff oth-

erwise P is classified as non-THP. 

Pred(P) =

{
 
 

 
 1,∑aai

20

i=1

APSi > Cutoff

0,∑aai

20

i=1

APSi < Cutoff

 (3) 

where 1 and 0 represent THP and non-THP classes, respectively. For the Small dataset, 

its propensity scores can be calculated in the same process without significant modifica-

tions. 

2.3. Characterization of THPs Using Informative Physicochemical Properties 

To characterize the tumor-homing activities of peptides, the propensity scores of 20 

amino acids were used to identify the important PCPs from the AAindex database [18]. 

The following steps were used to determine the set of informative PCPs using SCMTHP: 

(i) PCPs with the value ‘NA’ were not included in this study. As for the remaining 531 

PCPs, we computed R values for propensity scores of 20 amino acids and each of the 531 

PCPs, and (ii) if the R values were >0.5, these PCPs were considered as candidate PCPs 

for THPs analysis. Note that PCPs with the highest R values were deemed to be the most 

important. 

2.4. Conventional ML-Based Classifiers  

SCMTHP was compared to ML-based classifiers trained with various ML algorithms 

(DT, KNN, MLP, NB, PLS and SVM) and sequence-based feature descriptors (AAC, DPC, 

PCP, amino acid index (AAI) and composition-transition-distribution (CTD)). In addition, 

linear (namely, SVMLN) and radial basis function (namely, SVMRBF) kernels were uti-

lized for constructing SVM-based classifiers. The five different sequence-based feature de-

scriptors were extracted using the iFeature module in the Python environment [20]. The 

Scikit-learn package in Python (version 0.22) was then used to generate ML classifiers for 

each feature descriptor individually [29]. The optimal parameters of MLP-based, SVMLN-

based and SVMRBF-based classifiers were determined using a 10-fold cross-validation 

procedure on the training (Main-TRN and Small-TRN) datasets, where the search range 

is shown in Supplementary Table S1. In the meantime, the remaining ML-based classifiers 

were implemented with their default parameters. Using the Scikit-learn package in Py-

thon (version 0.22) [29], 35 ML-based classifiers (7 MLs × 5 descriptors) were created in 

this study. 

2.5. Performance Evaluation 

Five common performance measures consisting of ACC, Sn, MCC, AUC and speci-

ficity (Sp) [30,31] were used to evaluate the predictive performance of our proposed 

model, the compared ML-based THP classifiers and the state-of-the-art method. These 

performance measures are defined as follows: 

ACC =
TP + TN

(TP + TN + FP + FN)
 (4) 
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Sn =
TP

(TP + FN)
 (5) 

Sp =
TN

(TN + FP)
 (6) 

MCC =
TP × TN − FP × FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 (7) 

where TP, TN, FP and FN represent the number of true positives, true negatives, false 

positive and false negatives, respectively [32–34]. 

3. Results and Discussion 

3.1. Performance of Different Propensity Scores 

In this section, we used 10-fold cross-validation and independent tests to investigate 

and evaluate the performance of variant SCM models trained using different sets of Op-

timized-APS on the two benchmark datasets (i.e., the Main and Small datasets). In this 

study, ten independent runs were performed for each of the two benchmark datasets to 

generate ten different sets of Optimized-APS using the GA algorithm, which were then 

used to construct ten different SCM models. Supplementary Tables S2–S5 summarize the 

cross-validation and independent test results, respectively. 

As can be seen from the Supplementary Table S2, the 10th experiment achieved the 

highest ACC of 0.820 with an MCC of 0.641 and an AUC of 0.869. Furthermore, the 7th 

and 2nd experiments achieved the second and third highest prediction results, respec-

tively. Interestingly, the 10th experiment also provided the best independent test result in 

terms of all performance metrics on the Main-IND dataset. To be specific, the ACC, MCC 

and AUC from the 10th experiment had values of 0.827, 0.656 and 0.869, respectively (Sup-

plementary Table S3). In case of the Small dataset, the 3rd and 7th experiments were found 

to achieve superior performance when compared with other experiments as evaluated on 

the Small-TRN dataset (Supplementary Table S4). Notably, the 3rd experiment could 

achieve the best independent test result as indicated by three out of five performance met-

rics (ACC, Sp and MCC) on the Small-IND dataset. Particularly, the ACC, Sp and MCC 

from the 3rd experiment had corresponding values of 0.798, 0.830 and 0.597, respectively 

(Supplementary Table S5). Altogether, SCM models were constructed using the Opti-

mized-APS from the 10th and 3rd experiments (Figure 2), respectively, for the Main and 

Small datasets that is referred herein as SCMTHP. In addition, these two sets of Opti-

mized-APS will be employed for further analysis. 

3.2. Comparison of SCMTHP with Well-Known ML Classifiers and Existing Methods 

In this section, we compared the predictive performance of SCMTHP with conven-

tional ML classifiers as well as state-of-the-art method. To ensure fairness and objectivity, 

all of the compared ML-based classifiers and state-of-the-art method were developed and 

evaluated using the same training (i.e., the Main-TRN and Small-TRN) and independent 

(i.e., the Main-IND and Small-IND) datasets as presented in THPep [14]. Particularly, 

there are two existing methods that had been developed for THP identification (Tu-

morHPD [13] and THPep [14]). However, THPep is the only existing method that was 

developed and evaluated based on the above-mentioned benchmark datasets. Therefore, 

the performance of SCMTHP was compared with THPep only. Results from comparing 

SCMTHP with conventional ML classifiers and state-of-the-art method are shown in Fig-

ure 3, Table 1 as well as Supplementary Figure S1 and Tables S6–S9. 
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Figure 2. Propensity scores of 20 amino acids to be THPs by using the SCMTHP method with the 

Main (A) and Small (B) datasets. 

 

Figure 3. Performance evaluations of SCMTHP and other ML-based classifiers in terms of ACC and 

MCC as evaluated by 10-fold cross-validation (A,B) and independent (C,D) tests on the Main-TRN 

and Main-IND datasets, respectively. 
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Table 1. Performance comparison of SCMTHP with the existing method as evaluated by 10-fold 

cross-validation and independent tests. 

Dataset 
Cross-Vali-

dation 
Method ACC Sn Sp MCC AUC 

Main 

10-fold CV THPred 0.857 0.877 0.837 0.716 0.929 

 SCMTHP 0.820 0.819 0.820 0.641 0.869 

Independent 

test 

THPred 0.846 0.792 0.900 0.696 0.939 

SCMTHP 0.827 0.869 0.785 0.656 0.869 

Small 

10-fold CV THPred 0.824 0.781 0.867 0.653 0.893 

 SCMTHP 0.808 0.723 0.893 0.628 0.853 

Independent 

test 

THPred 0.798 0.862 0.734 0.601 0.885 

SCMTHP 0.798 0.766 0.830 0.597 0.853 

Figure 3 and Supplementary Figure S1 revealed several observations as follows. First, 

among the seven ML-based classifiers that are compared, the SVMRBF-based classifier 

was found to achieve the best mean ACC of 0.804 and 0.775 as evaluated on the Main-

TRN and Small-TRN datasets, respectively, while SVMLN-based (0.780, 0.763) and MLP-

based (0.788, 0.756) classifiers achieved a similar level of performance and could perform 

well with the second highest performance. Second, it could be observed that SVMRBF-

AAC and SCMTHP could achieve the best cross-validation performance (ACC, MCC) of 

(0.833, 0.669) and (0.808, 0.628) on the Main-TRN and Small-TRN datasets, respectively. 

For the Main-TRN dataset, SCMTHP produced ACC and MCC of 0.820 and 0.641, respec-

tively, which was very comparable to that of SVMRBF-AAC. Third, the SCM-based clas-

sifier was found to outperform DT-based, KNN-based, MLP-based, NB-based, PLS-based 

and SVMLN-based classifiers on both the Main-TRN and Small-TRN datasets. Fourth, in-

dependent test results indicated similar results to that observed from the cross-validation 

test. Particularly, SCMTHP achieved ACC of 0.827 and 0.798 on Main-IND and Small-IND 

datasets, respectively, which outperformed several ML-based classifiers as developed in 

this study with the exception of SVMRBF-CTD. 

We also put the SCMTHP to the test and compared it to THPep. The ACC of 

SCMTHP as evaluated on Main-IND and Small-IND datasets provided corresponding 

values of 0.827 and 0.798, respectively, which were comparable to that of THPred (0.846 

and 0.798, respectively) (Table 1). It was recognized that THPred was created by combin-

ing the complex ensemble method (i.e., the RF algorithm) with AAC and PAAC [14]. On 

the other hand, SCMTHP was trained using a simple weighted-sum classifier (SF(P)) and 

a single feature descriptor (i.e., AAC). Such model could provide us with the propensity 

scores of 20 amino acids to be THPs in an easily interpretable manner from a biologist’s 

perspective. In terms of accuracy, cost-effectiveness and simplicity, the proposed 

SCMTHP could outperform the compared ML-based classifiers and the state-of-the-art 

method. 

3.3. Contribution of Optimized Propensity Scores  

As previously stated, the SCM approach was used to generate and optimize propen-

sity scores of 20 amino acids in governing its contribution of becoming THPs in order to 

maximize their predictive ability and interpretability. The performance of the Optimized-

APS was compared to the Initial-APS using 10-fold cross-validation and independent tests 

on the Main and Small datasets. Supplementary Table S10 shows the detailed perfor-

mance of the Optimized-APS and the Initial-APS. Note that the Optimized-APS demon-

strated the best overall predictive performance across the board in terms of all five per-

formance metrics. On the Main-TRN and Main-IND datasets, the Optimized-APS had 

maximum cross-validation and independent test MCC of 0.641 and 0.626, respectively, 

which are correspondingly 13% and 17.6% higher than the Initial-APS (0.511 and 0.480, 

respectively). Interestingly, the Optimized-APS could outperform the Initial-APS in four 



Pharmaceutics 2022, 14, 122 9 of 17 
 

 

out of five performance metrics as evaluated on the Small-TRN and Small-IND datasets 

(i.e., ACC, Sp, MCC and AUC). Remarkably, the ACC, Sp, MCC and AUC for Optimized-

APS had values of 6.9%, 17.0%, 13.5% and 1.3%, respectively, which was higher than that 

of the Initial-APS. Moreover, as can be seen from Figure 4, Optimized-APS exhibited more 

discriminative ability in classifying THPs from non-THPs than that of Initial-APS as eval-

uated on the Main (Figures 4A,B) and Small datasets (Figures 4C,D). The aforementioned 

results confirmed that the proposed Optimized-APS (i.e., propensity scores of 20 amino 

acids or SCMTHP-derived propensity scores) was effective at discriminating THPs from 

non-THPs. 

 
Figure 4. Histogram plots of THPs’ scores and non-THPs’ scores from SCMTHP on the Main-TRN 

(A,B) and Small-TRN (C,D) datasets by using Initial-APS (A,C) and Optimized-APS (B,D). Note 

that the mean and standard deviation are indicated by the bars and closed circles. 

3.4. Identification of Potential THPs Using SCMTHP-Derived Propensity Scores 

This section explores the use of SCMTHP for measuring the tumor homing ability of 

peptides using THP score calculated from a simple weighted-sum function (S(P)). This 

weighted-sum function was generated using the propensity scores of 20 amino acids from 

the 10th experiment where the threshold value is set to 301 (Supplementary Table S2). It 

should be noted that peptide sequences with the highest THP scores could be considered 

as high-potential THPs. As can be seen from Tables 2 and 3, several observations can be 

summarized as follows. First, mean, maximum and minimum THP scores for the top 20 

THPs had corresponding values of 610.25, 684 and 571, respectively, while the mean, max-

imum and minimum scores of the top 20 non-THPs were 149, 1490 and 0, respectively. 

Second, the top-five high-potential THPs consisted of CFWPNRC (684), QWCSRRWCT 

(657), WTCRASWCS (632), SGWCYRC (631) and RWCREKSCW (631) that correspond-

ingly had THP scores larger than 630. Third, note that almost all top 20 high-potential 

THPs would consist of at least two Cys residue with the exception of two peptides (i.e., 

WRPCES and WREWFL). Interesting, the top 20 non-THPs did not contain Cys residue in 
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their primary sequences. Thus, we suggest that Cys residue and disulfide bonds may be 

important for THPs. 

Table 2. Top 20 peptides having the highest S(P) values along with their important physicochemical 

properties. 

# Sequence 
THP 

Score 
Length 

Molecular 

Weight  

Extinction Co-

efficient 

(M−1·cm−1) 

pI Net Charge 
Hydrophobicity 

(Kcal·mol−1) 

1 CFWPNRC 684 7 925.17 5625 8.30 1 6.86 

2 QWCSRRWCT 657 9 1225.52 11125 8.93 2 8.78 

3 WTCRASWCS 632 9 1099.35 11125 8.25 1 7.16 

4 SGWCYRC 631 7 874.08 7115 8.21 1 8.48 

5 RWCREKSCW 631 9 1253.57 11125 8.85 2 14.19 

6 CSDWQHPWC 627 9 1161.39 11125 4.97 −1 11.02 

7 CPRGSRC 621 7 777.99 125 9.66 2 13.23 

8 CWRKFYC 617 7 1005.3 7115 9.24 2 7.96 

9 CSDSWHYWC 615 9 1186.39 12615 4.97 −1 9.86 

10 WRPCES 607 6 776.93 5500 6.16 0 11.83 

11 CWLCNGRCGR 606 10 1167.52 5625 8.60 2 11.27 

12 RHCFSQWCS 600 9 1153.41 5625 8.19 1 9.89 

13 CDCRGDCFC 598 9 1021.26 250 3.91 −1 16.35 

14 CPHSKPCLC 598 9 987.33 125 8.01 1 12.46 

15 CWGCNGRCRM 595 10 1185.55 5625 8.60 2 11.85 

16 CSRPRRSEC 585 9 1093.34 125 9.65 2 17.98 

17 CSRPRRSVC 583 9 1063.36 125 11.33 3 13.89 

18 CVLCNGRCWS 576 10 1140.49 5625 8.00 1 8.31 

19 CRGDGWC 571 7 795.97 5625 5.94 0 13.52 

20 WREWFL 571 6 936.16 11000 6.70 0 6.20 

  610.25 8 1041.50 6117.25 7.82 1.00 11.05 

Table 3. Top 20 peptides having the lowest S(P) values along with their important physicochemical 

properties. 

# Sequence 
THP 

Score 
Length 

Molecular 

Weight  

Extinction Co-

efficient 

(M−1·cm−1) 

pI Net Charge 
Hydrophobicity 

(Kcal·mol−1) 

1 IKIQD 69 5 615.80 0 6.72 0 12.87 

2 KKEKDIMKKTI 74 11 1361.87 0 10.39 3 26.51 

3 INGKVT 99 6 630.83 0 10.15 1 11.37 

4 VKNNVEVN 105 8 915.13 0 6.81 0 15.50 

5 IGIGAG 105 6 486.66 0 5.60 0 9.61 

6 AVKKAYDIAIQ 108 11 1219.60 1490 9.73 1 16.00 

7 DVGTTE 113 6 620.69 0 2.87 −2 16.36 

8 IGDAT 114 5 475.56 0 3.00 −1 12.32 

9 VAIDM 115 5 547.73 0 3.02 −1 9.79 

10 DVKGVFVNI 119 9 990.30 0 6.77 0 12.13 

11 
DLAV-

VEVDQVMVVD 
119 14 1530.96 0 2.63 −4 19.04 

12 TDIDDKIINRAI 121 12 1386.74 0 4.21 −1 20.55 

13 GDVVANT 123 7 674.80 0 3.00 −1 13.37 

14 IDKQLE 131 6 744.93 0 7.00 −1 16.37 

15 FGKKKKYKD 131 9 1141.50 1490 10.49 4 24.27 



Pharmaceutics 2022, 14, 122 11 of 17 
 

 

16 KENILNE 135 7 859.05 0 4.08 −1 17.29 

17 HEAVGI 136 6 624.78 0 5.06 −1 13.93 

18 HKNKGKKN 139 8 953.23 0 11.03 4 24.28 

19 
ENAKAAVAEMKDG 

DVVLLE 
139 19 2002.54 0 3.84 −3 31.12 

20 ITDMAA 140 6 620.79 0 3.13 −1 11.00 

  116.75 8 920.17 149.00 5.98 −0.20 16.68 

3.5. Characterization of THPs Using SCMTHP-Derived Propensity Scores 

It is well recognized that THPs are beneficial for cancer therapy [1]. Insights from 

previous studies revealed that THPs had a typical length between 3 and 15 residues. Co-

incidentally, this has been reported to specifically recognize and bind tumor cells or tumor 

vasculature such as RGD peptides (bind to αv integrins) and NGR peptides (bind to a 

receptor aminopeptidase N) [35,36]. Until now, many studies have attempted to identify 

and analyze THPs in terms of their selection and specification to different types of cancers. 

Herein, we proposed SCMTHP that was able to not only make predictions but also esti-

mate the propensity scores of 20 amino acids in their contribution to THPs along with 

interpretation of their biological significance [15–17]. Figure 2 shows the propensity scores 

of 20 amino acids to be THPs as obtained from SCMTHP using Main-TRN (Figure 2A) 

and Small-TRN (Figure 2B) datasets. As already mentioned above, the propensity scores 

of 20 amino acids were obtained from Optimized-APS particularly from the 10th and 3rd 

experiments as evaluated on Main-TRN and Small-TRN, respectively. Note that amino 

acids exhibiting the highest propensity scores are also deemed to be the most important 

for tumor homing activity of peptides. In addition, Table 4 summarizes propensity scores 

of 20 amino acids to be THPs with corresponding amino acid compositions (%) of THP 

and non-THPs using the Main-TRN dataset.  

Table 4. Propensity scores of 20 amino acids to be THPs (PS-THP) along with amino acid composi-

tions (%) of THPs and non-THPs based on the Main-TRN dataset. 

Amino Acid PS-THP THP (%) non-THP (%) Difference p-Value 

C-Cys 1000(1) 9.635 1.082 8.552(1) <0.01* 

W-Trp 981(2) 3.459 1.088 2.371(3) <0.01* 

R-Arg 598(3) 8.947 5.062 3.885(2) <0.01* 

P-Pro 587(4) 6.831 4.940 1.891(4) <0.01* 

F-Phe 424(5) 3.018 3.846 −0.828(13) 0.017 

S-Ser 407(6) 8.525 6.860 1.666(5) <0.01* 

H-His 382(7) 3.084 2.699 0.385(6) 0.287 

L-Leu 374(8) 8.157 9.394 −1.237(14) 0.020 

Y-Tyr 273(9) 3.023 2.912 0.111(8) 0.741 

M-Met 266(10) 2.629 2.604 0.025(9) 0.940 

Q-Gln 198(11) 3.284 4.052 −0.769(11) 0.046 

N-Asn 195(12) 3.365 4.169 −0.804(12) 0.033 

A-Ala 160(13) 5.717 8.099 −2.382(16) <0.01* 

G-Gly 157(14) 7.552 7.203 0.349(7) 0.516 

T-Thr 150(15) 4.744 5.364 −0.620(10) 0.186 

D-Asp 103(16) 3.798 5.664 −1.866(15) <0.01* 

E-Glu 67(17) 3.544 6.153 −2.609(19) <0.01* 

V-Val 48(18) 4.392 6.906 −2.514(17) <0.01* 

K-Lys 45(19) 3.469 6.008 −2.540(18) <0.01* 

I-Ile 0(20) 2.828 5.894 −3.066(20) <0.01* 

R 1.000 0.462 −0.589 0.876 - 

* Statistically significant at the level of p-value < 0.01. 
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Several observations can be made from Table 4 as follows. (i) The five top-ranking 

amino acids having highest propensities for THPs included Cys, Trp, Arg, Pro and Phe 

with corresponding scores of 1000, 981, 598, 587 and 424, respectively, while five top-rank-

ing amino acids with the lowest propensities for THPs were Ile, Lys, Val, Glu and Asp 

with corresponding scores of 0, 45, 48, 67 and 103, respectively. (ii) Cys, Trp, Arg and Pro 

with corresponding scores of 8.552, 2.371, 3.885 and 1.891, respectively, were the four top-

ranking amino acids that correspondingly had the highest percentage difference of the 

composition. Meanwhile Ile, Lys, Val, Glu and Asp with corresponding scores of −3.066, 

−2.540, −2.514, −2.609 and −1.866, respectively, were the five top-ranking amino acids cor-

respondingly having the lowest percentage difference of the composition. (iii) All of the 

four top-ranking amino acids having the highest and lowest propensities were signifi-

cantly different with p < 0.01; they also had the largest correlation coefficient values be-

tween the propensity scores of 20 amino acids (PS-THP) and difference scores with values 

exceeding 0.8. 

The aforementioned observation also confirmed the robustness of the SCMTHP-de-

rived propensity scores of 20 amino acids for discriminating THPs from non-THPs. Such 

a result is consistent with computational analysis reported by several previous studies 

[13,14]. For example, Sharma et al. [13] reported that Cys, Arg, Gly, Trp, Pro, Leu and Ser 

are more abundant in THPs. Meanwhile, Shoombuatong et al. [14] showed that the three 

top-ranking informative amino acids were Cys, Trp and Arg, with corresponding mean 

decrease of the Gini index (MDGI) values of 139.48, 46.56 and 45.40, respectively. In the 

case of informative dipeptides, RC, GR, CR and CG were considered to be amongst the 

top four informative dipeptides [14]. Note that Cys might be beneficial for the tumor-

homing activity of peptides. In 1997, Pasqualini et al. [37] showed that cyclic peptides 

having two disulfide bonds, such as the peptide sequence of CDCRGDCFC, could effec-

tively bind to different integrins. 

As shown in Table 2, the peptide sequence of CDCRGDCFC was found to be amongst 

the top 20 high-potential THPs that had a corresponding THP score of 598. The bicyclic 

CDCRGDCFC (RGD-4C) peptide is a ligand of integrins that can selectively bind αvβ3 

and αvβ5 integrins, which are highly overexpressed on invading tumor endothelial cells 

and tumor vasculature [38]. Bicyclic forms of the peptide RGD-4C afforded less affinity 

for αvβ3 integrin and significantly less water solubility than the cyclic-(N-Me-VRGDf) 

(Cilengitide), which is a similar target of αvβ3 integrin [39]. Colombo et al. [40] compared 

the anticancer activity between cyclic (CNGRC-TNF) and linear (GNGRG-TNF) peptides 

containing the Asn-Gly-Arg (NGR) motif. Their results showed that the disulfide-bridge 

of the cyclic peptide afforded >10 fold higher anti-tumor activity than that of the linear 

peptide. In addition, this group explored the dynamic behavior and conformational char-

acteristics of NGR peptides with or without cyclic constraints by performing molecular 

dynamic (MD) simulations of two CNGRC peptides with and without disulfide bridges. 

Their analysis revealed that the disulfide bridge formation played a crucial role in the 

stabilization of the CNGRC peptide and enhancing the tumor targeting efficiency. More-

over, the insertion of a free Cys residue in investigated peptides could extend their half-

life and binding affinities in tumors as reported by Pang et al. [41]. Particularly, they 

added a free Cys residue in the cyclic internalizing RGD (iRGD) tumor-targeting peptide 

(CRGDK/RGPD/EC), which led to longer half-life and more accumulation in tumors. 

3.6. Characterization of THPs Using Informative PCPs 

Several studies had reported that molecular weight [17], side chain [42,43], solubility 

[17], side chain [42,43] and beta-sheet propensity [44] were important factors for providing 

better understanding on functional mechanisms of proteins and peptides [16,21,24]. To be 

specific, from among several of these biochemical and biophysical properties, pI, hydro-

phobicity, side bulk, hydrophobicity, hydrophilicity and molecular weight have been re-

ported to affect biological activities of peptides [13,45–47]. In this section, SCMTHP was 

applied for determining informative features from amongst the entire set of 531 PCPs in 
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order to elucidate the relationship between THP scores and biochemical and biophysical 

properties. The set of 20 top-ranking informative PCPs having the largest R values are 

provided in Supplementary Table S11. Moreover, it could be noticed that the five top-

ranking PCPs having the largest R values consisted of MCMT640101, ZASB820101, 

RACS820104, GARJ730101 and WIMW960101 with corresponding R values of 0.635, 0.623, 

0.557, 0.512 and 0.507, respectively. 

From among the five top-ranking PCPs with the largest R values, it was observed 

that the MCMT640101 property, described as the “Refractivity” [48], had the highest pos-

itive R value of 0.635. This can be attributed to two important factors (i.e., amino acid 

compositions and the refraction values of the amino acid residues) that affects the refrac-

tive indices. The high positive R value demonstrated that the refractivity property might 

be important for the functional mechanisms of THPs. McMeekin et al. described that the 

molar refraction property of amino acids can be measured by their aqueous solutions and 

via the Lorenz-Lorentz’s equation [48]. Their analysis showed that the refractive index is 

a unique characteristic of a protein that depends on the extinction coefficient (imaginary 

index) [49,50]. As can be observed from Table 5, the ranks of propensity scores (THP, re-

fractivity, extinction coefficient) for Cys, Trp, Arg and Phe are (1, 2, 6), (2, 1, 1), (3, 5, 9) 

and (5, 4, 3), respectively. Furthermore, Kuipers and Gruppen reported that Trp exhibited 

the highest molar extinction coefficient of 29,050 while the second and third amino acids 

having the highest molar extinction coefficients were Tyr and Phe with respective extinc-

tion coefficients of 5375 and 5200, respectively. Note that the extinction coefficients of 

THPs might be higher than that of non-THPs. From Tables 2 and 3, the mean, maximum 

and minimum scores extinction coefficients for the set of 20 top-ranked high-potential 

THPs are 6117.25, 12,615 and 125, respectively, while the mean, maximum and minimum 

extinction coefficients of the set of top 20 non-THPs are 149, 1490 and 0, respectively. In 

addition, note that the extinction coefficients for almost all of the 20 top-ranked high-po-

tential THPs exceeded 149 with the exception of four peptides (i.e., CPRGSRC, CPH-

SKPCLC, CSRPRRSEC and CSRPRRSVC). In the same way, 18 out of 20 from the set of 

top 20 non-THPs exhibited extinction coefficients of 0. We also employed Student’s t-test 

to compare extinction coefficients of THPs and non-THPs on the Main-TRN dataset. It 

was found that the extinction coefficient was significant for the differentiation of THPs 

from non-THPs at the level of p < 0.001. These results indicated that the extinction coeffi-

cients of 20 amino acids were one of the important biochemical and biophysical properties 

governing THPs. As can be seen from Table 5, it can be noticed that aromatic amino acids 

(i.e., Phe, Tyr and His) presented π electron that can absorb UV light. It could be stated 

that peptides having high refractivity may have an accumulation of peptides in tumor 

cells and their environment. Moreover, the isoelectric point obtained from peptides with 

the highest THP score was mild acid/base, whereas the remaining was strong acid/base. 

However, peptides with the highest THP score also contained mostly neutral and positive 

net charge but the remaining contained negative net charge. From the above mentioned 

results, it can be deduced that cationic THPs may behave as cell penetrating and cytolytic 

peptides [51,52]. 

Table 5. Summary of two important physicochemical properties (PCPs) as derived from SCMTHP. 

Amino Acid PS-THP MCMT640101 a 
Molar Extinction Coefficients 

(𝛆 (M−1 cm−1)) b 

C-Cys 1000(1) 35.77(2) 225(6) 

W-Trp 981(2) 42.53(1) 29,050(1) 

R-Arg 598(3) 26.66(5) 102(9) 

P-Pro 587(4) 10.93(17) 30(19) 

F-Phe 424(5) 29.4(4) 5200(3) 

S-Ser 407(6) 6.35(18) 34(17) 

H-His 382(7) 21.81(6) 5125(4) 
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L-Leu 374(8) 18.78(10) 45(13) 

Y-Tyr 273(9) 31.53(3) 5375(2) 

M-Met 266(10) 21.64(7) 980(5) 

Q-Gln 198(11) 17.56(11) 142(7) 

N-Asn 195(12) 13.28(14) 136(8) 

A-Ala 160(13) 4.34(19) 32(18) 

G-Gly 157(14) 0(20) 21(20) 

T-Thr 150(15) 11.01(16) 41(16) 

D-Asp 103(16) 12(15) 58(11) 

E-Glu 67(17) 17.26(12) 78(10) 

V-Val 48(18) 13.92(13) 43(14) 

K-Lys 45(19) 21.29(8) 41(15) 

I-Ile 0(20) 19.06(9) 45(12) 

R 1.000 0.635 0.556 
a MCMT640101 = Refractivity (McMeekin et al., 1964) [18], Cited by Jones (1975) [18]. b ε (M−1 

cm−1)c = Molar extinction coefficients (ε) of free amino acids (M−1 cm−1) at 214 nm in 20% (v/v) ace-

tonitrile and 0.1% (v/v) formic acid derived from the work of [50]. 

4. Conclusions 

This study introduces SCMTHP as a novel, simple and interpretable scoring card 

(SCM)-based approach for in silico identification and characterization of THPs. The major 

contribution of the SCMTHP approach is the use of weighted-sum classifier as well as the 

new and improved propensity scores of 20 amino acids as THPs. Particularly, these pro-

pensity scores of 20 amino acids were used for identifying informative physicochemical 

properties that provided insights on characteristics of THPs. We have shown that 

SCMTHP could outperform almost all conventional ML-based predictors and state-of-the-

art methods in terms of accuracy, conceptual simplicity and high interpretability in exten-

sive comparative experiments on the two benchmark datasets. Furthermore, analysis re-

vealed the significance of Cys residue in stabilization as well as a preference for high ex-

tinction coefficients. Finally, we have constructed a user-friendly online web server 

(http://pmlabstack.pythonanywhere.com/SCMTHP) (accessed on 27 December 2021) to 

facilitate online high-throughput THP identification. The SCMTHP predictor and 

SCMTHP-derived propensity scores of 20 amino acids are expected to be useful tools for 

facilitating THP identification and for improving our understanding of their functional 

mechanisms. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/article/10.3390/pharmaceutics14010122/s1, Figure S1: Performance evaluations of 

SCMTHP and other ML-based classifiers in terms of ACC and MCC as evaluated by 10-fold cross-

validation (A,B) and independent (C,D) tests on the Small-TRN and Small-IND datasets, respec-

tively; Table S1: Hyperparameter search details for seven popular ML algorithms; Table S2: Cross-

validation of ten SCM models trained with ten different sets of propensity scores of amino acids on 

the Main-TRN dataset; Table S3: Independent test results of ten SCM models trained with ten dif-

ferent sets of propensity scores of amino acids on the Main-IND dataset, respectively; Table S4: 

Cross-validation of ten SCM models trained with ten different sets of propensity scores of amino 

acids on the Small-TRN dataset; Table S5: Independent test results of ten SCM models trained with 

ten different sets of propensity scores of amino acids on the Small-IND dataset, respectively; Table 

S6: Cross-validation results of seven different ML classifiers with five different feature encodings 

on Main-TRN dataset; Table S7: Independent test results of seven different ML classifiers with five 

different feature encodings on Main-IND dataset; Table S8: Cross-validation results of seven differ-

ent ML classifiers with five different feature encodings on Small-TRN dataset; Table S9: Independ-

ent test results of seven different ML classifiers with five different feature encodings on Small-IND 

dataset; Table S10: Cross-validation and independent test results of SCM-based classifiers by using 

Initial-APS and Optimized-APS as evaluated on the Main and Small datasets; Table S11: The twenty 
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top-ranked informative physicohemical properties having the highest pearson correlation (R) with 

the propensity scores of amino acids on Main-TRN dataset. 
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