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Abstract: Drug-delivery vehicles have been used extensively to modulate the biodistribution of 
drugs for the purpose of maximizing their therapeutic effects while minimizing systemic toxicity. 
The release characteristics of the vehicle must be balanced with its encapsulation properties to 
achieve optimal delivery of the drug. An alternative approach is to design a delivery vehicle that 
preferentially releases its contents under specific endogenous (e.g., tissue pH) or exogenous (e.g., 
applied temperature) stimuli. In the present manuscript, we report on a novel delivery system with 
potential for triggered release using external beam radiation. Our group evaluated Zein protein as 
the basis for the delivery vehicle and used radiation as the exogenous stimulus. Proteins are known 
to react with free radicals, produced during irradiation in aqueous suspensions, leading to aggre-
gation, fragmentation, amino acid modification, and proteolytic susceptibility. Additionally, we 
incorporated gold particles into the Zein protein matrix to create hybrid Zein–gold nanoparticles 
(ZAuNPs). Zein-only nanoparticles (ZNPs) and ZAuNPs were subsequently exposed to kVp radi-
ation (single dose ranging from 2 to 80 Gy; fractionated doses of 2 Gy delivered 10 times) and 
characterized before and after irradiation. Our data indicated that the presence of gold particles 
within Zein particles was correlated with significantly higher levels of alterations to the protein, 
and was associated with higher rates of release of the encapsulated drug compound, Irinotecan. 
The aggregate results demonstrated a proof-of-principle that radiation can be used with gold na-
noparticles to modulate the release rates of protein-based drug-delivery vehicles, such as ZNPs. 
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1. Introduction 
Chemotherapy and radiation therapy are potent treatment modalities for cancer, but 

delivering curative doses to the tumor is often precluded by chemo- or radiotoxicity to 
normal tissue. Delivery systems that concentrate drug or X-ray effects to the tumor (e.g., 
liposomes or volumetric modulated arc therapy (VMAT), respectively) are thus of sig-
nificant therapeutic interest. For example, head and neck (H&N) cancer patients with 
unresectable disease are treated with X-rays and cisplatin (CPT) concurrently to take 
advantage of CPT/X-ray synergy for improved tumor control [1,2]. Concurrent 
chemo-radiation treatments show benefit in tumor control in H&N patients, wherein 
adding high-doses of CPT to radiation improved overall survival. Unfortunately, the 
systemic toxicity of CPT (e.g., kidney and nerve damage) is often dose-limiting [2,3]. 
Conceptually, there is interest in expanding concurrent chemo-radiation to other tumor 
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sites (e.g., pancreatic cancer, glioma), but effective strategies to mitigate chemo- and ra-
diotoxicity to normal tissue have yet to be developed. 

One approach to limit toxicities would be to use radiation to trigger the release of a 
drug from nanoparticle drug carriers that accumulate in the tumor [4]. Drug release from 
the particles would then be preferentially modulated within the tumor, leading to high 
intratumoral drug concentrations and limiting potential negative cytotoxic effects of the 
drug outside the disease site. Selecting drugs that have synergistic effects with radiation 
could also potentiate the effects of radiation and potentially provide tumor control with 
lower doses of radiation, chemotherapy, or both [5,6]. 

Innovations in gantry design of radiation therapy (RT) machines to maximize de-
livery of high radiation doses safely to the tumor are close to their physical limits, but the 
variety of drug-delivery systems, some of which are already clinically used, could be 
modified to release their contents only when exposed to radiation. Typically, the con-
stituents of the delivery vehicle are designed to balance the encapsulation and release of 
its contents. Efficient encapsulation could mean the drug is trapped and is never released. 
Conversely, inefficient encapsulation results in materials that are “too leaky”, with the 
drug being released before the vehicle reaches its intended target. Zein, a hydrophobic 
protein, was identified as having high potential as an efficient delivery system whose 
release characteristics could be modulated by external beam radiation. 

In this work, a protein-based matrix made from Zein was used to encapsulate gold 
nanoparticles (AuNPs) and a drug. This Zein delivery system effectively encapsulated 
the drug with minimal release in the absence of the triggering mechanism. However, 
when the hybrid particles were irradiated, the protein matrix was modified and de-
graded by the radiation–gold particle interactions to release the drug on-demand. Over-
all, this strategy would enable more precise drug delivery to the tumor, as only particles 
in the target local environment receiving radiation would release drugs. Spatially specific 
and triggered delivery of the drugs by radiation has the potential to reduce systemic 
toxicities and, ultimately, increase drug concentration levels within the tumor itself. 

2. Materials and Methods 
2.1. Materials 

Zein from maize (Cat. 9010-66-6) was purchased from Sigma-Aldrich (St. Louis, MO, 
USA), as well as a 40% acrylamide/bis-acrylamide solution (Cat. A7802; St. Louis, MO, 
USA) and 2-mercaptoethanol (Cat. M3148; Japan). Gold (III) chloride hydrate (Cat. 
520918; USA) MW = 393.83 g/mol and sodium citrate tribasic dihydrate (Cat. 71402; Bel-
gium), molecular weight (MW) of 294.1 g/mol, were purchased from Sigma. The follow-
ing items were purchased from Bio-Rad Laboratories (USA): tetramethylethylenediamine 
(TEMED) (Cat. 161-0800), ammonium persulfate (Cat. 161-0700), sodium dodecyl sul-
phate (SDS) (Cat. 161-0302), resolving buffer (Cat. 161-0798), stacking buffer (Cat. 
161-0799), 10× tris/glycine buffer (Cat. 161-0734), and 4× Laemmli sample buffer (Cat. 
161-0747). A Pierce Silver Stain Kit (Cat. 24612) was purchased from ThermoFisher 
(Rockford, IL, USA). Ethyl alcohol anhydrous was purchased from Commercial Alcohols 
(Cat. P016EAAN; Brampton, ON, Canada). Acrodisc syringe filters (13 mm, 0.8 µm 
membrane) were purchased from Pall (Port Washington, NY, USA). Slip tip syringes for 
3 mL (Cat. 309586) and 1 mL (Cat. 309659) volumes were purchased from Becton Dick-
inson (Franklin Lakes, NJ, USA). The 384-well flat-bottom black polystyrene TC-treated 
microplates were purchased from Corning (Cat. 3764; Germany). A protein ladder (Cat. 
PM007-0500S) was purchased from FroggaBio Scientific Solutions (Toronto, ON, Cana-
da). Irinotecan was purchased Accord Health (DIN 02357585; Kirkland, QC, Canada). 
Zein NPs were synthesized using a Benchtop NanoAssemblr (Precision Nanosystems; 
Vancouver, BC, Canada). Samples were analyzed using a NanoBrook ZetaPALS (Holts-
ville, NY, USA) for dynamic light scattering (DLS). Ultraviolet visible spectroscopy 
(UV–vis) was performed using a Nanodrop ND-1000 spectrophotometer from Thermo-
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scientific (Wilmington, DE, USA) and a Mandel CLARIOstar microplate reader from 
BMG LABTECH (Canada). Samples were shaken using a Thermomixer R from Eppen-
dorf (Germany) unless otherwise specified. Centrifugation was performed on an Ther-
moscientific (Germany) Legend Micro 21R Centrifuge using Eppendorf tubes (VWR, Cat 
20170-577; Radnor, PA, USA) unless otherwise specified. Samples were heated using an 
Accublock Digital Dry Bath from Labnet International (Edison, NJ, USA). Sonication was 
performed on a 2510 Ultrasonic Cleaner (40 kHz frequency) from Branson (Danbury, CT, 
USA). Gels were run on a Bio-Rad Mini-PROTEAN® Tetra Cell (USA) and imaged using a 
Bio-Rad ChemiDoc MP Imaging system (USA). Electron microscopy (EM) techniques 
were performed using a FEI Tecnai Osiris S/TEM (Hillsboro, OR, USA) for all transmis-
sion electron microscopy (TEM) and scanning transmission electron microscopy (STEM) 
samples, while scanning electron microscopy (SEM) and energy-dispersive X-ray spec-
troscopy (EDX) images were acquired using an FEI Nova NanoSEM (Hillsboro, OR, 
USA), with all samples being prepared on a holey 300-mesh formvar/carbon-coated 
copper grid (Ted Pella, Cat. FCF-300; Hatfield, PA, USA). Cryogenic EM (Cryo-EM) 
samples were prepared using a Vitrobot from ThermoFisher (Hillsboro, OR, USA). 

2.2. Gold Nanoparticle Synthesis 
The 13 nm AuNP synthesis was adapted from Savchenko et al. [7]. Briefly, a 1 mM 

HAuCl4 solution was created by first combining 10 mL of deionized (DI) water (18.0 MΩ 
ultrapure water) with 197 mg of HAuCl4. This 50 mM solution was added to an Erlen-
meyer flask containing 490 mL of DI water that was brought to a boil to achieve a 1 mM 
HAuCl4 solution. Then, 684 mg of sodium citrate dihydrate was dissolved in 25 mL of DI 
water and was rapidly added to the Erlenmeyer flask (approximately 4.5 mM). This so-
lution was kept at a boil and stirred at 400 revolutions per minute (rpm) for an additional 
30 min before the heat was turned off and the flask was left to cool. Once cooled, the 
AuNPs underwent further characterization (UV–vis, DLS, and EM) before use Figure S1 
(Supplementary Materials). The AuNP stock was then stored at 4 °C and protected from 
light when in use. 

2.3. Zein Purification 
Zein was purified before use as previously reported by our lab [8]. Briefly, Zein (0.10 

g) was suspended in 15 mL of anhydrous EtOH. The protein suspension was then stirred 
overnight (400 rpm at 4 °C). Afterwards, stirring was stopped and the insoluble Zein was 
allowed to settle. The supernatant was removed, and the collected Zein was resuspended 
in anhydrous EtOH again. This process was repeated twice. After the washes, the final 
solution of Zein was in 60% (v/v) EtOH. This purified Zein was filtered using a 0.8 µm 
syringe filter and was then ready for use in further experiments. All Zein stocks were 
kept at 4 °C and used within 2 weeks of production of their final suspension. 

2.4. Zein Nanoparticle and Zein–Gold Hybrid Nanoparticle Synthesis and Characterization 
Zein nanoparticle (ZNP) and Zein–gold hybrid nanoparticle (ZAuNP) synthesis 

procedures were adapted from a protocol previously reported by our lab [8]. Briefly, the 
purified Zein (0.10 g) that was dissolved in 10 mL of 60% (v/v) EtOH and filtered, as de-
tailed in Section 2.3, was subsequently loaded into a syringe (1.0 mL) as the organic phase 
in the first inlet channel in the microfluidics device. Its counterpart, the aqueous phase (in 
the presence or absence of citrate-coated 1 nM 13 nm AuNPs suspended in water) was 
loaded into a 3.0 mL syringe in the second inlet channel. The excess citrate was removed 
from the AuNPs by spinning down the sample (20,000× g for 20 min at 4 °C) and resus-
pending it in water by sonicating cycles of 5 s on, 5 s off until the AuNP pellet was no 
longer seen. The AuNP sample was then diluted to the appropriate concentration using 
UV–vis (molar extinction coefficient of 3.67 × 108 M−1cm−1) at an absorbance of 520 nm. 
The sample was run at a total flow rate of 2 mL/min and a relative flow rate of 3:1 
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(aqueous to organic). The samples were then collected at the microfluidics chip’s outlet 
channel. Each run was programmed to discard the first 0.3 mL of the sample and the last 
0.1 mL of the sample to ensure that the variability in fluid dynamics at the start and end 
of the synthesis run did not affect the sample. 

2.5. Zein Nanoparticle and Zein–Gold Hybrid Nanoparticle Irradiation 
First, 200 µL of the ZNP and ZAuNP was put aside as our nonirradiated control. An 

additional 200 µL of each sample was added to a 96-well plate and irradiated. Irradiation 
was performed at the BC Cancer Research Institute using an X-ray tube with a tungsten 
anode operated at 300 kVp and 10 mA. The radiation was filtered through a 2 mm Al 
plate, and the dose rate in the sample plane was approximately 0.06 Gy/s. The irradiation 
time was set to deliver doses of 2, 10, 20, 40, or 80 Gy. Additionally, some samples un-
derwent a fractioned dosing scheme whereby 2 Gy was administered every 5 min until a 
total radiation exposure of 20 Gy was delivered. Samples then underwent further analy-
sis (DLS, UV–vis, sodium dodecyl sulphate–polyacrylamide gel electrophoresis 
(SDS-PAGE), and EM). 

2.6. SDS-PAGE 
A 15% (v/v) acrylamide running gel with 5% (v/v) stacking gel was prepared for the 

SDS-PAGE. The ZNP and ZAuNP samples (10 µL) were combined with a 3:1 Laemmli 
sample buffer containing beta-mercaptoethanol (BME) and warmed at 100 °C for 10 min. 
Then, 5 µL of the protein ladder and 10 µL of the samples were loaded into each of the 
wells. A glycine-tris buffer with 0.1% (w/v) SDS was used as the running buffer, and the 
samples were run at 200 V for 40 min. Gels were then stained using a Pierce Silver Stain 
Kit. Briefly, the gels underwent two 5 min washes in DI water. The gels were then fixed in 
a solution containing 30% (v/v) EtOH and 10% (v/v) acetic acid solution 2 times for 15 min 
each. Subsequently, the gels were washed 2 times in a 10% (v/v) EtOH solution for 5 min 
and then washed 2 times with DI water for 5 min each. Gels were sensitized for 1 min and 
then washed twice for 1 min using DI water. Following the sensitization and wash peri-
od, the gels were stained with the staining solution for 30 min. After staining, the gels 
underwent two 20 s washes in DI water and were allowed to develop for 2–3 min. Once 
the bands appeared, the reaction was stopped with a 5% acetic acid wash. The gels were 
washed in this solution for 10 min and then stored in DI water until they were imaged 
under a transilluminator (0.3 ms exposure) for further analysis. 

2.7. UV–Vis Aromaticity and Turbidity 
Aromaticity (OD 280 nm) and turbidity (OD 340 nm) were determined at room 

temperature (23 +/−1) °C using UV–vis. When proteins are exposed to wavelengths be-
tween 270–290 nm, their aromatic compounds (such as the tryptophan and tyrosine res-
idues) absorb strongly within these wavelengths. Aromaticity was measured at 280 nm 
using the Nanodrop at an undiluted concentration of the ZNP and ZAuNP samples. 
Turbidity was measured using a modified protocol by Larson et al. in which 20 µL of 
sample was combined with 20 µL of water and then added to a clear-bottom 384-well 
plate [9]. The sample was shaken at 300 rpm for 30 s, and the absorbance was read at 340 
nm in a CLARIOstar plate reader. 

2.8. Irinotecan Loading and Triggered Release 
A final concentration of 50 µg/mL of Irinotecan was incorporated in the Zein “or-

ganic phase” of the microfluidics coprecipitation synthesis. The Zein–Irinotecan suspen-
sions were sonicated for 5 cycles of 5 s on and 5 s off before they were shaken for 1 h [400 
rpm at (23 +/− 1) °C] before use in the microfluidics system. Irinotecan-loaded ZNPs with 
or without AuNPs were synthesized using the conditions listed in Section 2.4. Then, 400 
µL of the samples were washed two times using an Amnicon Ultra 0.5 mL 50 k ultracen-
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trifugation filter at 1000× g for 70 min at 4 °C. The supernatants that did not contain Zein 
were analyzed using UV–vis absorbance at 370 nm in order to determine the amount of 
free Irinotecan to calculate the encapsulation efficiency (EE). The EE was then determined 
using the following formula: 

EE = ((Total Irinotecan − Free Irinotecan)/Total Irinotecan) × 100% (1) 

Samples were then brought to a final volume of 200 µL using DI water, then 100 µL 
of the Irinotecan-loaded ZNPs and ZAuNPs samples were irradiated at 20 Gy as de-
scribed above. All samples were subsequently spun down (1000× g for 30 min) using a 
centrifuge tube, and 100 µL of the supernatant, which did not contain the Zein, was col-
lected from each sample and evaporated at 50 °C overnight. After the evaporation, sam-
ples were resuspended in 50 µL of 100% EtOH. Then, 40 µL of each sample was analyzed 
on the plate reader for Irinotecan and compared against an Irinotecan standard curve to 
determine release. Conditions for the plate reader were: 300 rpm with double orbital 
shaking before reads, a gain of 2200, a focal height of 3.4 mm, an excitation wavelength of 
365 nm with a 20 nm slit width, and an emission wavelength of 450 nm with a 10 nm slit 
width. During the scan, 40 flashes per well were read from the bottom optic, with 0.1 s 
settling time in between reads. 

2.9. SEM, STEM, EDX, and Cryo-Electron Microscopy 
ZNP and ZAuNP samples were diluted to a 10 times lower concentration by adding 

DI water immediately prior to microscopy sample preparation. The sample (2 µL) was 
spotted on the copper grid and dried under vacuum (1–2 h). The samples were imaged 
immediately after using a Nova NanoSEM or a STEM Osiris (200 kVp acceleration volt-
age, bright field, high-angle dark field, and energy-dispersive X-ray). For cryo-electron 
microscopy (Cryo-EM), samples were used at their initial concentration. Preparation of 
the plunge-frozen samples for Cryo-EM followed the protocol developed by Grassucci et 
al. [10]. Briefly, 2 µL of sample was added to a plasma cleaned holey carbon copper grid. 
The sample was kept in a 100% relative humidity, 6 °C climate before being blotted for 1 s 
using a Vitrobot. Directly following the blotting, the sample was plunge-frozen in liquid 
ethane. The sample was kept at temperatures below devitrification by using precooled 
tools and holders. Once loaded into the cryo-grid sample holder, the sample was imme-
diately imaged using TEM. 

2.10. Statistics and Image Processing 
Data was reported as the mean, with the error bars representing the standard devi-

ation (SD). Data sets had their normality tested using a Shapiro–Wilk test and/or a 
Quantile–Quantile plot when small sample sizes were present (n = 3). Equal variance was 
tested using a Brown–Forsythe test. Normally distributed data with equal variance then 
underwent an analysis of variance (ANOVA) test. If the data was not normally distrib-
uted, then a nonparametric Kruskal–Wallis test, was employed. Multiple comparison 
tests, such as Tukey’s tests, were utilized to identify differences between sample means. 
Statistics were analyzed using GraphPad Prism 9. Statistical significance was declared at 
the following probability levels: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, and ns 
for non-significant. Image processing to determine ZNP and ZAuNP aggregation was 
performed on the SDS-PAGE images using ImageJ. Briefly, the integrated density (ID) of 
sample above the 25 kDa protein marker was measured. The ID of the sample was then 
normalized to the ID of the lane. Finally, the ID of the experimental sample lane was then 
divided by the ID of the control lane to determine the fold change. 
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3. Results 
3.1. Synthesis and Characterization of Zein and Zein–Gold Hybrid Nanoparticles 

Following the procedure to synthesize the ZNPs and ZAuNPs (depicted in Figure 
1a), the final product was analyzed using DLS, UV–vis, and EM (Figures 1b and 2). ZNPs 
were optimized formerly for the microfluidics system as described previously [8]. Briefly, 
the total flow rate, relative flow rate, solvent concentration and type, and protein con-
centration were optimized to achieve sub-100 nm nanoparticles reproducibly. The addi-
tion of the 1 nM 13 nm AuNPs to the aqueous phase to form the ZAuNP hybrids had lit-
tle effect on the size and polydispersity (e.g., the level of heterogeneity of the sizes of the 
nanoparticles), as seen in Figure 1b. Interestingly, the ZAuNPs displayed higher baseline 
turbidity and absorbance at 280 nm when their UV–vis characteristics were probed. This 
has been reported in the literature previously, and our results suggested alignment with 
this finding in that the incorporation of metallic nanoparticles, such as AuNPs, may in-
fluence the secondary and tertiary structure of the protein, thereby altering the absorp-
tion characteristics of the protein carrier [11,12]. 

 
Figure 1. (a) Schematic representation of Zein–gold hybrid nanoparticles (ZAuNPs); (b) standard characteristics of Ze-
in-only nanoparticles (ZNPs) and ZAuNPs including size, polydispersity index, turbidity, and 280 nm absorbance and 
loading characteristics of Irinotecan formulations. 

The particles’ sizes, morphologies, and hybrid assemblies were further investigated 
using SEM, STEM, and Cryo-TEM. STEM and SEM micrographs of the ZNP and ZAuNP 
presented spherical nanoparticles as depicted in Figure 2a,b, respectively. The EDX mi-
crograph of the ZAuNP hybrid nanoparticle confirmed that the incorporated metallic 
nanoparticles were composed of gold. To gain better understanding of the number of 
particle associations between the AuNPs and ZNPs when formulating the ZAuNP hy-
brids, 15 Cryo-TEM images were hand-counted to determine the ratio of AuNPs to ZNPs 
in each ZAuNP hybrid. In total, 275 ZNPs and 532 AuNPs were identified within these 
images. It was found that the number of AuNPs incorporated with ZNPs had an expo-



Pharmaceutics 2021, 13, 1407 7 of 18 
 

 

nential decrease, with a 1:1 ratio being the most common hybrid population. It should be 
noted that approximately 30% of ZNPs were found to be unassociated with any AuNPs. 
Additionally, our data highlighted that the majority of AuNPs were incorporated into 
ZNPs, with less than 5% of AuNPs identified as being unassociated with Zein. The asso-
ciation of the AuNPs with the ZNPs was further confirmed by tilting the stage of the 
TEM, as demonstrated in Figure 3a,c. Figure 3b,d depict a Cryo-TEM image of associated 
and unassociated AuNPs, respectively. The ZAuNP hybrid appears to be associated with 
the AuNP at every tilting angle. It should be noted that the Zein experienced damage 
when imaged at a high magnification for multiple micrographs as evidence of the beam 
damage formed in the particle itself. Alternatively, Figure 3d displays an AuNP that 
appears to be associated with a bubble at a −20° tilt angle, but subsequently appears to be 
unassociated at both 0°and +20° tilting angles. 

 
Figure 2. Representative electron microscopy images of Zein nanoparticles (ZNPs) and Zein–gold hybrid nanoparticles 
(ZAuNPs) and the number of associated gold nanoparticles identified per ZAuNP. (a) A low-magnification dark field 
scanning transmission electron microscopy image of Zein NPs. (b) A high-magnification dark field scanning transmission 
electron microscopy image of a Zein NP. The dashed orange line indicates the outline of the ZNP. (c) A graph depicting 
the number of gold nanoparticles associated per ZAuNP. The black bars represent hybrids, while the gray hashed bars 
represent either Zein- or gold-only nanoparticles. (d) A low-magnification dark field scanning electron microscopy image 
of ZAuNPs. (e) A high-magnification dark field scanning electron microscopy image of ZAuNPs. The dashed orange line 
indicates the outline of the ZAuNP. (f) An energy-dispersive X-ray spectroscopy image of (e), confirming the presence of 
gold nanoparticles. 
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Figure 3. Tilting of the sample in cryogenic transmission electron microscopy (Cryo-TEM) to determine the association of 
particles. (a) A schematic of how hybrid particles would appear at each tilting angle used for the Cryo-TEM. (b) 
Cryo-TEM depicting gold nanoparticles (black) continuing to associate with Zein nanoparticles (dark grey) as the sample 
was tilted at –20°, 0°, and +20°, from left to right. (c) A schematic of how nonassociated particles would appear when the 
particles will not remain associated when changing the tilting angle. (d) Cryo-TEM depicting gold nanoparticles (black) 
disassociating with a bubble (light grey) as the sample is tilted at −20°, 0°, and +20°, from left to right. 

3.2.1. Influence of X-Rays on Zein and Zein–Gold Hybrid Particle Characteristics 
One of the major effects of radiation is reactive oxygen species (ROS) generation 

through the radiolysis of water. The addition of gold, such as in AuNPs, which is electron 
dense, can enhance interactions with ionizing radiation. This ultimately leads to a greater 
production of ROS [4]. While ROS enhancement has been extensively studied with 
AuNPs, the lifespan of some of the ROS species is extremely short, making it difficult to 
track the process in real time when using complex samples [13]. However, physical and 
chemical characterization of the protein could alternatively reveal the possible down-
stream effects of such interactions. Figure 4 highlights some of the known assessable 
consequences of ROS interactions with proteins, including aggregation, fragmentation, 
and chemical modification (such as changes in aromaticity and hydrophobicity), which 
have been extensively used to characterize protein–radiation interactions [14–18]. These 
downstream effects were further probed using UV–vis, DLS, SDS-PAGE, and EM in our 
system. 

 
Figure 4. A schematic depicting the possible interactions of Zein with X-rays (hv) either: (a) directly through water radi-
olysis or (b) indirectly through interactions with gold nanoparticles (AuNPs). 
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UV–vis was used to evaluate both the aromaticity and turbidity of the ZNPs and 
ZAuNPs after radiation exposure. X-ray irradiation caused a decrease in the absorbance 
found at 280 nm (Figure 5b,c) when AuNPs were present. While there was a significant 
decrease when comparing the nonirradiated control with each of the irradiated samples, 
there was no significant trend of decreased absorptivity at 280 nm with increasing irra-
diation dose (Figure S2). This finding was not seen in the ZNP samples irrespective of the 
irradiation dose, as depicted in Figure 5d,e. Interestingly, there have been many studies 
describing a protein’s aromatic absorbance when exposed to different sources of irradia-
tion (UV, ɣ-rays, and X-rays). Within these studies, the absorbance at 280 nm relied 
heavily on the properties of the protein itself, as well as the surrounding environment, 
with some proteins displaying lower 280 nm absorbances at low Gy irradiation doses 
[14,17,18]. Interestingly, the presence of metallic nanoparticles has indeed been shown to 
influence the net decrease in 280 nm absorbance when irradiated, which is in alignment 
with our results [11,19]. Next, the turbidity of the sample was assessed at a 320 nm 
wavelength. This wavelength is commonly used for proteins, and it has been found to be 
an appropriate wavelength to be used for microaggregate assessment, as proteins typi-
cally display low absorptive properties at a 320 nm wavelength [20]. In Figure 6d, it can 
be seen that absorbance at 320 nm increased for ZAuNPs with an increasing irradiation 
dose. This was found to be statistically significant at every irradiation dose level relative 
to the nonirradiated control samples, thereby suggesting that microaggregation of the 
protein nanoparticles may be taking place (Figure S3). Increases in turbidity have com-
monly been attributed to the radiolysis of proteins, which results in changes in protein 
conformation accompanied by the dehydration, scission, and/or aggregation of the pro-
tein [14]. This increase in turbidity was not observed with ZNP samples irrespective of 
the irradiation dose (Figure 6d); moreover, there was no statistical difference identified 
between any of the irradiated test conditions of the ZNP and ZAuNP samples (Figure 
6b). Our results suggested that the presence of AuNPs may play a role in promoting Zein 
turbidity when exposed to X-rays. 

While turbidity is one method to evaluate the potential presence of aggregation for 
ZNPs and ZAuNPs, DLS and SDS-PAGE can provide additional clarity regarding the 
potential impact of AuNP presence during X-ray exposure. The irradiation of proteins 
can involve both inter- and intra-crosslinking, resulting from a variety of reactions, in-
cluding carbon–carbon crosslinking of the backbone, aromatic crosslinking, and even the 
formation of new disulfide bridges between cystines [21–24]. For Zein in particular, ar-
omatic crosslinking (such as by tyrosine formation) is anticipated to be the predominant 
mechanism if crosslinking is present due to the oxygen-rich environment in which these 
studies were conducted, as well as the negligible amounts of sulfur-containing amino 
acids found in Zein [21,25,26]. In order to further evaluate the presence of crosslinking, 
SDS-PAGE was performed. Figure 6c shows that there was an increase in aggregation 
upon X-ray irradiation when AuNPs were present. This finding was evident and signif-
icant at every irradiation dose that was evaluated, further suggesting that crosslinking 
could be taking place (Figure S3). Alternatively, there was found to be no association in 
aggregation when using SDS-PAGE to evaluate ZNPs exposed to equivalent levels of ir-
radiation. To better understand this effect on a macro scale, the sample was further sub-
jected to DLS. While there was an overall statistically significant increase in size with in-
creasing irradiation dosage for the ZAuNPs, the absolute size change was very small 
(Figure 6a). This, however, was accompanied by a significant change in polydispersity, 
increasing from (0.14 +/− 0.02) PDU to (0.22 +/− 0.03) PDU. Taken together, these findings 
may suggest that competing mechanisms (aggregation and fragmentation) were taking 
place simultaneously, with the net effect resulting in only a very modest increase in par-
ticle size and a significant increase in the polydispersity, as reported previously in the 
literature [21]. It should also be noted that there were no obvious morphological changes 
between the irradiated and nonirradiated samples for the ZNP and ZAuNPs seen using 
STEM (Figure S4). Lastly, when evaluating all the characteristics described, we found no 
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significant difference when the radiation was applied as a single dose or 2 Gy fractions 
(Figures S8 and S9), suggesting that these formulations may be applicable for use over 
longer timeframes. 

 
Figure 5. Suggested damage to the aromatic groups for irradiated Zein hybrid particles only: (a) a 
schematic illustration of a chemical reaction on the amino acid tyrosine adapted from Davies [23] 
which can undergo further reactions; (b) OD 280 nm of Zein–gold hybrid nanoparticles at varying 
irradiation doses; (c) representative absorbance spectra of Zein–gold hybrid nanoparticles at each 
dose in Figure b; (d) OD 280 nm of Zein nanoparticles at varying irradiation doses; (e) representa-
tive absorbance spectra of Zein nanoparticles at each dose in Figure d. 
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Figure 6. Characteristics of Zein-only nanoparticles (ZNPs; blue squares) and Zein–gold hybrid 
nanoparticles (ZAuNPs; red circles) at varying X-ray doses: (a) the size of ZNPs and ZAuNPs 
(dynamic light scattering results); (b) the polydispersity of ZNPs and ZAuNPs; (c) the level of ag-
gregation of ZNPs and ZAuNPs (SDS-PAGE results); (d) the turbidity of ZNPs and ZAuNPs. 

3.2.2. Triggered Release 
The EE of ZAuNPs and ZNPs were calculated as (34 +/− 2) % and (30 +/− 2) % for the 

50 µg/mL formulations, respectively (Figure S6), as described in the Materials and 
Methods section [27]. While the loading of Irinotecan into ZNP and ZAuNP has not yet 
been reported, the more hydrophobic and potent analogue (SN38) has achieved higher 
EEs in ZNP samples [28]. Characteristics, including the size and polydispersity, of the 
nanoparticles post-Irinotecan loading showed very little change (Figure 1b). Addition-
ally, no gross changes to the ZNPs’ or ZAuNPs’ morphology were identified (Figure S5). 
Samples then underwent irradiation at 20 Gy, as seen in Figure 7a, and only the ZAuNPs 
displayed triggered-release characteristics. The ZAuNP samples had an average differ-
ence in Irinotecan release of (26.4 +/− 4.7) ng/mL, resulting in a 101% increase in release 
(Figure 7b). The ZNP samples had an average difference in Irinotecan release of (−0.20 +/− 
5.6) ng/mL, resulting in a 0% increase in release (Figure 7b). It should also be noted that 
freely suspended Irinotecan did not demonstrate a decrease in fluorescence upon irradi-
ation (Figure S7). 
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Figure 7. Irinotecan release of Zein nanoparticle (ZNP) and Zein–gold nanoparticle hybrid 
(ZAuNP) 50 µg/mL formulations. (a) Concentration of drug release of ZNP (blue) and ZAuNPs 
(red) before (left bar graph) and after (right bar graph) exposure to 20 Gy. (b) Percent change in 
Irinotecan release for ZNP and ZAuNP samples when exposed to 20 Gy. ** p < 0.01, ns for 
non-significant. 

4. Discussion 
NP-based drug-delivery systems have been investigated over the past few decades 

to improve the efficacy, bioavailability, and circulation half-life of small-molecule drugs 
[29]. Recently, there is growing interest in using external stimuli, such as RT, to trigger 
drug release from NPs to enable usage of highly stabilized systems that will not release 
their cargo during circulation [4]. This strategy would be useful for high-dose 
chemo-radiotherapy treatments, such as those used in H&N cancer or other cancers un-
dergoing further investigation using this treatment strategy by mitigating systemic tox-
icities and improving quality of life and/or treatment compliance [1–3]. 

Zein, in particular, is an attractive NP candidate since the protein: (1) is biocompat-
ible, is formulated in nontoxic conditions, and has been given a generally recognized as 
safe (FDA GRAS) status; (2) is derived from the endosperm of corn, and is therefore a 
renewable and abundant resource; (3) contains a large number of reactive moieties 
available for functionalization; and (4) is amphiphilic and hydrophobic in nature, and 
possesses the ability to form NP structures [30,31]. While ZNPs have not yet been im-
plemented in the clinic, Ethibloc®, a solubilized formulation of Zein, is clinically ap-
proved in Canada and has been investigated for the treatment of epistaxis, aneurysmal 
bone cysts, and lymphangiomas. In long-term studies, Ethibloc® was found to be a safe 
and effective treatment for lymphangiomas and aneurysmal bone cysts, with minor 
short-term complications and no long-term side effects [32–37]. Although Ethibloc® is a 
non-NP formulation of Zein, it is nonetheless a highly encouraging display of the pro-
tein’s biocompatibility, and complements the clinical potential of ZNPs alongside the 
large number of emerging chemotherapy-based ZNP formulations published in recent 
years. 

While Zein has been established as a reliable carrier for chemotherapeutic com-
pounds, the ability to use X-rays to trigger drug release from its matrix deserves further 
investigation. Our research suggests that the presence of AuNPs in Zein protein matrixes 
has a significant impact on the carrier’s characteristics when exposed to X-rays, and dis-
plays potential as a method to trigger drug release. Gold (Z = 79), the element composing 
our AuNPs, contains a large number of electrons, which can enhance the probability of 
interactions occurring between ionizing radiation and the atoms. The notion of using 
high-atomic-number materials to increase the dose given to a tumor during RT was first 
investigated over 25 years ago using iodine on cultured cells [38]. This concept was later 
expanded to an in vivo setting, when Santos Mello et al. directly injected iodine intra-
tumorally in mice, in combination with RT, to suppress the growth of tumors [39]. A shift 
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towards using AuNPs as radio-enhancers occurred due to their higher relative atomic 
number and biocompatibility [40,41]. Mechanistically, radiation energy can eject outer 
shell electrons from the gold directly, or be deflected by an electron, which itself is 
ejected. Resulting vacancies in lower electron shells can be filled by electrons from outer 
shells, which results in the ejection of Auger electrons during the process [42]. The ejected 
electrons from AuNPs deposit energy along their trajectory, radiolyze water, and initiate 
a cascade of reactions to produce ROS, such as the hydroxyl radical and hydrogen per-
oxide [43]. This phenomenon is thought to potentiate the cell-killing effects of radiation in 
vitro [42,44,45]. Additional studies have shown that ROS production and radiolysis of 
water is more efficient for distances close to the AuNPs compared to locations further 
away in the solution [41,46]. It was reported that water molecules around AuNPs interact 
with the gold surface via hydrogen bonding, rendering the H-OH bond more vulnerable 
to reaction with ROS present in the solution, which ultimately increases production of the 
hydroxyl radical [41]. Irradiating AuNPs embedded in a protein matrix, such as Zein 
particles, will thus likely generate high, localized concentrations of ROS. This increase of 
ROS production within the Zein matrix may explain the change in characteristics that 
were observed in the ZAuNP hybrids when irradiated. 

Although Zein X-ray irradiation has not been well studied, ɣ-ray irradiation of Zein 
films has been extensively researched. In these studies, properties including aggregation, 
fragmentation, and modification of the Zein were characterized. These properties were 
investigated using SDS-PAGE, solubility, water vapor permeability (WVP), and water 
contact angle (WCA). Similar to our SDS-PAGE findings, Zhang et al. and Lee et al. 
identified a consistent decrease in band intensity for the alpha Zein constituents with in-
creasing irradiation exposure [47,48]. Interestingly, in that same study by Lee et al., the 
authors also identified an increase in water solubility with increasing irradiation expo-
sure of the films. This combination of findings led the authors to hypothesize that the 
Zein films were experiencing both crosslinking and fragmentation when exposed to ra-
diation [47]. The hypothesis, which postulates that both fragmentation and crosslinking 
were occurring simultaneously, is in alignment with our DLS evaluations, which 
demonstrated that the ZAuNP particle size did not substantially increase, while the 
polydispersity of the system did increase. Next, studies by Soliman et al. evaluated the 
interaction of Zein films with water using WVP and WCA. In these studies, the WCA 
increased while the WVP decreased with increasing irradiation doses. Both WVP and 
WCA rely on the hydrophilic nature of the material. These results suggest that increasing 
irradiation causes an increase in hydrophobicity [49,50]. While these studies were per-
formed on Zein films, similar findings for albumin nanoparticles also have been reported 
[13]. These findings may also explain our observed increase in turbidity with increasing 
irradiation. Should Zein particles become too hydrophobic, they may destabilize and ul-
timately “crash out” of solution, thereby increasing the turbidity of the sample. 

Combining Zein with AuNPs to form ZAuNP hybrids is a relatively new research 
area, with only a few papers having been published to date [28,51–54]. While AuNPs 
have been combined with Zein in different forms (such as films, fibers, and nanoparti-
cles), only one paper, to our knowledge, has considered the incorporation of AuNPs in 
ZNPs for tumor-killing purposes. In a study by Chauhan et al., near-infrared light (NIR) 
was used for tumor ablation, thereby capitalizing on AuNPs’ surface plasmon resonance 
at these wavelengths to induce localized heating. Clinically, however, NIR has limited 
treatment applicability in cancer, since NIR has restricted penetration depth in the body, 
and would almost certainly have difficulty reaching deeply situated tumors. X-rays, on 
the other hand, do not have penetration-depth limitations, and can be modulated to de-
posit high doses with precision at the tumor site. Additionally, while NIR was used for 
tumor ablation, the consideration of using the localized heating as a form of triggered 
release was not considered. Triggered drug release, however, has been studied in ZNP 
hybrid systems using iron oxide complexes and an external magnetic triggering device, 
thereby further demonstrating its potential as a triggered-release system [27]. In our 
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drug-release experiments, it was observed that only the ZAuNP formulations exhibited 
triggered release. It was also identified that the ZNP–Irinotecan formulation had a higher 
baseline release than our ZAuNP–Irinotecan formulation. This observation could be due 
to either experimental artifacts and/or to the different characteristics of the systems 
themselves. Disparities in the characteristics of the ZNP and ZAuNP samples may ex-
plain the observed differences in their baseline release characteristics. Two of the Zein 
characteristics that could be influenced due to the presence of the AuNPs are its zeta 
potential, as well as its secondary and tertiary profiles. Zein, at physiological pH, has a 
negative charge at approximately – 35 mV; however, due to the presence of negatively 
charged AuNPs, there has been an observed further decrease in zeta potential when 
combining the two nanoparticles [30,52]. It has often been observed that changing the 
charge of the components, such as the small molecule’s charge, can influence the release 
characteristics of the system [27,55]. Additionally, it has been identified that the incor-
poration of nanoparticles, including gold–silica nanoparticles in Zein, modifies the sec-
ondary and tertiary characteristics of the protein. Specifically, it has been noted that the 
alpha helical content of proteins decrease in the presence of metallic nanoparticles 
[11,12]. Due to the presence of AuNPs in the ZNPs, the new configuration that the Zein 
adopts could change the release characteristics, such as a decrease in swelling or porosity, 
as observed in Zein AuNP films [56]. If the AuNPs hindered the swelling ability of the 
ZAuNPs, this could have altered the release characteristics, as seen in many hydrogel 
systems, thereby leading to a slower release of the Irinotecan [57]. Overall, the incorpo-
ration of AuNPs makes a direct comparison of the nanoparticles’ EE and release rates 
difficult due to the change in the Zein’s structural conformation. Despite these specula-
tions and potential limitations of the experiment, however, less than 0.5% of the calcu-
lated encapsulated payload was released for the both the ZNP and ZAuNP formulations 
when no radiation was present, suggesting that both had low baseline release of Iri-
notecan, and that only the ZAuNP formulation demonstrated triggered release. 

5. Conclusions 
Early detection of small tumors that have not spread, followed by surgery and ad-

juvant chemotherapy and radiotherapy, is the key to the successful treatment of many 
cancers. However, not all solid tumors can be removed surgically due to their proximity 
to critical normal structures or patient comorbidities. The only treatment options for 
these patients are RT and chemotherapy, or some combination of both. 
Chemo-radiotherapy, however, often results in non-negligible toxicities to the patient. 
This paper proposed utilizing the characteristics of Zein protein in order to design a 
composite AuNP hybrid particle for triggered drug release. By sequestering and releas-
ing the drug at the site of the tumor, the toxicity profile of the chemo-radiotherapy could 
potentially lessen. The system would capitalize on the radio-enhancing capabilities of 
AuNPs that would, in turn, result in changes in the ZNP matrix, and subsequently en-
hance drug release. Radiation could thus be used to control drug release from ZAuNP 
hybrid particles selectively in a tumor as described above. Overall, we observed changes 
in our ZNP matrix, such as aggregation, fragmentation, and modification to the protein’s 
hydrophobicity and aromaticity, when AuNPs were present upon irradiation. These 
changes were measured using SDS-PAGE, UV–vis, DLS, and EM. Additionally, our 
study demonstrated proof-of-principle results of triggered drug release using a Ze-
in–AuNP composite nanoparticle system in the presence of X-rays. 

Supplementary Materials: The following are available online at www.mdpi.com/article/10.3390/ 
pharmaceutics13091407/s1, Figure S1: A histogram and TEM image of the 13nm gold nanoparticles 
used to make ZAuNPs, Figure S2: A summary graph and spectra of the 280nm absorbance at var-
ying levels of irradiation, Figure S3: The individual measurements for each standard condition 
measured, Figure S4: STEM images of the nanoparticles at irradiation levels of 0 and 80 Gy, Figure 
S5: STEM images of the nanoparticles loaded with Irinotecan, Figure S6: Loading characteristics of 
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the Zein and hybrid nanoparticles, Figure S7: Irinotecan fluorescent characteristics at different lev-
els of irradiation, Figure S8: Standard characteristics of the hybrid particles at 20 Gys administered 
as a single dose or fractioned, and Figure S9: Standard characteristics of the Zein particles at 20 Gys 
administered as a single dose or fractioned. 
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