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Abstract: Microfluidic technologies have recently been applied as innovative methods for the pro-
duction of a variety of nanomedicines (NMeds), demonstrating their potential on a global scale. The
capacity to precisely control variables, such as the flow rate ratio, temperature, total flow rate, etc.,
allows for greater tunability of the NMed systems that are more standardized and automated than
the ones obtained by well-known benchtop protocols. However, it is a crucial aspect to be able to
obtain NMeds with the same characteristics of the previously optimized ones. In this study, we
focused on the transfer of a production protocol for hybrid NMeds (H-NMeds) consisting of PLGA,
Cholesterol, and Pluronic® F68 from a benchtop nanoprecipitation method to a microfluidic device.
For this aim, we modified parameters such as the flow rate ratio, the concentration of core materials
in the organic phase, and the ratio between PLGA and Cholesterol in the feeding organic phase.
Outputs analysed were the chemico–physical properties, such as size, PDI, and surface charge, the
composition in terms of %Cholesterol and residual %Pluronic® F68, their stability to lyophilization,
and the morphology via atomic force and electron microscopy. On the basis of the results, even if
microfluidic technology is one of the unique procedures to obtain industrial production of NMeds,
we demonstrated that the translation from a benchtop method to a microfluidic one is not a simple
transfer of already established parameters, with several variables to be taken into account and to
be optimized.

Keywords: nanomedicine; hybrid nanoparticles; nanoprecipitation; microfluidics

1. Introduction

Nanomedicine has been the leading topic of interest for novel therapeutic approaches
against difficult-to-treat diseases for the last decade [1] thanks to the possibility of loading
drugs that are normally inaccessible for direct injection due to their poor solubility, increas-
ing the pharmacokinetic half-life of drugs in the blood and even decreasing off-target effects
or of exploiting targeting ligands to engineer NMed surfaces for selective and tailored
treatments. In particular, the potential of NMeds has been recently highlighted by the
development of the nanomedicine-based vaccine against COVID-19 [2–4]. This incredible
scientific effort has pointed out more than before that the ability to control the design and
production of nanomedicines (NMed) is a crucial aspect for their eventual success with
strong chances of ameliorating therapeutic effects.

In fact, notwithstanding all the promising results in the field, few NMeds have passed
the rigorous selection required for commercial availability [5]. A major reason for this
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bottleneck in commercially available NMeds lies in the difficulty of making classic benchtop
methods reproducible or automated in a way that can be directly translated to large-scale
industrial use. This passage is vital to ensure that industrial nanoproduction will allow the
obtainment of NMed with standardized features, thus allowing governing agencies, such
as the Food and Drug Administration (FDA) or European Medicines Agency (EMA), to
certify them for commercial human use. In fact, the variations in fundamental parameters
of optimized small-scale benchtop methods to those that allow reproducibility at a large
scale must not affect the critical NMed pharmaceutical characteristics that may define their
success, such as: a size ranging from 100–400 nm for improved biodistribution, surface
charge minimizing first past clearance as well as the potential aggregation process, and
standard drug content [6–8].

To combat this issue, companies have increased the investigations and optimizations
of microfluidic systems [9,10]. These devices allow the reproducible production of NMeds
with increased consistency thanks to the automated and constant output of a standardized
and certified machine [11,12] resulting in NMeds with consistent physical characteristics
and drug loading. Moreso, they open up a direct path for upscaling through higher yield,
minimized production time, and much larger production volumes with minimal or no
batch variability. The result of the application of microfluidics is a certifiable and FDA-
approved vaccine rolled out worldwide, proving the potential of a successful NMed design
that passed phase 4 clinical trials and entered production on a global scale [13,14].

Even with its several advantages, the use of microfluidic devices for the production of
NMeds requires an in-depth optimization of the protocols and instrumentation settings.
For any research laboratory, but most of all for small university laboratories, far from
the economic possibilities of big companies such as Pfizer or Moderna, the application
of microfluidics opens two different scenarios: (1) the use of microfluidic devices for the
design and optimization of NMeds directly from a small scale or (2) the adaptation of
already established small-scale benchtop protocols to a microfluidic system. In the first case,
the use of microfluidic devices from the beginning during the small-scale NMed design
ensures that the protocols are compatible and always reproducible as the same technology
is used throughout the process. At the same time, this approach has a high upfront cost
linked to the cost of the machine, and the proprietary and often mono-use cartridges used
for each individual sample; even non-commercialized, 3D-printed or home-made devices
can have a difficult set-up and several requirements. More importantly, this first approach
is only possible when considering the design of novel NMeds; it cannot be applied to
the numerous well-established or already published successful NMeds. In an evolving
scenario where microfluidic devices for NMed production are taking the spotlight as a new
paradigm instead of classical nanoprecipitation [15], it would be wasteful to abandon all the
previous optimization studies to restart completely with a microfluidic process and incur
all the upfront costs. This second one is a more classical and maybe economical approach
that is used to translate optimized small-scale production of NMeds to a microfluidic
system; however, adapting benchtop protocols to a microfluidic device to obtain NMeds
similar to the well-known ones can be a difficult and time-consuming process [16,17].

Microfluidic systems have already been tested for the translation and automated
production of already established polymeric [18–21] and lipidic [22–27] NMed systems, as
well as some hybrid [28–31] nanomedicines consisting of a polymeric core and a lipidic
shell, which are now abundant in the literature. However, some new and innovative hybrid
NMeds are yet to be optimized to exploit microfluidics for their improved production.
Therefore, in this work we studied the transfer to a microfluidic-based protocol of a well-
optimized and recently published [32,33] formulation method for hybrid nanomedicines
(H-NMeds), consisting of the FDA-approved polymer poly-lactide-co-glycolic acid (PLGA)
and cholesterol (Chol), a biocompatible and ubiquitous molecule [34] widely used for
NMed formulation [35–38]. To this end, attempts to translate the benchtop production of
H-NMed to this automated and standardized technology were performed by exploiting a
homemade 2–channel microfluidic device.
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The aim was to assess whether this already optimized benchtop method was easily
transferable to the microfluidic technology by comparing physical and compositional
changes, as well as morphological features, between the well-known H-NMeds from
benchtop protocols and those reproduced with the microfluidic device. The parameters
varied to attempt and obtain comparable H-NMeds were (1) initial concentration of core
materials in the organic phase; (2) the flow rate ratio (FRR, the ratio of the aqueous to
organic phase); (3) the ratio of polymer to cholesterol. The resulting H-NMeds were then
compared in terms of size and homogeneity, surface charge, morphology, composition, and
storage stability.

2. Materials and Methods
2.1. Materials

Poly (d,l-lactide-co-glycolide) (PLGA, RG503H,MW ∼= 11,000) was used as received
from the manufacturer (Evonik, Essen, Germany). Isopropanol was purchased from
Carlo Erba, Cornaredo Milan, Italy. Cholesterol, Pluronic® F68, Acetonitrile, Ethanol,
Acetone, Chloroform, Barium Chloride (BaCl2), Iodide (I2), and Potassium Iodide (KI)
were purchased from Sigma Aldrich (Merck Life Sciences, Milan, Italy). All solvents and
reagents purchased were of analytical purity and used as delivered.

2.2. H-NMed Formation by the Optimized Benchtop Method

H-NMeds were obtained by adapting an already optimized benchtop protocol [32,33]
with minor modifications: 20 mg of Chol and 20 mg of PLGA were weighed and dissolved
in 4 mL of acetone. This organic phase was then added dropwise into a beaker containing
50 mL of a 5 mg/mL Pluronic® F68 solution warmed at 45 ◦C and kept under magnetic
stirring. After 15 min, the suspension was left for 1 h at room temperature and then the
solvent was removed under vacuum via Rotavapor® for 30 min. The obtained H-NMeds
were purified by centrifugation at 14,500 rpm for 10 min at 4 ◦C. The supernatant was
discarded, and the pellet was resuspended in 4 mL of MilliQ (Millipore, Bedford, MA,
USA). From the resulting suspension, 10 µL was diluted in 1 mL of MilliQ water for size,
zeta potential, and microscopy studies. Another 500 µL aliquot of H-NMed suspension
was lyophilized for weight yield and compositional analysis.

2.3. Optimization of H-NMed Formation by Microfluidics

To optimize the microfluidic method, a similar protocol to the benchtop one was used:
PLGA and Cholesterol were dissolved in acetone and mixed with a 5 mg/mL Pluronic®

F68 solution at 45 ◦C in the microfluidic device to produce H-NMeds, using a Total Flow
Ratio of 10 mL/min. The temperature, composition of the aqueous phase, and Total
Flow Ratio were maintained constant throughout the experiments, as well as the organic
solvent, in order to ensure high diffusibility with the organic phase and therefore a fine
mixing of the two in the device. The parameters changed to reach an optimization of
this method included: (1) the ratio (v:v) of organic and aqueous solutions (from 12, 5:1
to 1:1) with final volume kept constant at 13 mL; (2) total concentration of PLGA and
Cholesterol in the organic solution (from 5 to 30 mg/mL); (3) ratio of PLGA to Cholesterol
in the organic phase (w:w, from totally polymeric 100:0 to totally lipidic 0:100), keeping a
total concentration of materials of 20 mg/mL. After formulation through the microfluidic
device, NMeds were left under magnetic stirring at room temperature for 2 h to allow
solvent evaporation. The final suspension was centrifuged at 14,500 rpm for 10 min and
resuspended in MilliQ, and aliquots of 2 mL of suspension were lyophilized for weight
yield and compositional analysis.

2.4. Size and Surface Charge Analysis

The mean particle size (Z-Average) and polydispersity index (PDI) of all samples
were determined by Photon Correlation Spectroscopy (PCS) analysis, using a Zetasizer
Nano ZS (Malvern Panalytical, Malvern, UK; Laser 4 mW He-Ne, 633 nm, Laser attenuator
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Automatic, transmission 100–0.0003%, Detector Avalanche photodiode, Q.E. > 50% at
633 nm, T = 25 ◦C). All samples were diluted before being analyzed to arrive at a final con-
centration of ~0.1 mg/mL. All data are expressed as the means of at least three individual
H-NMed preparations.

The zeta potential (ζ-pot) was measured using a Zetasizer Nano ZS (Malvern Pan-
alytical, Malvern, UK) with a combination of laser Doppler velocimetry and a patented
phase analysis light scattering method (M3-PALS). The same samples subjected to PCS
(0.1 mg/ mL) were analyzed using DTS1070 zeta potential cuvettes and expressed as the
mean of at least three individual H-NMed preparations.

2.5. Weight Yield

Aliquots of a water suspension of purified H-NMeds were freeze-dried (−60 ◦C,
1 × 10−3 mm/Hg; LyoLab 3000, x-Holten, Allerod, Denmark) for at least 8 h and weighed.
The yield (WY %) was calculated as follows:

WY(%) = ((mg of freeze-dried sample)/(mg PLGA + mg cholesterol)) × 100 (1)

2.6. Quantification of Cholesterol

An aliquot of lyophilized H-NMeds (~1 mg) was dissolved in 300 µL of chloroform.
After sonication and vortex for 60 s, 600 µL of isopropanol was added and the solution
was vortexed again. The solvent mixture was put under magnetic stirring to evaporate the
chloroform and precipitate the PLGA in the isopropanol phase. Isopropanol was eventually
adjusted to a final volume of 1 mL. This solution was centrifuged at 13,000 rpm for 10 min.
The supernatant was analysed by HPLC using a Syncronis C18 4.6 × 250 mm 5 µm reverse
phase column using an isocratic gradient of 50:50 ethanol (EtOH) absolute and acetonitrile
(ACN) and a flow rate of 1.2 mL/min. The retention time of cholesterol was 16 min and
had a linear range from 50 to 1000 µg/mL at 210 nm (Curve: y = 2545.70x − 32555.1:
R2 = 0.994596). The total cholesterol content was calculated based on three injections from
different formulations.

The amount of cholesterol in the formulations was calculated as Chol Recovery %
(CR %) and Cholesterol Content % (CC %) with the following formulas:

CR(%) = ((mg of Chol in the formulation)/(mg of Chol used for formulation)) × 100 (2)

CC(%) = ((mg of Chol in the formulation)/(mg of H-NMeds analysed)) × 100 (3)

2.7. Quantification of Residual Pluronic® F68

The residual amount of surfactant in the H-NMeds was determined by a colorimetric
method [39]. Briefly, ~1 mg of a freeze-dried H-NMeds sample was solubilized in 0.5 mL
of dichloromethane. Then, 10 mL of distilled water was added and the organic solvent was
evaporated at r.t. under stirring for 2 h. The suspension was filtered (cellulose acetate filter,
porosity 0.45 µm, Sartorius, Florence, Italy) to obtain an aqueous solution (A).

To calculate the amount of Pluronic® F68 in the formulation, 2 mL of the aqueous
solution (A) was treated with 2 mL of 0.5% (w/v) BaCl2 in HCl 1 N and 0.5 mL of an aqueous
solution of I2/KI (0.05 M/0.15 M). The obtained solution was incubated at r.t. for exactly
10 min in the dark. Pluronic® F68 concentration was determined measuring the absorbance
at 540 nm (Model V530, Jasco, Cremella, Italy). A calibration curve was calculated using
the same method on stock solutions of Pluronic® F68, and linearity was found in the range
of 2–18 µg/mL. All data are expressed as the mean of at least three determinations. The
amount of surfactant in the formulation was expressed as the Pluronic® F68 Content %
(PC %) and calculated using the following equation:

PC(%) = ((mg of Pluronic® F68 in the formulation)/(mg of H-NMeds analysed)) × 100 (4)
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2.8. Morphological Studies

AFM observations were performed with an atomic force microscope (Park Instru-
ments, Sunnyvale, CA, USA) at about 25 ◦C operating in air and in non-contact mode
using a commercial silicon tip-cantilever (high-resolution noncontact “GOLDEN” Silicon
Cantilevers NSG–11, NT-MDT, tip diameter 5–10 nm; Zelenograd, Moscow, Russia) with
stiffness of about 40 Nm–1 and a resonance frequency of around 150 kHz. After the purifi-
cation, the sample was dispersed in distilled water (0.01 mg/mL) before being applied to a
freshly cleaved mica disk (1 cm × 1 cm); two minutes after the deposition, the excess water
was removed using a blotting paper. The AFM images were obtained with a scan rate 1 Hz.
Two kinds of images were obtained: the first one was a topographical image and the second
one was indicated as “error signal”. This error signal was obtained by comparing two
signals: the first one, direct, representing the amplitude of the vibrations of the cantilever,
and the other one being the amplitude of a reference point. The images obtained by this
method showed small superficial variations of the samples. Images were processed using
ProScan Data Acquisition software (Park Instruments, Sunnyvale, CA, USA).

The structure of the samples was also analyzed by scanning transmission electron
microscopy (STEM FEI Nova NanoSEM 450, Bruker, Billerica, MA, USA). Briefly, a drop of
the same water-diluted suspension (0.01 mg/mL) used for AFM imaging was placed on
a 200–mesh copper grid (TABB Laboratories Equipment, Berks, UK), allowed to adsorb,
and the suspension surplus was removed by filter paper. All grids were analyzed using
the transmission electron microscope operating at 25 kV using a STEM II detector in Field
free mode.

2.9. Storage Stability

Aliquots of 10 µL of H-NMed formulation at a final concentration of 10 mg/mL were
tested for stability to lyophilization and freezing. In particular, the microfluidic formulation
that was found to be the most similar in composition and physical characteristics to the
benchtop one was selected and used.

Samples were tested after addition to the suspension of different amounts of trehalose
as a cryoprotectant, in w:w ratio with H-NMeds of 0:1 (no trehalose), 1:1, 3:1 and 6:1.
Samples were vortexed for 60 s to allow solubilization of the sugar. Two freezing methods
were used, namely, standard slow freezing at –19 ◦C and flash freezing by immersion of
the aliquots in a dry ice and methanol bath until completely frozen. Once frozen, all these
samples were lyophilized for 8 h and stored at + 4 ◦C until further analysis.

Another set of samples was prepared exactly as described above. Instead of lyophiliza-
tion, samples were stored for one week at –19 ◦C independently from the freezing method
used and then thawed at room temperature before further analysis.

Lyophilized or thawed samples were resuspended or diluted with 1 mL MilliQ,
vortexed for 60 s, and eventually analyzed via PCS for size distribution and PDI, as
previously described (Section 2.4).

2.10. Statistical Analysis

Statistical analysis was performed using Student’s T Test, where * p < 0.05 and
** p < 0.01, using the software GraphPad Prism 6 (GraphPad Holdings, San Diego, CA,
USA). All samples were performed with n > 3, and the error bars in graphs indicate the
standard deviation (SD) from the average.

3. Results and Discussion

Microfluidic systems have been studied and optimized over the last 20 years for their
application for the production of nanomedicines (NMeds), showing advantages over tradi-
tional benchtop methods, such as higher reproducibility, batch to batch standardization,
and direct translation towards industrial scale-up, as strongly emphasised by the recent
production of the COVID-19 vaccine. Notwithstanding the undoubted benefits of the in-
creased use of microfluidic based systems for the optimization of novel NMeds, the passage
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from traditional methods to this novel technology requires the careful adaptation of already
optimized and published successful platforms without losing the features of the original
NMeds. In this study, we propose the first optimization steps to adapt the production
protocol of a well-established hybrid NMed consisting of PLGA and Cholesterol (H-NMed)
and analysing how changing crucial parameters of a microfluidic-based process affects the
physical and compositional characteristics of the resulting H-NMeds.

As a point of reference, H-NMeds produced with the classical benchtop protocol were
analysed for size, homogeneity, surface charge, and composition (Table 1). Hybrid NMeds
produced by nanoprecipitation are known [32] to have a final composition of about 30%
Chol and to incorporate within their matrix about 10% of surfactant from the formulation
environment (Figure 1A). They display a homogeneous size around 250 nm, with a strong
negative surface charge around –35 mV. The published nanoprecipitation protocol used for
these H-NMeds was extensively optimized [32,40], allowing for a high yield of almost 80%.

Table 1. Physico-chemical characterization of H-NMeds obtained by the nanoprecipitation benchtop protocol. Standard
Deviation (SD) is reported in parentheses.

[Materials] FRR Size (SD) PDI (SD) Zeta (SD) Weight Yield
% (SD)

Pluronic %
(SD)

Chol Recovery
% (SD)

Chol Content
% (SD)

10 mg/mL 12.5:1 241 (14) 0.24 (0.03) −36 (3) 77 (8) 9 (3) 50 (11) 36 (7)
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Figure 1. Graphical representation of the composition of H-NMeds. Blue: PLGA content. Orange: Cholesterol content. Grey:
Pluronic® F68 content. (A) H-NMeds obtained with nanoprecipitation. (B) H-NMeds obtained with microfluidic-based
protocols using a concentration of materials in the organic phase of 10 mg/mL and different FRRs, namely, 3:1 (left), 2:1
(center) and 1:1 (right).

To start the optimization process using microfluidic technology, the concentration of
materials in the organic phase, 10 mg/mL corresponding to that for nanoprecipitation,
and the total volume (13 mL) were held constant. Another point to be considered prior to
optimization is the surfactant since the microfluidic technology for NMed preparations is
based on the fine mixing of two different fluids, namely, an organic and an aqueous solution,
and the type and concentration of surfactant are crucial parameters to be addressed.
This is valid not only for droplet microfluidics, now widely applied to high-throughput
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screenings [41–45], but also for NMed preparations. Triblock polymers such as Pluronics®

have been demonstrated to be safe and biocompatible [46,47] and are frequently used as
stabilizers during the formation of NMeds both in benchtop [48–51] and in microfluidic
based protocols [52–55]. For this reason, we standardized the use of Pluronic® F68 as
already exploited in our optimized benchtop methods to be used with the microfluidic
device. Literature showed that a Pluronic® F68 concentration between 0.1 and 1% leads to
the successful formation of NMeds with microfluidic devices [56,57]; therefore, we fixed its
concentration at 0.5% w/v, the same used in previous nanoprecipitation protocols.

3.1. Variation of the Flow Rate Ratio

With these variables fixed, the impact of changing the ratio between the volume of
the aqueous and organic phases (Flow Rate Ratio, FRR) from 12.5:1 to 1:1 was analysed
(Table 2). Analysis of the physico-chemical characteristics of these formulations showed
an inverse trend in the average size of these H-NMeds, which increased from 170 to
250 nm when decreasing the FRR from 6:1 to 1:1 following literature reports for polymeric,
lipidic, and other hybrid nanoparticles [16,18,58,59]. The only exception to this trend
was represented by the formulation produced with the highest FRR of 12.5:1, where
NMeds produced showed a higher poly-dispersity index (PDI > 0.3) and size over 250 nm.
A deeper analysis of this formulation using Photon Correlation Spectroscopy prior to
purification revealed the presence of a second population of particles with an average size
of 70 nm accounting for almost 10% of the total intensity. This abundant subpopulation was
hypothesised to be surfactant micelles [60] that could interfere with the proper formation
of the PLGA and Chol into an H-NMed, leading to the low weight yield of 24% after
purification, due to the poor pelleting of the small surfactant micelles.

Table 2. Physico-chemical characterization of H-NMeds obtained with the microfluidic device varying the Flow Rate Ratio
(FRR). Standard Deviation (SD) is reported in parentheses.

[Materials] FRR Size (SD) PDI (SD) Zeta (SD) Weight Yield
% (SD)

Pluronic %
(SD)

Chol Recovery
% (SD)

Chol Content
% (SD)

10 mg/mL 12.5:1 260 (45) 0.34 (0.04) −27 (7) 24 (4) / / /

10 mg/mL 6:1 173 (6) 0.27 (0.03) −25 (5) 56 (6) 72 (13) 31 (2) 27 (1)

10 mg/mL 3:1 185 (0) 0.16 (0.02) −26 (6) 49 (6) 42 (1) 51 (1) 52 (0)

10 mg/mL 2:1 262 (15) 0.19 (0.03) −29 (5) 71 (3) 19 (3) 77 (6) 54 (4)

10 mg/mL 1.5:1 254 (52) 0.59 (0.04) −28 (5) 53 (4) 16 (3) 41 (5) 46 (5)

10 mg/mL 1:1 245 (48) 0.57 (0.08) −29 (6) 51 (2) 14 (1) 42 (2) 41 (2)

On the other hand, the size distribution, PDI, and surface charge of every other
formulation demonstrated the possibility to successfully formulate H-NMeds with various
FRRs with similar physical characteristics to those created with the benchtop method;
however, evident differences were found in their composition. In particular, analysing
the amount of surfactant stably connected to the H-NMeds, a decreasing trend could
be observed with the decreased FRR ranging from over 70% to a minimum of about
15%. Specifically, the selection of an FRR of 6:1 and 3:1 resulted in structures with a very
high amount of surfactant, hinting towards the formation of particles with a different
architecture with respect to the H-NMeds obtained by nanoprecipitation. Formulations
produced with FRRs lower than 2:1 were the most similar to the classic benchtop H-NMeds,
with a Pluronic® F68 content of less than 20%, and 40–50% of the matrix being composed
of Cholesterol (Figure 1B).

Nevertheless, the formulation with FRR 2:1 was the only one that showed the for-
mation of homogeneous and monodispersed H-NMeds, as decreasing the FRR to 1.5:1
or 1:1 led to samples with a very high PDI > 0.4, which is generally considered a cutoff
to determine whether a sample is homogeneous in size [61], and a higher variability in
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size. Additionally, the formulation with FRR or 2:1 also showed the highest recovery of
Cholesterol, almost 80%, hinting towards a lower loss of materials, a crucial point for an
industrially relevant environment. For these reasons, H-NMeds produced with an FRR of
2:1 were deemed to be the most promising to be further optimized.

3.2. Variation in the Total Concentration of the Starting Material in the Organic Phase

The second step of the investigation on nanoproduction optimization was performed
using a constant FRR of 2:1 and varying the total concentration of materials in the organic
phase. Previous studies have pointed out an interesting relationship between the concen-
tration of polymers or lipids in the organic phase and the size of the resulting NMeds,
where an increase in their concentration of starting materials produces bigger polymeric
NMeds [16,56,61,62] but smaller liposomes [63]. Regarding other types of NMeds con-
sisting of both polymer and lipids, it is difficult to find information in the literature data
that could help predicting the behaviour of our H-NMeds, as those are often formulated
with dissolving phospholipid derivatives in the aqueous phase, and separately modifying
the concentration of the polymer or the lipid [12,28,64–68] eventually leads to the same
trends reported for single components. As reported in Table 3, each formulation resulted
in an average size between 250 and 300 nm, with PDI < 0.3 and strongly negative surface
charges of almost −30 mV. Nonetheless, it was possible to observe an inverse trend where
the size decreased with an increased concentration from 5 to 30 mg/mL. This behavior
could be attributed to a stronger influence of the lipidic component, which was calculated
to account for slightly more than 50% of the total composition of the H-NMeds. Looking at
the composition of these formulations, the amount of Pluronic® F68 stably connected to
the H-NMeds followed a trend where the Pluronic® F68 decreased from 35 to 10% when
the concentration of the core materials in the organic phase was increased. As previously
mentioned, the residual surfactant stably associated with the matrix of an NMed is a crucial
parameter to be evaluated. As reported in the literature, the type and surfactant not only
influence the formation of the NMeds depending on their characteristics, such as HLB,
molecular structure, and critical micelle concentration, but can also determine colloid
stability: in fact, the concentration of the surfactant in the medium has an optimum, over
which colloid stability decreases. Lastly, it impacts the interaction of NMeds with biological
environments, as it can induce the formation of a protein corona with a different compo-
sition [69–73]. Despite their important role, surfactants are often considered secondary
components of NMeds and remain unquantified. Here, we report a significant reduction
in the amount of residual surfactant in these H-NMeds (* p < 0.02) by only varying the
concentration of other core materials, underlining the importance of their quantification
when optimizing a formulation protocol.

Table 3. Physico-chemical characterization of H-NMeds obtained with the microfluidic device varying the initial concentra-
tion of core materials in the organic phase. Standard Deviation (SD) is reported in parentheses.

[Materials] FRR Size (SD) PDI (SD) Zeta (SD) Weight Yield
% (SD)

Pluronic %
(SD)

Chol Recovery
% (SD)

Chol Content
% (SD)

5 mg/mL 2:1 287 (11) 0.22 (0.02) −24 (6) 69 (2) 35 (3) 76 (2) 55 (1)

10 mg/mL 2:1 262 (15) 0.19 (0.03) −29 (5) 71 (3) 19 (3) 77 (6) 54 (4)

20 mg/mL 2:1 254 (3) 0.22 (0.02) −27 (7) 69 (5) 25 (6) 69 (2) 50 (1)

30 mg/mL 2:1 248 (25) 0.28 (0.08) −28 (5) 71 (9) 10 (8) 77 (12) 54 (10)

Globally, no critical differences were found among these formulations in weight
yield, Cholesterol content or physical characteristics. Considering the composition, the
most similar H-NMed to our reference was the one obtained at the highest concentration
of 30 mg/mL. Nevertheless, this concentration was experimentally found to be at the
solubility limit of the PLGA and Cholesterol mixture, leading to a higher variability both
in physical characteristics and composition as evidenced by the higher SD values for these
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results. Therefore, we decided to subject to further optimization the formulation produced
with an initial concentration of 20 mg/mL (Figure 2A).
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3.3. Variation of the PLGA: Cholesterol Ratio

The next step to optimize a microfluidic based protocol to produce H-NMeds was
to test the possibility to use different ratios between PLGA and Cholesterol in the stock
organic phase. To do this, H-NMeds were produced with a set FRR of 2:1 and a total
concentration of materials of 20 mg/mL, ranging from a fully polymeric NMed of 100%
PLGA to a fully lipidic one of 100% Cholesterol (Table 4).

Table 4. Physico-chemical characterization of H-NMeds obtained with the microfluidic device varying the ratio between
PLGA and Cholesterol. Standard Deviation (SD) is reported in parentheses.

[Materials] FRR PLGA:Chol
Ratio Size (SD) PDI (SD) Zeta (SD) Weight Yield

% (SD)
Pluronic %

(SD)
Chol Recovery

% (SD)
Chol Content

% (SD)

20 mg/mL 2:1 0:100 402 (21) 0.24 (0.10) −24 (4) 64 (6) 20 (10) 37 (3) 67 (5)

20 mg/mL 2:1 25:75 391 (27) 0.20 (0.04) −28 (6) 54 (4) 21 (5) 35 (4) 48 (6)

20 mg/mL 2:1 50:50 254 (3) 0.22 (0.02) −27 (7) 69 (5) 25 (6) 69 (2) 50 (1)

20 mg/mL 2:1 75:25 223 (2) 0.26 (0.03) −27 (6) 70 (4) 22 (10) 82 (6) 29 (2)

20 mg/mL 2:1 100:0 154 (1) 0.22 (0.00) −32 (5) 82 (4) 20 (9) / /

PCS analysis revealed that it was possible to formulate NMeds at each ratio tested,
with average size less than 400 nm, low PDI, and a strongly negative surface charge.
However, it is clearly evident that a high presence of lipid in the organic phase correlates
with an increase in the size, while an increase in the polymeric concentration corresponds
to a size reduction. This evidence is in contrast to the trends reported in the literature and
described above, in which polymers or lipids are used alone or in separate phases. In fact,
these data suggest, without any literature precedent, a unique behavior of these H-NMeds,
different from more simple situations where the interaction between polymeric chains and
lipidic molecules dissolved in the same organic phase produces a novel effect.

At the same time, WY % also showed a significantly decreasing trend (* p < 0.05)
related to an increase in the lipidic fraction used in the organic phase. This could be
correlated with a different density of fully polymeric NMeds compared to fully lipidic
ones, leading to a diverse reaction to the centrifugal forces applied during purification [74].
However, the lowest value of WY % reported was still not significantly different (p = 0.09)
from that obtained with the original nanoprecipitation method (64 ± 6 vs. 77 ± 8%).

Compositional analysis revealed that the amount of Pluronic® F68 that was stably
recovered with the NMeds was independent from the variation of the organic phase com-
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position and remained constant at around 20%, indicating that this value, from a process
point of view, was more intimately linked to the FRR (Table 2) and total concentration
of material in the organic phase (Table 3) during microfluidic formulations. Interestingly
an increase in the Chol concentration in the stock organic phase did not correlate with a
significant increase in its final content. In fact, when 75% of Cholesterol was used in the
initial phase, the recovered NMeds showed a composition of around 50% of Cholesterol,
despite the much higher initial concentration. This finding is again describing a difference
in comparison to previous reports [40] in which the H-NMed obtained with benchtop
nanoprecipitation procedures was shown to roughly keep within the NMed composition
the cholesterol content from starting to the final step, confirming that changing the technol-
ogy of production (from benchtop to microfluidic) impacted the composition of produced
NMeds [75].

Among the formulations in Table 4, interestingly the PLGA:Chol ratio of 75:25 revealed
the composition most similar to the composition of the benchtop-derived H-NMeds (with a
similar Chol content % [29 vs. 36% (p = 0.17)], Cholesterol recovery Figures 1A and 2B), and
residual Pluronic® F68 amounts (p = 0.09), although H-NMed obtained with microfluidics
showed high variability in this last value (22 ± 10).

3.4. Stability Test and Morphology

To further assess if the most similar formulation showed other similar characteristics,
the two optimized H-NMeds were tested for storage stability. Storage stability is crucial for
industrial and clinical use: a good storage stability allows for easier industrial production
and transport of therapeutics, while the lack of storage stability implies that the product has
to be formulated the same day of administration, increasing human error and variability.
H-NMeds from benchtop protocols are known to be stable to lyophilization; therefore,
samples of benchtop-and microfluidic-derived H-NMeds were lyophilized and tested
for size and homogeneity analysis after resuspension. Moreover, different amounts of
cryoprotectant were added, from 0 to 6 times the weight of the H-NMeds in the aliquots
tested. The method of freezing was also varied, using a standard slow freezing method
and flash freezing by immersion in a dry ice and methanol bath (Figure 3A).

Data analysed revealed an evident difference between the H-NMeds from the two
formulation techniques. Benchtop-formulated NMeds showed little to no aggregation after
resuspension, especially with the addition of trehalose at a 1:1 or 3:1 ratio, with a size
remaining under 300 nm and PDI lower than 0.4 independently from the freezing method.
On the other hand, H-NMeds obtained with the microfluidic technology showed poor
resuspension, with the formation of aggregates in the micrometric range and PDI close to 1
in all cases tested. Due to the poor prospect of lyophilized storage, another set of aliquots
was then tested with the same variables for storing the samples frozen to verify which
of the two steps was so detrimental for H-NMeds stability (Figure 3B). In fact, this test
revealed that freezing alone also led to the aggregation of microfluidic-derived H-NMeds,
showing an increase in size over 1 µm and PDI higher than 0.4. Here too, H-NMeds
produced via nanoprecipitation revealed a different behavior, with a smaller average size
and most importantly a smaller PDI around 0.2, indicating good homogeneity, compared
with their microfluidic counterparts. Moreover, these samples revealed a decreasing trend
in PDI correlated with the increase in cryoprotectant used [76], as expected from literature
data. Globally, these tests suggested that despite the two H-NMeds having a similar
composition in material percentages, they still displayed crucial differences, probably in
their architecture, that determined their different response to the same condition or process,
especially in a stressing step as freezing and lyophilization.
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Figure 3. Size and homogeneity analysis of H-NMeds (A) after resuspension of lyophilized and
(B) freeze-thawed aliquots. Bars: Size (nm), Dots: PDI. Blue bars and dots: standard freezing
−19 ◦C, Grey bars and dots: flash freezing in a dry ice methanol bath. Each value is expressed as the
Mean ± SD of three independent formulations.

In order to furnish a view of the morphology of samples, both atomic force (AFM) and
transmission microscopy (STEM) were conducted on the two different H-NMeds produced
(Figure 4).



Pharmaceutics 2021, 13, 1495 12 of 16
Pharmaceutics 2021, 13, 1495 12 of 16 
 

 

 
Figure 4. Microscopy images of H-NMeds produced via (A) nanoprecipitation or (B) the microflu-
idic device. Left panels: STEM imaging. Right panels: AFM imaging, topography, and error signal. 

STEM analysis of benchtop-derived H-NMeds confirmed the presence of a homoge-
neous sample, as previously reported [40], where H-NMeds appeared spherical and mon-
odisperse all across the sample. This was also confirmed by AFM images, where H-
NMeds displayed a sharp border and a round shape, and it was possible to measure par-
ticle diameters of 100–150 nm. These images confirmed what was already demonstrated 
in previous studies [40], i.e., the formulation of a matrix of PLGA, Cholesterol, and Plu-
ronic® F68, where all components were strongly interconnected. 

On the other hand, STEM images of microfluidic-derived H-NMeds revealed a sam-
ple with high variability, as evidenced by the two images reported in Figure 4B (left 
panel). This high variability was not recorded by PCS analysis, as this sample showed a 
low PDI of 0.26. Nevertheless, H-NMeds from of microfluidic production appeared to not 
be broadly uniform and therefore apparently less reproducible than the H-NMeds pro-
duced via nanoprecipitation. This variability in shape and size was also confirmed by 
AFM analysis: not only did the H-NMeds appear to be compressed and flattened under 
the tip of the cantilever, suggesting a softer structure, but the presence of unformed ma-
terial surrounding the surface of formed H-NMeds was also evident. It was hypothesized 
that this material consisted of excess surfactant not stably connected to the surface of H-
NMeds that was lost after deposition on the mica. Indeed, this is supported by the previ-
ous discussion regarding the quantification of Pluronic® F68, which showed a higher pres-
ence of surfactant in this sample. 

Taken together, these data suggest that the instability of the H-NMeds produced by 
microfluidics may be explained by an excess of Pluronic® F68 that is not stably associated 
with or incorporated into the matrix of H-NMeds. This hypothesis is supported by past 
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STEM analysis of benchtop-derived H-NMeds confirmed the presence of a homo-
geneous sample, as previously reported [40], where H-NMeds appeared spherical and
monodisperse all across the sample. This was also confirmed by AFM images, where
H-NMeds displayed a sharp border and a round shape, and it was possible to measure par-
ticle diameters of 100–150 nm. These images confirmed what was already demonstrated in
previous studies [40], i.e., the formulation of a matrix of PLGA, Cholesterol, and Pluronic®

F68, where all components were strongly interconnected.
On the other hand, STEM images of microfluidic-derived H-NMeds revealed a sample

with high variability, as evidenced by the two images reported in Figure 4B (left panel).
This high variability was not recorded by PCS analysis, as this sample showed a low
PDI of 0.26. Nevertheless, H-NMeds from of microfluidic production appeared to not be
broadly uniform and therefore apparently less reproducible than the H-NMeds produced
via nanoprecipitation. This variability in shape and size was also confirmed by AFM
analysis: not only did the H-NMeds appear to be compressed and flattened under the
tip of the cantilever, suggesting a softer structure, but the presence of unformed material
surrounding the surface of formed H-NMeds was also evident. It was hypothesized that
this material consisted of excess surfactant not stably connected to the surface of H-NMeds
that was lost after deposition on the mica. Indeed, this is supported by the previous
discussion regarding the quantification of Pluronic® F68, which showed a higher presence
of surfactant in this sample.

Taken together, these data suggest that the instability of the H-NMeds produced by
microfluidics may be explained by an excess of Pluronic® F68 that is not stably associated
with or incorporated into the matrix of H-NMeds. This hypothesis is supported by past



Pharmaceutics 2021, 13, 1495 13 of 16

literature cited above, which confirmed that the amount of surfactant in the medium
of NMeds plays a pivotal role in NMed stability, as it displays an optimum range of
concentration, and an excess, especially if not strongly connected to the NMeds, could lead
to instability due to its rearrangement into different structures [77,78].

4. Conclusions

In recent years, microfluidic technologies have taken the spotlight as a promising tool
for the successful production of NMeds up to a global scale, as recently highlighted by
the production of an NMed-based COVID19 vaccine. Nevertheless, the transition from
established small-scale benchtop protocols to microfluidic devices faces several issues
to produce NMeds with analogous features of those already optimized with benchtop
protocols. In particular, several microfluidic parameters have to be taken into consideration,
such as the flow rate ratio, concentration of core materials, and type of materials used, each
of which could have an impact on NMed characteristics. Therefore, in this study, we aimed
to investigate the translation of a well-known multi-component H-NMed consisting of
PLGA and Cholesterol stabilized with Pluronic® F68 from already established benchtop
methods to a microfluidic device, in view of the possible exploitation of the unquestionable
potential of microfluidic technology to standardize the production of these H-NMeds
towards the high standards needed for GMP approval. Using an FRR of 2:1, a concentration
of 20 mg/mL, and an initial ratio of PLGA:Cholesterol of 75:25, it was possible to reach
the production of H-NMeds with statistically similar composition and chemico-physical
properties to the benchtop ones, but still they displayed a critically different behavior
when tested for storage stability. These data demonstrate that the translation of a multi-
component system from an optimized benchtop method to a microfluidic-based system
requires extensive efforts in terms of work and time in order to determine the optimal
settings, not only during the microfluidic formulation, but also in the selection and amount
of stabilizers, and methods for purification and storage, to ensure that the NMeds will have
reproducible physico-chemical characteristics, composition, structures, and stabilities.
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