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Abstract: Controlling populations of free-roaming dogs and cats poses a huge challenge worldwide.
Non-surgical neutering strategies for male animals have been long pursued, but the implementation
of the procedures developed has remained limited to date. As submitting the testes to high temper-
atures impairs spermatogenesis, the present study investigated localized application of magnetic
nanoparticle hyperthermia (MNH) to the testicles as a potential non-surgical sterilization method for
animals. An intratesticular injection of a magnetic fluid composed of manganese-ferrite nanoparticles
functionalized with citrate was administered followed by testicle exposure to an alternate magnetic
field to generate localized heat. Testicular MNH was highly effective, causing progressive seminifer-
ous tubule degeneration followed by substitution of the parenchyma with stromal tissue and gonadal
atrophy, suggesting an irreversible process with few side effects to general animal health.

Keywords: infertility; testicles; spermatogenesis; magnetohyperthermia; nanocontraception

1. Introduction

In recent decades, nanotechnology has been substantially introduced into biomed-
ical applications, including reproductive biology and medicine. Most studies focused
on improving the efficacy and precision of diagnostics and treatments for reproductive
cancers and non-cancer conditions, while others investigated the use of nanomaterials as
instruments in assisted reproduction and reproductive biology (see in [1] for a review).
More recently, nanotechnology has been explored as a tool to develop male contraceptive
methods [2–6], especially for animals.

Controlling populations of free-roaming animals, particularly dogs and cats, is a huge
challenge worldwide. Such animals pose public health [7] risks as they may transmit
diseases to domestic animals and humans [8–10]. They are also troublesome in urban
environments as they spread domestic waste, cause traffic accidents, and attack people,
not to mention their potential threat to disrupt the ecological balance by preying on wild
animals. Culling cats and dogs is no longer deemed acceptable and has proven ineffective
in controlling population growth. Neutering, on the other hand, is a more humane and
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effective alternative to control stray animal populations [11]. The so-called Trap-Neuter-
Return (TNR) is a recent approach to control both stray and feral animal populations in
the long term by creating groups of sterile animals, slowing the reproductive rate, and
eventually decreasing the number of stray animals [7,12,13].

Although surgical castration is the technique of choice to neuter male animals, it presents
complications, including risk of infection and the need for postoperative care [14–17]. There-
fore, non-surgical neutering alternatives for male animals have been researched for a long
time. Several studies investigated the effects of intratesticular or intraepididimal injections
of sclerosing agents, such as zinc gluconate [18–23], calcium chloride [24,25], hypertonic
saline [26], formalin, chlorhexidine gluconate, and zinc arginine [27–29]. However, these
methods had limited use due to several undesirable side effects [18,21], and mainly because
the resulting infertility was never proven to be permanent.

Alternative strategies to chemical sclerosing agents have also been investigated. It
is well known that the testes are sensitive to temperature fluctuations, and that testicular
hyperthermia causes structural and functional changes in the testes, which in turn im-
pairs spermatogenesis [30,31]. Strategies exploring the heat sensitivity of testicular cells
have been studied since the 1970s in search of a contraceptive method. An earlier study
investigated several heating methods, including immersion in hot water, infrared light
incidence, microwave, and ultrasound, together with different target temperatures (39,
40, 60, and 65 ◦C) [32]. More recent studies focused on using a water bath or ultrasound
as approaches for thermal male contraception in rats [33–36] and dogs [37,38]. Although
these methods are noninvasive and cause no, or only few, side effects, the induced in-
fertility is reversible [34,36]. More importantly, the aforementioned techniques demand
several applications and prolonged treatment which is undesirable for large-scale neutering
method to be applied to unowned animals. Therefore, an optimized system capable of
inducing testicular hyperthermia with a single procedure to achieve irreversible infertility
is still needed.

Hyperthermia may be enhanced using magnetic nanoparticles (MNPs) as in the so-
called magnetic nanoparticle hyperthermia (MNH). This technique exploits the unique
physical properties of MNPs to increase the temperature in target tissues and/or organs.
MNPs convert magnetic energy into heat [39], which only occurs when both the MNPs and
an external AC magnetic field of adequate frequency and field amplitude are present. There-
fore, this technique allows controlled and adjustable heating of a specific well-delimited
region for a precise duration. Nowadays, MNH is under investigation as a therapeutic
procedure to treat different types of tumors, with promising outcomes (for reviews see
in [40,41]), and has been approved for clinical use to treat brain tumors [40].

Considering the high effectiveness of this method in producing uniform localized
heat, we investigated testicular MNH as a potential animal sterilization method. The study
evaluated the effect of the proposed treatment on the reproductive parameters of Wistar
rats during spermatogenesis.

2. Materials and Methods
2.1. Magnetic Nanoparticles, Animals and Experimental Design

A magnetic fluid (MF) composed of manganese ferrite-based nanoparticles surface-
coated with citrate (MnFe2O4-citrate) was used. The MnFe2O4-citrate nanoparticles were
synthesized as reported by Branquinho et al. [42]. The magnetic nanoparticles were
characterized by several techniques. Transmission electron microscopy (TEM) micrographs
were obtained using a JEOL JEM 2100 (Jeol, Tokyo, Japan). Dynamic light scattering used
Malvern Zetasizer Nano S equipped with a 633 nm He-Ne laser operating at an angle of
173 degrees. The concentration of nanoparticles was obtained by magnetic characterization
using a vibrating sample magnetometer (model EV9, ADE Magnetics). In vitro magnetic
hyperthermia measurements used the magneTherm 1.5 AC (nanoTherics, Warrington,
UK) operating at 330 kHz. Temperature monitoring was performed using a LUXTRON
3300 m optical probe thermometer (LumaSense Technologies, Denver, CO, USA). In vitro
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specific loss power (SLP) estimation was obtained using the experimental initial MNH
slope heating rate [42,43]. The in vivo magnetic nanoparticle hyperthermia experimental
setup consisted of an Ambrell system model EasyHeat-LI (Ameritherm, Inc., Scottsville,
NY, USA) operating at 301 kHz with a Helmholtz-like (2+2)-turn coil configuration that is
cooled with a closed-loop circulating water system (maintained at 20 ◦C). The experimental
setup also used an infrared thermal camera (model SC 620, FLIR, Wilsonville, OR, EUA).
The AC field amplitude was determined in the region of interest using an AC field probe
(AMF Lifesystems, Rochester, MI, USA). Experimental details can be found in [44].

Twenty-two 6–7-week-old male Wistar rats with a mean weight of 244.1 ± 31.6 g
(ranging from 200 to 300 g) were maintained in groups of 4–5 animals in polyurethane cages
at 25 ◦C, with a 12/12 h light/dark cycle, and ad libitum access to tap water and commercial
food (Nutrina®). All animal experiments were approved by the Ethics Committee on
Animal Use of the University of Brasilia (Protocol Number: 138067/2012).

The animals were divided into 4 groups according to the treatment received: (1) Saline
Group (N = 2)—animals received an intratesticular injection of sterile saline solution; (2) MF
Group (N = 2)—animals received an intratesticular injection of the magnetic fluid; (3) AC
Group (N = 3)—animals were exposed to the external AC magnetic field only; and (4) MNH
Group (N = 15)—animals received an intratesticular injection of the magnetic fluid and
were subsequently exposed to the external AC magnetic field to produce testicular MNH.
The MNH Group animals (N = 15) were divided into 3 subgroups (N = 5 per subgroup), to
be evaluated: 7 (MNH-D7 Group), 28 (MNH-D28 Group), and 56 (MNH-D56 Group) days
after the treatment (Figure 1).
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MNH Group, animals received an intratesticular injection of the magnetic fluid
and were exposed to the external AC magnetic field. Animals were divided into 3 subgroups and
evaluated: 7 (MNH-D7 Group), 28 (MNH-D28 Group), and 56 (MNH-D56 Group) days after the
magnetic nanoparticle hyperthermia treatment.

2.2. Experimental Procedures

Prior to any experimental procedure, the animals underwent anesthesia with ketamine
(90 mg/kg) and xylazine (10 mg/kg), intraperitoneally. The MF and MNH group animals
received an intratesticular injection (150 µL) of the magnetic fluid in each testicle, applied
equally at 3 different points (top, middle, and bottom) using a 32 G needle. Injected volume
was calculated in a preliminary experiment to not excessively increase the organ’s pressure,
and no fluid reflux was observed during the experiment. MNH Group animals were then
positioned to expose their testicles to an alternating magnetic field operated at 300 kHz,
with an average field amplitude of 240 Oe at the testes region. The protocol was similar to
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other studies conducted by the group [43,44]. Temperature was monitored using 3 fiber-
optic temperature sensors: 1 sensor positioned on the surface of each testicle and the other
inserted into the animal’s rectum to measure rectal temperature. The mean temperature at
the surface of the testicles was also monitored using an infrared thermal camera following
the protocol of Rodrigues et al. [43]. MNH group animals had the testicular temperature
monitored for the entire time, and treatment was maintained for 15–20 min. AC group
animals were anesthetized and exposed to the magnetic field for 15 min under the same
conditions as the MNH group animals without receiving any intratesticular injection.
Saline group animals received an intratesticular injection (150 µL) of sterile saline solution
in the same manner.

After treatment, all animals received a single dose of analgesic and anti-inflammatory
(Banamine—1.1 mg/kg SC). All animals were observed daily for behavior, change(s) in
general appearance, signs of pain (according to grimace scale [45] and body condition [46]),
food consumption, and weight until the end of the experiment.

The MNH-D7, MNH-D28, and MNH-D56 group animals were euthanized at 7, 28,
and 56 days after the treatment, respectively. The animals in the other groups were
euthanized 7 days after the treatment (Figure 1). The euthanasia was performed by
anesthetic overdose (ketamine-xylazine) and cardiac puncture. The liver, kidneys, lungs,
spleen, and testicles were harvested from all animals. Both testicles were measured (length
and width), weighed, and processed for histopathological analysis. The other organs were
weighed, with one sample fixed for histopathological analysis, and another frozen for the
posterior quantification of MNPs by Ferromagnetic Resonance (FMR) [47].

Testicular volume was determined using testicular length and width, according to
Louvandini et al. [48]. The absolute weight of each organ (liver, kidneys, lungs, spleen, and
both testicles) was transformed into relative weight using the formula:

organ weight
body weight

× 100 (1)

2.3. Histological Processing

Organs were fixed in Bouin’s solution (testicles) or 10% formaldehyde (liver, kidneys,
lungs, spleen) and processed for classical histology. Sample sections (5 µm thick) from each
organ were stained with hematoxylin and eosin, and evaluated under a light microscope
(Nikon Eclipse Ci-S, Tokyo, Japan).

2.4. MNP Detection and Quantification by Ferromagnetic Resonance (FMR)

To quantify the MNPs in each organ, the liver, kidneys, lungs, and spleen of all animals
were individually macerated and homogenized in distilled water with an ultra-turrax®

(IKA® Werke Staufen, Königswinter, Germany), and the homogenate lyophilized (L101,
Liotop, São Carlos, SP, Brazil). Powdered samples were placed in capillary glass tubes,
weighed and sealed. Samples were analyzed using an X-band in a Bruker spectrometer
(Bruker EMX plus, Bremen, Germany) with a high-sensitivity cavity (Bruker ER 4119HS,
Bremen, Germany). The spectra were collected at room temperature, 10 G modulation,
2 mW microwave power, and one scan. A calibration curve was constructed to determine
the MNP concentration in the different organs using diluted samples of known MNP
concentrations: 0.375 µg/mL, 0.75 µg/mL, 1.5 µg/mL, and 2.94 µg/mL.

The signaling detected by FMR is exhibited as a graph with 2 peaks, the amplitude
measurement (peak to peak) acquired divided by the sample mass corresponds to the MNP
concentration in each sample. The results obtained were represented in arbitrary units
(A.U.) of nanoparticles per gram of dried tissue.

2.5. Statistical Analysis

All of the data were tested for normality using the Shapiro–Wilk test. Data were
compared among groups by the ANOVA and Tukey tests using the GraphPad Prism
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8.0.2 software (GraphPad Software, Inc., San Diego, CA, USA), with 5% considered as the
minimum level of significance.

3. Results
3.1. Magnetic Nanoparticle Hyperthermia

The analysis of TEM pictures revealed spherical nanoparticles with a lognormal size
distribution. The mean diameter was 11 nm with a standard deviation of 3 nm (see
Figure 2A). In Figure 2B, the dynamic light scattering data revealed the colloidal hydro-
dynamic size distribution (mean diameter of 51.2 nm and PDI of 0.20). The in vitro MNH
experiments used a particle concentration of 28.5 mg MnFe2O4 NPs per mL. Figure 2C
shows the magnetic response of the magnetic colloid at different field amplitudes (100, 125,
and 150 Oe) for a frequency of 333 kHz. The magnetic heating efficiency, also known as
SLP, is shown in Figure 2D as function of the square of the field amplitude. The dash line is
the best fit of the data using the linear response theory that predicts a linear dependence
with H2. From this analysis we estimated the in vivo SLP, under the treatment’s magnetic
field conditions (240 Oe), to be ~170 W/g.
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Figure 2. (A) Particle size distribution obtained from analysis of TEM pictures. Inset shows a
representative TEM picture. (B) Dynamic light scattering data of the Mn-ferrite based colloid.
(C) In vitro MNH temperature profile of a magnetic sample in three magnetic field amplitudes for a
frequency of 333 kHz. (D) Specific loss power (SLP) as function of the square of the magnetic field.
Data obtained using a particle concentration of 28.5 mg/mL.

Figure 3 presents typical thermographic images of animals submitted to AC magnetic
fields for 20 min. Figure 3D shows an AC group animal (that did not receive the MF
injection), while Figure 3B shows an MNH Group animal. A temperature increase was
observed in the MNH Group (peaking at ~45 ◦C), while no significant heat generation was
observed in animals not injected with MNPs (AC Group). As expected, heat generation
was restricted to the region injected with MNPs (see Figure 3C), i.e., the testicles. Figure 3E
shows the rectal and testicular (left and right) temperature profiles of both animals during
the treatment. Rectal temperature was obtained with a fiber-optic temperature sensor
inserted into the rectum, while the left and right testicular temperatures are mean values
obtained using thermal camera analysis of a large region of interest within the testicles.
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One can observe that the rectal temperature is elevated and close to the testicle temperature
data. Rectal temperature variation is high due to heat transfer from the testicles that are in
close proximity to the rectum in the experimental configuration, which does not result in
whole-body blood temperature increase, as can be observed by the thermal camara image
(Figure 3B). Note that no animal died during the treatment, and we found no evidence
of a surface temperature increase on any other part of the animal’s body. The AC Group
showed a slight increase in temperature, achieving around 37 ◦C for this animal, while the
MNH Group animal temperatures were close to 45 ◦C. The mean temperature increase
during treatment for all animals in each group is shown in Figure 3F. In the left (right)
testicle, we observed a temperature increase of 13.9 ± 2.49 ◦C (14.7 ± 2.45 ◦C) for the MNH
Group, while for the AC Group the mean value increased to 5.68 ± 1.30 ◦C (5.45 ± 2.16 ◦C).
This temperature rise was higher than observed in the rectum (1.66 ± 1.24 ◦C), suggesting
that there was a slight temperature increase for the AC Group associated with free current
loss. Once the hyperthermia treatment was completed, testicular temperature returned to
basal within 4–5 min.
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Figure 3. (A) Positioning of the animal’s testicles on the magnetic field coil. Note: fiber-optic probes to
measure testicular and rectal temperatures. (B) Thermographic image of an animal during the procedure
of magnetic nanoparticle hyperthermia when the average temperature of the testicles was 45 ◦C. It is
possible to visualize that the only heated part of the body is the testicular area. (C) Photograph of the
testicular region of the same (B) MNH group animal. (D) Thermographic image of an AC group animal
after 15 min of magnetic field exposure. Note that no heat generation was observed in the testicular
region. (E) Temperature data of both animals, MNH group and AC group, during treatment. Rectal
temperature was obtained using a fiber-optic thermometer, while the left and right testicle temperatures
correspond to an average value obtained using the thermal camera. (F) Temperature increase in AC and
MNH groups considering all animals investigated (mean ± SD).
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3.2. Clinical Observations

There were no complications during the MNH procedure in any of the treated animals.
One animal of the MNH group died 3 days after the treatment. Although the autopsy
did not indicate that the cause of the death was related to the treatment, this may not be
discarded. All animals experienced typical weight gain associated with aging during the
experiment, with no significant difference between groups (p > 0.05). Only a few animals
presented some weight loss in the first 24 h after the treatment, which was not specific to
the treatment group.

None of the animals showed any change in general appearance after the treatment. The
animals in the Saline and AC groups presented a scrotum area with typical characteristics
and color, without lesions of any kind (Figure 4A). The MF group animals presented testicles
with a darkened aspect (observed through the skin) relating to the magnetic fluid injected.
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Figure 4. Macroscopic aspect of the scrotum of Wistar rats from (A) AC group (testicles exposed
to the external AC magnetic field only) 7 days post-treatment, (B) MNH group (testicles injected
with magnetic fluid and exposed to the external AC magnetic field) 4 days post-treatment, (C) MNH
Group 15 days post-treatment, and (D) MNH Group 56 days post-treatment.

All animals subjected to testicular MNH showed discrete swelling of the testicles
and thinner scrotum skin for the first 7 days after treatment. These animals exhibited an
abnormal behavior: constant licking of the scrotum. Skin lesions were observed in the
cranial region of the scrotum in 57% (8/14) of the animals (Figure 4B). Despite this, the
animals did not show signs of pain according to grimace scale [45] or body condition [46].
This inflammatory process gradually regressed and completely disappeared within 15 days
(Figure 4C). In some animals, complete atrophy of the testicles and scrotum was observed
56 days after the treatment (Figure 4D).

3.3. Macroscopic Testicular Analysis

During the necropsy, the testicles of MNH-D7 group animals were dark and adhered
to the scrotal skin. Animals from the MNH-D28 group presented testicular atrophy, and ab-
sence of the left testicle was observed in one animal. In animals from the MNH-D56 group,
3 testicles had disappeared (30% loss of testes in group MNH-D56-3/10 testicles), while
the remaining testicles were atrophied and adhered to the scrotal wall. No macroscopic
changes in the testicles were observed in animals of the Saline and AC groups, while the
MF group animals only exhibited darkening of the testicles.

A significant decrease (p < 0.05) in relative testis weight was observed in the MNH-D56
and MNH-D28 groups compared to the MNH-D7, AC, MF, and Saline groups (Figure 5A).
A significant decrease (p < 0.05) was also noticed in testicular volume in MNH-D7, MNH-
D28, and MNH-D56 compared to the AC, MF, and Saline groups (Figure 5B).
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Figure 5. (A) Mean (±SD) relative testis weight (%) and (B) Mean (±SD) testicular volume (cm3) for each experimental
group on the day of euthanasia. (ABC—different letters indicate significant difference, p < 0.05.) AC Group animal testicles
were exposed to the external AC magnetic field only. MF Group animals received an intratesticular injection of the magnetic
fluid only. Saline Group animals received an intratesticular injection of sterile saline solution. MNH Group animals received
an intratesticular injection of the magnetic fluid and had their testicles exposed to the external AC magnetic field.

3.4. Testicular Histopathology

All germline cells (spermatogonia, spermatocytes, spermatids, and spermatozoa)
were observed inside the seminiferous tubules in animals of the Saline (Figure 6A) and AC
(Figure 6B) groups, with tubular and stromal tissue structures intact. The same morpho-
logical characteristics were observed in the MF group, and it was also possible to identify
agglomerates of nanoparticles in the interstitial tissue (Figure 6C).

MNH-D7 group animal testicles (Figure 6D–F) presented seminiferous tubules with
a completely uncharacterized seminiferous epithelium. Spermatogonia were the only
cells with normal morphology, while other germinative line cells, when present, had a
vacuolized cytoplasm (Figure 6D). Some tubules presented blood leakage into the tubular
compartment (coagulative necrosis), and inflammatory infiltrates were observed in the
interstitial tissue (Figure 6E). In addition, aggregated nanoparticles were also visualized in
the interstitial tissue (Figure 6F).

MNH-D28 group (Figure 6G–I) animal testicles possessed the most seminiferous
tubules with an atypical structure. No germline cells were identified. The only cells inside
the seminiferous tubules were Sertoli cells, albeit in a low number. Most tubules showed
signs of coagulative necrosis (Figure 6G,H). The interstitial tissue was thicker, with more
connective tissue (Figure 6H), which appears to be invading the lumen of the tubules
(Figure 6I). Rupture of some seminiferous tubules could be seen (Figure 6H,I), together
with nanoparticle agglomerates (Figure 6G,H).

Histopathological analysis of MNH-D56 group animal testicles (Figure 6J–L) showed
an evolution of those presented by the MNH-D28 group. The seminiferous epithelium
completely lost its definition and began to be replaced by connective tissue. In some
animals, this exchange appeared to be complete (Figure 6L). Minor inflammatory infiltrates
(Figure 6J), and nanoparticle agglomerates were still visible (Figure 6K).
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Figure 6. Representative photomicrographs of testicles from the: Saline (A), AC (B), and MF (C) groups, presenting normal
seminiferous tubules and all germline cell types. In the MNH-D7 group (D–F), the seminiferous tubules presented damage
to the germinal epithelium and rupture of the basement membrane was observed (D), in addition to blood leaking into
the tubular lumen and inflammatory infiltrate (*) in the interstitial tissue (E). It was possible to identify nanoparticle
agglomerates in the interstitium (F). In the MNH-D28 group (G–I), seminiferous tubules showed coagulative necrosis (G),
the interstitial connective tissue was thickened (H), and the typical tubular structure was lost (I). Nanoparticle agglomerates
are still visible in the interstitium (G,H). In the MNH-D56 group (J–L), seminiferous tubules lost definition (J,K) and began
to be replaced by connective tissue (L), the nanoparticle agglomerates are still visible (K). »: nanoparticle agglomerates;
black arrows: seminiferous tubule basement membrane rupture; *: inflammatory infiltrate. Bars = 10 µm.

3.5. Analysis of Vital Organs and MNP Quantification

The liver, spleen, lungs, and kidneys showed normal macroscopic appearance in all
animals of all groups. No statistical difference (p > 0.05) was observed among groups
regarding the relative weight of these organs (Table 1).

The FMR signals for all organs of animals that did not receive MF injections (i.e., Saline
and AC groups) were insignificant (less than 110 a.u.). In all animals that received MF
injections, the liver was the organ that showed the highest signaling, significantly more
(p < 0.05) than the other organs, and significantly higher (p < 0.05) 7 days after the treatment
(5427 a.u.) when compared to Day 28 (1376 a.u.) and Day 56 (1735 a.u.) post-treatment.
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The detection of MNPs in the spleen did not significantly (p > 0.05) change with time,
with mean amounts of 1014, 240, and 222 a.u. on Days 7, 28, and 56 after the treatment,
respectively. The amount of MNPs found in the kidneys (less than 65 a.u.) and lungs (less
than 150 a.u.) was considered insignificant at all evaluated timepoints.

Table 1. Mean (± SD) relative weight (%) of organs on the day of euthanasia for the different
experimental groups.

Organ AC MF Saline MNH-D7 MNH-D28 MNH-D56

Liver 3.56 ± 0.37 4.23 ± 0.13 4.36 ± 0.01 4.50 ± 0.74 3.94 ± 0.43 3.26 ± 0.16
Spleen 0.35 ± 0.02 0.63 ± 0.04 0.49 ± 0.08 0.57 ± 0.13 0.48 ± 0.08 0.35 ± 0.04
Lungs 0.65 ± 0.18 0.60 ± 0.01 0.63 ± 0.01 0.73 ± 0.21 0.52 ± 0.08 0.50 ± 0.06

Kidneys 0.46 ± 0.02 0.43 ± 0.01 0.41 ± 0.01 0.52 ± 0.19 0.43 ± 0.02 0.41 ± 0.04
AC Group animal testicles were exposed to the external AC magnetic field only. MF Group animals received an
intratesticular injection of the magnetic fluid only. Saline Group animals received an intratesticular injection of
sterile saline solution. MNH Group animals received an intratesticular injection of the magnetic fluid and had
their testicles exposed to the external AC magnetic field.

Despite the detection of MNPs in the vital organs, histopathological analysis of the
liver, spleen, lungs, and kidneys showed a normal overall appearance for the animals in all
of the experimental groups (Figure 7).
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Figure 7. Representative photomicrographs of the evaluated vital organs: (A) liver (MNH-D28
group)—elements of the hepatic triad, branches of the portal vein (pv), a branch of the hepatic artery
(ha), and a small bile duct (bd) are shown. Hepatocytes (h) are arranged in plaques radiating from the
central venule regions and extend to the portal areas; (B) spleen (MNH-D7 group)—red and white
pulp are distinguishable. The red pulp (rp) has several splenic cords, among which the sinusoids
are located, and the white pulp (wp) is made up of lymphatic tissue, predominantly lymphocytes;
(C) kidneys (MNH-D56 group)—note the glomerular capillaries (g) of a renal corpuscle, Bowman’s
space (bs), proximal (pct) and distal (dct) convoluted tubules with normal appearance; and (D) lungs
(MNH-D56 group)—the lungs of all animals were similar, and it was possible to observe pulmonary
alveoli (a), alveolar sacs, bronchioles (b), pulmonary blood vessels, connective tissue (ct) and smooth
muscle (sm). Bars = 10 µm.
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4. Discussion

The present study investigated magnetic nanoparticle hyperthermia applied locally to
the testicles as a possible animal neutering method. The results showed that this approach
was effective, causing progressive degeneration of seminiferous tubules, followed by
substitution of the parenchyma by stromal tissue and gonadal atrophy, suggesting that the
process is irreversible.

The harmful effects of heat on spermatogenesis are well documented [49]. When testi-
cles do not descend to the scrotal sac and remain within the abdomen—a condition termed
cryptorchidism, the animal is sterile, although testosterone production is not affected [50].
Transient heating of the testicles (40–45 ◦C), due to high ambient temperatures or testicle
insulation, for example, also causes germ cell degeneration and impairs spermatozoa
production [34]. In the present work, animal testicles were subjected to ~45 ◦C for 15 min
in a single procedure of magnetic nanoparticle hyperthermia. This was sufficient to cause a
rapid degenerative process of seminiferous tubules, observed as early as 7 days after the
procedure. The damage was progressive, with disruption of tubule structure, extravasation
of blood into the lumen (coagulative necrosis), and finally the replacement of germinal
tissue with connective tissue.

Testicular hyperthermia has been previously investigated as a contraceptive method
for both humans [32] and animals [37,38]. These studies used either immersion in hot
water or ultrasound to heat the testicles and generally required multiple applications
for days or weeks to induce reversible infertility [32–39]. However, while temporary
effects are intended for humans, irreversible infertility is preferred for animals. The MNH
strategy proved effective in a single procedure and caused irreversible effects. This may
be due to the homogeneity of the heat generated. During MNH, the magnetic moment of
the nanoparticles interacting with the alternating magnetic field generates heat. Unlike
the outside to inside heating of a water bath, the heat generated in MNH spreads from
inside the tissue to the outside. As the nanoparticles are well distributed in the testes and
the magnetic field can easily penetrate the body, the heat generated within the organ is
homogeneous. This is an advantage in comparison to water bath heating, ultrasound, and
photothermal treatments. Although the use of ultrasound and immersion in hot water are
less invasive treatments, MNH improved the effect of heat in gonadal tissue, enabling an
optimized hyperthermia procedure in a single application.

Note that testicular MNH only increased the temperature of the target region. Al-
though a slight increase in rectal temperature was observed when measured by the in-
trarectal fiber optical probe (observed in Figure 3E,F), the thermographic image of the
animal showed that there was no rise in body temperature (visualized in Figure 3B). This
could be due to the proximity of the rectum to the target area, which does not reflect the
body temperature. Moreover, this slight localized increase in rectal temperature did not
pose a threat to the body. This corroborates the clinical finding, where no animal died as
a result of the heat convection mechanism. This differs from whole-body MNH in which
nanoparticles may accumulate in the liver, with significant temperature increases in the
liver and blood resulting in animal death [51].

Only a few nanotechnological strategies to cause infertility in male animals have been
previously reported. The pioneering work showed that a hyperthermia treatment medi-
ated by the testicular injection of methoxy-poly(ethylene glycol)-modified gold nanorods
followed by near-infrared irradiation can induce temporary or permanent infertility in
male mice, depending on the power of the NIR irradiation [52]. Subsequent studies pro-
posed a procedure using the combined photothermal and photodynamic effects caused by
intratesticular injection of single-layer WO2.72 nanosheets [2] or plasmonic copper sulfide
nanocrystals (Cu2_xS NCs) [3] followed by NIR laser irradiation. The aforementioned treat-
ments caused the destruction of testicular tissue, decreased testosterone plasma levels in
mice within 14 days, and no recovery of reproductive functions until two months after the
procedure. More recently, a single intratesticular injection of silver nanoparticles showed
acute, but reversible, effects on spermatogenesis in rats [6]. All of these treatments showed
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no side effects on animal health over a short duration. However, as the light penetration of
tissues employed in photothermal therapy is reduced, less homogeneous heat distribution
may result within the testes, which could impact clinical results. This effect is pronounced
in animals with large testes due to inhomogeneous heat distribution within the organ. On
the other hand, MNH does not have this limitation since the magnetic field can easily
penetrate the organ. Furthermore, iron-oxide nanoparticles have a relatively low cost, are
widely used in clinics, and are easily synthesized on a large scale.

The primary degenerative process observed in the testicles submitted to MNH was
coagulative necrosis. Coagulative necrosis is also observed when sclerosant agents are
injected into the testicles [18,20,22,23], although none of the studies using this approach
affirmed that this method induces permanent infertility. In the present study, however,
the complete replacement of the parenchyma by stromal tissue strongly suggests that
the damage is permanent. In fact, gonadal atrophy was observed in all MNH-treated
animals, and testicle disappearance was witnessed in a few cases. Moreover, although
testosterone levels were not monitored at this time, the extension of testicle fibrosis suggests
that hormonal production was also impaired. Chemical castration by injecting sclerosant
agents into the testicles causes several undesirable side effects, such as scrotal swelling,
necrotizing dermatitis, ulceration, pain, and inflammation [18,21]. Regarding testicular
MNH, the only side effects observed were weight loss during the first 24 h, a mild local
inflammatory process causing discomfort (noticed by the constant licking of the area), and
a skin lesion on the scrotum (observed for 8 of the 14 treated animals). The weight loss
may simply be a consequence of the anesthesia, as the animals are less alert on the first
day and do not have typical daily consumption. The inflammatory process is expected
and may be addressed with a stronger anti-inflammatory treatment (in this experiment,
we used a low dose of Banamine only). The skin lesion may be a consequence of the
heating or constant licking of the area, as the scrotum skin is very thin and delicate. In
treatments using ultrasound, skin lesions occurred in 20% of cases [53,54]. In the present
study, the lesions healed entirely within 15 days. Furthermore, note that not all treated
animals presented lesions and that no behavioral or growth alterations were observed in
those which did. Nevertheless, the method must be improved to avoid undesirable effects.

Animals that received the MF injection only or those submitted to the magnetic field
only did not exhibit any macroscopic or microscopic alterations in testicular tissue (apart
from a dark aspect on testicles injected with MF). Moreover, no alterations were observed
regarding the relative weight or histology of the liver, spleen, kidneys, or lungs of animals
injected with the MF (submitted to MNH or not). Magnetic nanoparticles have been
used for different biomedical applications, including hyperthermia, magnetically targeted
delivery, and molecular magnetic resonance imaging diagnostics. In fact, contrast agents-
based iron nanoparticles have been approved for human use by the US Food and Drug
Administration in the USA. It is already known that when MNPs are injected intravenously
they are distributed preferentially into liver, spleen, but depending on the animals’ models
and the coating present in them, they can also be found in the lungs and kidney [47,55–60].
Although, MNPs can persist for months inside these organs, mainly in the liver and spleen,
the great majority of the studies shows that they do not cause impairment of the cited
organs, and in the long term, they are metabolized and excreted into the blood stream in
various monoatomic iron forms, that can be incorporated into hemoglobin or into ferritin
and transferrin [47,55,56,58–62].

In the present study, the magnetic signal of the nanoparticles was mainly observed in
the liver 7 days after the injection. The second organ presenting a relatively high signal was
the spleen. The signal was lower 28 and 56 days after the injection, in both the liver and
the spleen, suggesting MNPs are eliminated from the body. Even so, the signal remained
high in the liver of treated animals 56 days after the injection, and nanoparticle aggregates
were still visible in the testicular tissue. Most iron nanoparticles accumulate in the liver
and spleen [41], which is attributed to nanoparticle recognition by the reticuloendothelial
system [63]. A previous study, using the same nanoparticles used in the present study, also
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showed a higher concentration in the liver and the spleen after intravenous injection [64].
However, it seems that the nanoparticle’s kinetics, when injected into the testicles, is
different from that of intravenous administration. In the latter, there is a fast increase of
nanoparticles in the liver, which are eliminated through hepatic clearance (feces) within
the next few weeks [64]. Differently, in the administration form used in the present
study (i.e., intratesticular injection), the nanoparticles remain in the testicles longer and
slowly pass into the bloodstream, resulting in later accumulation in the liver. It has been
described that iron-oxide nanoparticles are only excreted slowly in small amounts in
urine and feces [65], and that the particle size has a strong influence in the elimination
route [66]. In this work, nanoparticles in the range of 11 ± 3 nm were used, which
accumulate in the liver [64] and are eliminated through hepatic clearance (feces) [66]. The
accumulation of iron nanoparticles in tissues is a general concern because the body lacks
a mechanism to eliminate excess iron and high levels of iron cause oxidative stress in
tissues [67]. Nonetheless, iron-oxide nanoparticles continue to be actively investigated
and used due to their potential for rapid heating of target tissues, high biocompatibility
(once modified with a stabilizing layer), and minimal toxic effects [68]. In the present
study, no clinical signs of iron toxicity (described as swollen snout and/or paws, labored
respiration, and red crust around the nose [65]) or histopathological findings in vital organs
were observed probably because the dose used (0.03–0.04 mg/Kg) was too low to induce
systemic effects. However, it was sufficiently high to promote localized heating.

5. Conclusions

In conclusion, testicular magnetic hyperthermia mediated by MnFe2O4-citrate nanopar-
ticles, as performed under the conditions described in this study, proved effective in neu-
tering male rats in as short a time as 56 days with few side effects on animal general health.
The procedure proposed here presents advantages over surgical castration as there is no
need for a sterile room, instruments, or follow-up treatments, such as long-term antibiotic
therapy and stitch removal. Moreover, this MNH procedure is better than chemical steril-
ization in that it induces a milder inflammatory response than sclerosing agents. However,
a long-term follow-up of treated animals must be performed to evaluate any possible late
side effects and prove the irreversibility of infertility.
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