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Abstract: Myxobacteria are unicellular, Gram-negative, soil-dwelling, gliding bacteria that belong
to class δ-proteobacteria and order Myxococcales. They grow and proliferate by transverse fission
under normal conditions, but form fruiting bodies which contain myxospores during unfavor-
able conditions. In view of the escalating problem of antibiotic resistance among disease-causing
pathogens, it becomes mandatory to search for new antibiotics effective against such pathogens from
natural sources. Among the different approaches, Myxobacteria, having a rich armor of secondary
metabolites, preferably derivatives of polyketide synthases (PKSs) along with non-ribosomal peptide
synthases (NRPSs) and their hybrids, are currently being explored as producers of new antibiotics.
The Myxobacterial species are functionally characterized to assess their ability to produce antibacte-
rial, antifungal, anticancer, antimalarial, immunosuppressive, cytotoxic and antioxidative bioactive
compounds. In our study, we have found their compounds to be effective against a wide range of
pathogens associated with the concurrence of different infectious diseases.

Keywords: antibiotics; bioactive compounds; medication; Myxobacteria; human diseases

1. Introduction

Myxobacteria, bacteria belonging to family δ-proteobacteria and order Myxococcales,
are unicellular, soil-dwelling, rod-shaped bacteria that display gliding motility on attach-
ment to solid surfaces. They are omnipresent, with habitats ranging from tundra to hot
deserts and from acidic soils to alkaline conditions [1–3]. The source for their isolation
ranges from soil to decaying wood and leaves of trees up to excreta of herbivorous crea-
tures [4,5]. Under nutrient-deficient conditions, they produce species-explicit structures
(fruiting bodies) that exhibit myxospores (arisen from vegetative cells) within themselves
to pass decades of unfavorable environmental conditions [6]. Withstanding regular confine-
ment endeavors, myxospores sprout with the onset of favorable conditions into full-fledged
structures, with the exception of depicted facultative anaerobic species, Anaeromyxobacter
dehalogenans [7]. Recently, a large number of studies have been performed to gain a detailed
account of the Myxobacterial properties along with types, dynamics and biogenesis of
Myxobacteria-derived secondary metabolites [8–12].
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The rise in resistance to armor of available antibiotic regimes represents a problem
of global magnitude [13–16]. With increases in mortality and morbidity rates, it becomes
imperative to have a strategic management plan to monitor the impact of resistance devel-
opment and means for exploration of new molecules that can combat the emergence of
different diseases among humans [12,17]. Myxobacterial species, despite exhibiting sensitive-
ness to tetracycline, kanamycin, erythromycin, streptomycin, neomycin and actinomycin,
produce a variety of chemically different structures that in due course were found effective
in combatting the growing problem of drug resistance. The present study highlights the
potential of Myxobacteria as a source of new bioactive molecules, with strong emphasis on
the production and screening of secondary metabolites, their effect observed in overcoming
the odyssey associated with different diseases, as well as having updated information
of the current development of their exploitation as a source of effective molecules with
potential to compliment available drugs in the control of different diseases.

2. Distribution

Myxobacteria are largely cosmopolitan. Besides inhabiting terrestrial conditions, they
mark their presence in extreme habitats, such as anaerobic/microaerophilic, freshwater,
acidic soils, saline waters and others [12]. Since maximum populations of Myxobacteria
predominantly inhabit terrestrial ecosystems, a large proportion of their secretions (sec-
ondary metabolites) are derived from terrestrial Myxobacterial species. On the basis of
habitats, their distribution is studied under the following.

2.1. Terrestrial Habitats

Adaptation of Myxobacteria to terrestrial habitats manifests their existence in wide
phenotypic characteristics, such as social swarming and gliding, resting myxospores, etc.,
capable of producing secondary metabolites with a wide range of antibiotic or antifungal ac-
tivity as well as predation or cellulose decomposition [18]. With the help of different probes
and primers, Wu et al. explored a wide range of Myxobacteria, mostly Myxococcales, from
the soil samples [19]. Mohr revealed greater presentation of Myxococcus and Corallococcus
genera by standardized cultivation techniques as compared to cultivation-independent
clone libraries [12].

2.2. Acidic and Alkaline Habitats

Generally, Myxobacteria inhabit the soils which are neutral or slightly alkaline and
show a narrow range in their pH, i.e., approximately 6.5–8.5 [12]. Myxobacteria species
isolated from the alkaline bogs include Myxococcus, Archangium and Sorangium, along with
others such as Melittangium [20]. Corallococcus coralloides (formerly Myxococcus coralloides)
dominated in slightly acidic soils, while M. fulvus dominated in soils with a pH range in
between 3.0 and 3.5 [21]. Ruckert reported that Myxobacterial diversity decreases with the
decrease in the pH of the soil at alpine regions [21].

2.3. Freshwater Habitats

Freshwater-dwelling Myxobacteria share some characteristic features with soil inhabi-
tants, which justifies that these Myxobacteria have been blown away or washed from soil
into the freshwater bodies [22]. Research related to freshwater habitats of Myxobacteria
reveal that in lake mud, Myxobacteria were the dominant bacterial groups [23].

2.4. Marine/Saline Environments

Though Myxobacteria are less adapted to saline environments, their existence in salty
conditions was reported by Brockman in 1963, who observed Myxobacterial fruiting bodies
in sand dunes from an ocean beach of South Carolina [24]. Marine Myxobacteria are repre-
sented by four different genera: Salimabromide [25], Enhygrolides [26], Haliangicin [27]
and Haliamide [28]. Haliangium tepidum and H. ochraceum are the representative members
of Myxobacteria from coastal salt marshes. They differ from members of the terrestrial
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genus with respect to the presence of anteiso-branched fatty acids, that help them to survive
in greater salt concentrations (2–3% NaCl) [29]. Some genera of Myxobacteria, including
Enhygromyxa [30], Plesiocystis [31] and Pseudenhygromyxa [32], are entirely detected in
the saline environments. Brinkhoff et al. reported a cluster of marine Myxobacteria (MMB)
from sediments of the North Sea [33,34]. Zhang et al. studied 58 species of Myxobacteria
from the saline soils of Xinjiang, China [35], and Li et al. observed that species such as
Sorangium, Cystobacter, Myxococcus, Polyangium, Corallococcus and Nannocystis show better
survival in elevated salt conditions [36].

2.5. Facultative Anaerobic Myxobacteria

Myxobacteria are strictly aerobes, with the exception of Anaeromyxobacter dehalogenans,
which is a facultative anaerobe. This strain of Myxobacteria was studied from sediments
of the stream and grows with 2-chlorophenol (2-CPh) as an electron acceptor and acetate
as an electron donor [7]. Later, different strains of this Myxobacteria were isolated from
uranium-contaminated soils [37], flooded paddy fields [38], corrosive material of water
pipelines [39] and arsenic-polluted environments [40].

2.6. Myxobacteria Inhabiting Moderate to Extreme Environments

Most of the Myxobacterial species are mesophilic, i.e., they survive in the range of
4–44 ◦C. However, they are also reported to survive in the extreme temperature range.
Myxospores liberated by bacteria inhabiting extreme environments act as a means of
sexual reproduction and can survive with temperature extremes of 58–60 ◦C. Production
of myxospores differentiates these organisms from the rest of the faunal diversity [22].
Brockman analyzed greater diversity among Myxobacteria from regions that received
greater annual rainfall (400–800 mm) as compared to the normal range of 200–400 mm [41].
Gerth and Müller [42] reported that Cystobacterineae and Sorangiineae-Myxobacterial
suborders show greater morphogenesis at temperatures of 42–48 ◦C. Mohr et al. reported
that N. konarekensis, which was studied from an Iranian desert, exhibits the best growth at
37 ◦C, compared with N. pusilla and N. exedens, which show optimal growth at 30 ◦C [43].
Though hot springs are not considered suitable for the growth of mesophilic Myxobacteria,
Iizuka et al. reported four different strains of Myxobacteria that grow in geothermal
conditions (optimum 45–49 ◦C) from Japan [44].

3. Myxobacterial Secondary Metabolites

Secondary metabolites represent incredible gathering of characteristically differing
molecules blended among different creatures, such as microorganisms, plants, etc. Though
they are not actively involved in development or any type of advancement, their absence
prompts a long-haul disability in the survivability of living beings [45]. Production of
secondary metabolites has been reported from a large number of Myxobacterial species,
but a major proportion of them are reported among Myxococcus xanthus, Sorangium cel-
lulosum and Chondromyces species [46]. In addition to ribosomally produced secondary
metabolites, a major proportion of Myxobacterial metabolites were found to be derivatives
of polyketide synthases (PKSs), non-ribosomal peptide synthetases (NRPSs) or hybrids of
PK-NRPS systems [3,6,47]. The synthesis module in both cases proceeds through buildup
of monomeric blocks: acyl CoA thioester (in case of PK metabolites) and amino acids (both
proteinogenic and non-proteinogenic in case of NRPs), in a stepwise manner, followed by
modification either during assembly of reaction intermediates or at the end after release
from the multienzyme complex [3]. Over the past 3 decades, more than 100 secondary
metabolites with over 600 analogs were reportedly isolated from more than 9000 Myxobacte-
rial strains [48]. The production of unique metabolites among Myxobacterial strains reflects
a strong correlation between genome size and the biosynthetic pathway [49,50].

Considered as a rich source of secondary metabolites, the production of a large number
(>80 distinctive and 350 structural variants) of bioactive compounds by Myxobacteria puts
it on par with Pseudomonas for being a rich source of antibiotics [51]. A large number of
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Myxobacterial secondary metabolites show similarity to those produced by Pseudomonas and
Bacillus spp. Antibiotics produced as bioactive secondary metabolites have been observed
for about 55% and 95% of Myxobacterial spp. that exhibit bacteriolytic and cellulolytic
properties [52]. With greater potential for use in clinical settings, compounds isolated from
Myxobacteria are found either as macrocyclic lactones or linear cyclic peptides [51,52].
Information on different aspects of secondary metabolites produced by different strains of
Myxobacteria along with their uses is summarized in Table 1.

Table 1. Categorization of Myxobacterial-derived secondary metabolites based on their function.

Bioactive
Compound Chemical Structure Classification Myxobacterial

sp. Uses References

Bioactive compounds exerting antimicrobial effect

Ajudazol
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Compound Chemical Structure Classification Myxobacterial

sp. Uses References
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Effective in inhibiting 

the growth of 
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Peptide Cystobacter sp.

Broad-spectrum
antibacterial;

topoisomerase
(gyrase) inhibition.
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Sorangium 

cellulosum 

Works as an inhibitor of 

eubacterial DNA 

polymerase. 

[3,47,53] 

Gulmirecin 

 

 

 

Macrolide Pyxidicoccus fallax 
Exhibits antibacterial 

activity. 
[69] 

Haliangicin 

 

 

 

Polyketide Haliangium luteum 

Effective against fungi 

Aspergillus niger and 

Fusarium sp. at very low 

concentrations of 6–12 

µg/mL.  

[70] 

Hyalachelin 

 

 

 

Catechol 
Hyalangium 

minutum 

Shows sidrophore, i.e., 

iron-chelating activity, 

and cytotoxic activity is 

minor. 

[71] 

Hyaladione 

 

 

 

Quinone 
Hyalangium 

minutum 

Exhibits antimicrobial 

and cytotoxic activity. 
[72] 

Hyapyrroline 

 

 

Polyketide, pyrrole 
Hyalangium 

minutum 
NA [73] 

Polyketides Sorangium
cellulosum

Works as an inhibitor
of eubacterial DNA

polymerase.
[3,47,53]

Gulmirecin
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low concentrations of
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[70]

Hyalachelin

Pharmaceutics 2021, 13, 1265  7 of 35 
 

 

Etnangien 

 

 

 

Polyketides 
Sorangium 

cellulosum 

Works as an inhibitor of 

eubacterial DNA 

polymerase. 

[3,47,53] 

Gulmirecin 

 

 

 

Macrolide Pyxidicoccus fallax 
Exhibits antibacterial 

activity. 
[69] 

Haliangicin 

 

 

 

Polyketide Haliangium luteum 

Effective against fungi 

Aspergillus niger and 

Fusarium sp. at very low 

concentrations of 6–12 

µg/mL.  

[70] 

Hyalachelin 

 

 

 

Catechol 
Hyalangium 

minutum 

Shows sidrophore, i.e., 

iron-chelating activity, 

and cytotoxic activity is 

minor. 

[71] 

Hyaladione 

 

 

 

Quinone 
Hyalangium 

minutum 

Exhibits antimicrobial 

and cytotoxic activity. 
[72] 

Hyapyrroline 

 

 

Polyketide, pyrrole 
Hyalangium 

minutum 
NA [73] 

Catechol Hyalangium
minutum

Shows sidrophore, i.e.,
iron-chelating activity,
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antibacterial and 

antifungal activity. 
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Amide 
Cystobacter 

ferrugineus 

Shows marginal activity 

against microalgae (P. 

simplex). 

[74] 

1-Hydroxyphenazin-6-yl-

a-Darabinofuranoside 

 

 

 

Glycoside Nannocystis pusilla 
Exhibits weak 

antimicrobial activity. 
[75] 

Icumazol 

 

 

 

 

Polyketide 
Sorangium 

cellulosum 

Effective antifungal. 

Inhibition of NADH 

oxidation. 

[76] 

Indiacen 

 

 

 

Indole 
Sandaracinus 

amylolyticus 

Exhibits antibacterial 

and antifungal activity. 
[77,78] 

Polyketide,
pyrone

Hyalangium
minutum

Exhibits weak
antibacterial and

antifungal activity.
[73]

p-
Hydroxyacetophenone

amide
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Macrolides 
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Macyranone 

 

 

 

Peptide Cystobacter fuscus 

Shows moderate 

cytotoxic activity; 

antiparasitic (L. 

donovani); proteasome 

inhibitor (CT-L 

activity). 

[81] 

Maltepolid 

 

 

 

Macrolactone  
Exhibits moderate 

cytotoxic activity. 
[82] 

Indole Ohtaekwangia
kribbensis

Weak antimicrobial
and cytotoxic activity. [75]
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Melithiazols 

 

 

 

Heterocyclic 

alkaloid 

Archangium 

gephyra 

Antibacterial. Inhibits 

NADH oxidation. 
[83] 

Microsclerodermin 

 

 

 

Cyclic peptide 
Microscleroderma, 

theonella 

Exhibits antifungal 

activity, NF-kB 

inhibition and 

induction of apoptosis.  

[84,85] 

Myxalamids 

 

 

 

 

Amide 
Myxococcus 

xanthus 

Exhibits antibacterial 

and antifungal activity; 

inhibits electron 

transport system. 

[3,47,53] 

Myxochelin 

 

 

 

Peptide 
Angiococcus 

disciformis 

Shows siderophore 

production. Exhibits 

antibacterial, antitumor 

and antiproliferative 

activities: inhibits 5-

lipoxygenase. 

[86,87] 

Indole Sorangium
cellulosum NA [75]

Melithiazols
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Myxoprincomide 

 

 

 

Peptide 
Myxococcus 

xanthus 
NA [89–91] 

Myxopyronin B 

 

 

 

Peptide Myxococcus fulvus 

Effective in combating 

diseases caused by 

Staphylococcus aureus. 

[92] 

Myxothiazol 

 

 

 

 

Macrocyclic Myxococcus fulvus 
Inhibits mitochondrial 

cytochrome c reductase. 
[3,47,53] 

Myxovalargin 

 

Lipopeptide Myxococcus fulvus 

Exhibits antibacterial 

activity against 

Micrococcus luteus and 

Corynebacterium 

Mediolanum. Disrupts 

memebrane integrity 

and aminoacyl-tRNA 

binding to site A during 

translation. 

[93] 

Myxovirescin 

 

 

Macrocyclic 
Myxococcus 

xanthus 

Exhibits antibacterial 

activity. Blocks bacterial 

cell wall synthesis via 

interference in lipid-

disaccharide 

pentapeptide 

polymerization, as well 

as targeting type II 

signal peptidase LspA.  

[94,95] 

Coumarin Stigmatella
aurantiaca

Exhibits antifungal
activity. [88]
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Sorangium 

cellulosum 
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potassium channel 

KscA. Exhibits antiviral 
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Phenoxan 

 

 

 

Lipopeptide Polyganium sp. 

Effective as an inhibitor 

of eukaryotic 

respiratory chain 

(blocks Complex I). 

Exhibits antifungal 

activity.  

[3,47,53] 

Phoxalone 

 

 

 

Macrolides 
Sorangium 

cellulosum 

Exhibits antimicrobial 

activity.  
[98] 

Pyrronazol 

 

 

 

Pyrrole Nannocystis pusilla 
Shows weak antifungal 

activity. 
[75] 

Pyrrolopyrazinoe Nannocystis
pusilla

Exhibits weak
antimicrobial and
cytotoxic activity.

[75]
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ferrugineus 

Exhibits antibacterial 

activity. 
[74] 

Saframycin Mx1 

 

 

 

α-cyanoamine 
Myxococcus 

xanthus 

Acts as a broad-

spectrum inhibitor for a 

wide range of Gram-

positive and 

halobacteria. Shows 

week activity against 

Gram-negative bacteria.  

[3,47,53] 

Salimyxin A and 

Salimabromide 

 

 

 

 

Sterol, 

Furano lactone 

Enhygromyxa 

salina 

Effective against 

Arthrobacter 

cristallopoietes.  

[100] 

Sesqiterpene 

 

 

 

Terpenes 
Sorangium 

cellulosum 

Exhibits antimicrobial 

activity. 
[101,102] 

Polyketide Sorangium
cellulosum

Effective in treating
tuberculosis. [99]
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Exhibits antimicrobial 
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Sorazinnone 

 

 

 

Pyrazinone Pyxidicoccus fallax 

Siderophore 

production. Exhibits 

antibacterial activity.  

[75] 

Sorazolon 

 

 

 

Indole 
Sorangium 

cellulosum 

Weak activity against 

Gram-positive bacteria. 
[104] 

Macrolides Sorangium
cellulosum

Exhibits antimicrobial
activity. [82]
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oxidation of 
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Exhibits antiviral (HIV-
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Effective against 

Mycobacterium 

tuberculosis. 
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 Bioactive compounds exerting cytotoxic effects 

Aetheramide 

 

 

 

Cyclic peptide Atherobacter rufus 
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moderate antifungal 

activity. 

[109–111] 

Archazolid 

 

 

 

Macrolactone 

Archangium 

gephyra, 

Cystobacter 

violaceus 

Exhibits cytotoxic and 

antitumor activity. 

Inhibits V-ATPase. 

[112] 

Macrolactone Stigmatella
aurantica

Exhibits strong
antifungal activity.

Inhibits quinol
oxidation of

mitochondrial
cytochrome bc1

complex.

[3,47,53]
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concentration. Exhibits 

strong cytotoxic 

activity. Destroys cyto-

skeleton. 
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Chrondramide 

 

 

 

Depsipeptide 
Chondromyces 

crocatus 

Exhibits strong 

cytotoxic activity; 

effective against breast 

cancer metastasis. 
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Cystodienoic acid 

 

Terpene 
Cystobacter 

ferrugineus 

Exhibits cytotoxic 

activity. 
[115] 

Peptolide Archangium
gephyra

Acts as a potential
inhibitor of antibody
formation by murine

B-cells. Exhibits
antibacterial and
cytotoxic activity.

[113]
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activity at higher

concentration.
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cytotoxic activity.
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cyto-skeleton.
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Chrondramide
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Miuraenamide 

 

 

 

cyclic 

depsipeptides 

Paraliomyxa 

miuraensis 

Exhibits antibacterial 

and cytotoxic activity.  
[119] 

Peptide Sorangium
cellulosum

Exhibits strong
antifungal activity;

inhibits proliferation
of different cancer cell

lines.

[116]
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cytotoxic activity. [28]
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epoxyamide 
Nannocystis sp. 

Exhibits strong 

antifungal and cytotoxic 

activity; inhibits 

eukaryotic translation 

elongation factor 1α. 

[120,121] 

Pellasoren 

 

 

 

 

Polyketide 
Sorangium 

cellulosum 

Exhibits cytotoxic 

activity. 
[51,122] 

Ratjadone A 

 

 

 

α-pyrone 
Sorangium 

cellulosum 

Acts as an antiviral 

drug. Inhibits HIV 

infection by ceasing the 

Rev/CRM1-mediated 

nuclear export. 

[106] 

Rhizopodin 

 

 

 

Amide 
Myxococcus 

stipitatus 

Effective against cancer 

cell lines. Interferes 

with cytoskeleton 

assembly. Acts as a 

strong antiviral.  

[3,123] 

Spirangien 

 

 

 

Polyketide 
Sorangium 

cellulosum  

Exhibits antifungal, 

cytotoxic, antiviral 

(HIV) and anti-

inflamatory activity.  

[124] 

Macrocyclic
epoxyamide Nannocystis sp.

Exhibits strong
antifungal and

cytotoxic activity;
inhibits eukaryotic

translation elongation
factor 1α.

[120,121]

Pellasoren
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4. Pharmacological Effects of Myxobacteria-Derived Bioactive Compounds

Myxobacteria, an adaptable cosmopolitan, produces a wide range of bioactive molecules.
About 40% of Myxobacteria-derived compounds represent novel (mostly non-glycosylated)
chemical structures that act against targets often not covered by compounds derived from
Actinomycetes, Bacillus and Pseudomonas. A variety of bioactive compounds produced by
Myxobacterial spp. play a vital role in biological activities, and mostly, their activities are
antifungal, antibacterial, anti-cancerous, antiparasitic and immunomodulatory.

4.1. Myxobacteria and Infectious Diseases

Before the advent of an era of widely accessible anti-infectious agents, mankind was
considered vulnerable to infections such as cholera, which reached the extent of epidemics
that caused a huge loss of human lives [131]. With the passage of time, the period of
anti-infectious agents moved along from quinine (utilized against fever), to Salvarsan
(arsenic compound used against syphilis) and Sulpha drugs such as Protonsil (utilized
against diseases caused by Gram-positive cocci). The circumstances profoundly improved
with the discovery of the β-lactam drug Penicillin, from Penicillium spp. [132]. The era
of antibiotics moved on to aminoglycosides [133], macrolides [134] and so on to treat
ailments that were considered untreatable. Inaccurate recommendation and wrong use
of antibiotics in human medication, veterinary and horticulture expanded portability,
and as such, quick spread of microbes, that raised alarm regarding the use of multi-
tranquilize safe microbes. Many pharmaceutical companies withdrew from manufacturing
new drugs due to high-cost screening systems developed for nosocomial infections caused
by ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa and Enterobacter spp.) pathogens [135]. With less new
medications, the dying antimicrobial pipeline caused by an absence in development and
inefficient ways of screening bioactive substances presented a dreadful situation that
led to obstruction in the production of drugs [136,137]. The bottlenecks that choked the
production of anti-infective agents prompted qualified countermeasures to be implemented
regarding improvements in the production of engineered medications, proper screening of
the metabolite markers, followed by assessment of the rediscovered drugs. At this instance,
exploration of new genera and species are of extraordinary intrigue [138] as it may involve
the creation of auxiliary metabolites in scaleup forms or fitting hardware for maturation
and release of substances from fermenter stock for resolving biotic and abiotic conditions
of the maker strain.

Myxobacteria, together with actinomycetes [139] and Bacillus spp., are considered as the
best producers of bioactive compounds [140]. A large proportion of Myxobacteria-derived
bioactive compounds (29%) displaying antibacterial properties reflect their competitiveness
for existence in their natural habitats. These characteristic products demonstrate a more
extensive scope of biological activities which are regularly less direct to rationalize, as the
production of regular objects from different Myxobacterial spp. requires regular screening
and enormous scaleup development [6].
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4.2. Myxobacteria and Viral Diseases
4.2.1. Human Immunodeficiency Virus (HIV)

Human Immunodeficiency Virus is a single-strand RNA (ssRNA) lentivirus which
targets human immune cells, and integrates into host DNA by reverse transcription. Sec-
ondary metabolites extracted from different Myxobacterial strains are reported to play
crucial roles against HIV. The Sulfangolids are an important class of antiviral secondary
metabolites secreted by different strains of Sorangium cellulosum [105]. Myxobacterial extracts
such as spirangien B, sulfangolid C, soraphen F and epothilon D at different concentra-
tions showed impressive activity against HIV [124]. Soraphens exert antiviral activity by
inhibiting acetyl-CoA carboxylate transferase [141], while epothilones stabilize the activity
of macrophage microtubuli in a parallel way to Taxol® [142,143]. Ixabepilone®, an FDA-
registered anticancer drug, is derived from epothilone B [144]. Epothilon D and spirangien
B are believed to decrease the phosphorylation, and as such degradation of inhibitor
of kappa B (IkBS) [143,145]. Rhizopodin, a well-known actin inhibitor, extracted from
Myxococcus stipitatus [124], interferes in virus synapses and hence blocks the virological
synapse arrangement. Stigmatellin extracted from Stiginatella aurantiaca Sga15, disorazol
extracted from Sorangium cellulosum Soce 56 and tubulysin extracted from Archangium
gephyrs strain Ar315 shows mild anti-HIV activity [124], while Phenalamide A1, phenoxan
and thiangazole separated from Polyangium sp. and Myxococcus stipitatus strain Mxs40
suppress HIV-1-mediated cell death in the MT-4 cell assay, thereby exhibiting high anti-HIV
activity [146]. Aetheramide A and B isolated from the genus Aetherobacter, that inhibits
HIV-1 infection, show IC50 values of 0.015 and 0.018 M, respectively [109,147,148]. Similarly,
Ratjadon A (a compound isolated from Sorangium cellulosum Soce 360), capable of blocking
the Rev/CRM1-mediated nuclear export, inhibits HIV infectivity; however, its toxicity
and low SI value becomes a limiting factor for its exploitation as a potential therapeutic
molecule [106,149].

4.2.2. Human Cytomegalovirus (HCMV)

Infections of Human Cytomegalovirus are associated with diseases such as glandu-
lar fever and pneumonia. Myxochelin, a secondary metabolite obtained from different
Myxobacterial strains, responsible for iron uptake during iron-limiting circumstances, was
found to be a potent antitumor agent [87,150,151]. The ability of nannochelins and hy-
lachelins (siderophores of Myxobacterial source) in inhibiting the human 5-lipoxygenase
(5-LO, a gene associated with the proliferation of cancerous cells) were found exerting
antitumor activity [87,142–154]. It is believed that a similar pathway of inhibiting 5-LO
is associated with the strong anticancer activity of myxochelin [153,155]. Of the differ-
ent Myxochelins, which are either isolated from Angiococcus disciformis (strain And30)
or synthesized [155,156], Myxochelin C is capable of inhibiting HCMV (IC50 value of
0.7 g/mL) [150,157]. It opens avenues for testing other known siderophores, such as nan-
nochelins, hylachelins and myxochelin analogues, in the future for their possible role in
inhibiting HCMV [158]. Additionally, structure–activity relationships of the siderophores
need to be studied for possible discovery of more potent antivirals [123].

4.2.3. Ebola Virus Disease (EVD)

Ebola virus (EBOV) is a single-stranded RNA virus which causes hemorrhagic fever.
Different metabolites extracted from Myxobacteria were analyzed for their possible activity
in inhibiting the Ebola virus using GP-pseudo-typed lentiviral vectors expressing Ebola en-
velope glycoprotein [97]. Chondramides extracted from the genus Chondromyces [159] of
Myxobacteria were found capable of inhibiting the EBOV-GP-mediated transduction [123].
Noricumazole, a polyketide extracted from Sorangium cellulosum, exerts an EBOV-GP in-
hibitory effect with an IC50 value of 0.33 M. [97]. The secondary metabolite is believed to
lower the virulence of EBOV via blocking of the potassium channels [76,97].
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4.2.4. Hepatitis C Virus (HCV)

Hepatitis C virus, a single-stranded RNA virus, undergoes transmission through
blood transfusions. Heterocyclic metabolites such as labindoles A and B [160], 3-chloro-9H-
carbazole and 4-hydroxymethyl-quinoline extracted from Myxobacterial strain Labilithrix
luteola, exert potent antiviral activity, and thereby help to overcome the effects of HCV [160].
Of the different macrolactones, Soraphens A obtained from Myxobacterial species was found
to inhibit HCV replication in in vitro HCV culture models (cells in sub-genomic and full-
length replicons) and in cell culture-adapted virus with an IC50 value of 5 nM [96,161–163].
Lanyamycin, a macrolide obtained from Sorangium cellulosum (strain Soce 481) that exhibits
similarity to bafilomycins of actinobacteria effective against influenza A virus (IC50 value
of 0.1 nM), was found to moderately inhibit HCV [96,160,164].

4.3. Myxobacterial Metabolites as Anti-Neurodegenerative Diseases

Inside the cell, the endoplasmic reticulum (ER) helps in the processing of proteins be-
fore their transport to the target sites. However, any kind of ER dysfunction due to protein
misfolding may lead to neurodegenerative disorder or cell death [165–167]. Myxobacterial
secondary metabolites act on protein GRP78/Bip, which helps to release any kind of stress
created in the ER [168]. It also decreases the release of apoptosis-inducing factor (AIF) and
cytochrome C (an apoptosis-related marker proteins). Therefore, Myxobacterial secondary
metabolites help in combating the Parkinson’s disease (PD) pathology via decreasing the
ER stress, which contributes to inhibition of cell apoptosis [169]. Microtubules play a major
role in the axoplasmic transport of different constituents of the cell (mitochondria, synaptic
vesicles, lipids, proteins) [170]. Neurodegenerative diseases such as Alzheimer’s disease
(AD), Amyotrophic lateral Sclerosis (ALS) and PD arise by distraction in the axoplasmic
transport due to microtubules linked to tau proteins—the phenomenon known as tauopa-
thy [171–175]. Epothilones (A–F) are a particular class of secondary metabolites produced
by Sorangium cellulosum strain So ce90 that exhibit antifungal and anti-cancerous poten-
tial [176]. These compounds bind to microtubules and help them in stabilization, hence
resulting in the elevation of axoplasmic transport in neurodegenerative disorders [177]. Of
the different Epothilones, Epothilone D plays an important role in improving the axonal
transport, as well as protecting cognitive deficits in a mouse tauopathy model having
overexpression of P301S (a mutant tau), thereby contributing to inhibition of tau pathol-
ogy [178]. Epothilone D also plays an active role in alleviating the microtubule defects in a
C57Bl model of PD [179].

Neurodegenerative diseases such as PD, AD and Huntington’s Disease (HD) are the
outcomes of different mitochondrial dysfunctions [180]. Earlier studies predicted that
certain prokaryotes have the ability to synthesize PUFAs, however, these predictions failed
as some extremophilic bacteria which inhabit extreme environments of seas and oceans
invalidated this hypothesis [181,182]. Among different terrestrial prokaryotes, Myxobac-
teria are considered as a major contributor of PUFAs [183]. In the studies employing the
genome mining approach, two Myxobacterial species, Sorangium and Aetherobacter, were
found, having different organization of gene clusters associated with biosynthetic PUFA
compared with their marine counterparts [184]. Myxobacterial omega 3 PUFAs play an an-
tagonistic role against prenatal stress, which arises from mitochondrial abnormalities such
as changes in mitochondrial complexes, DNA damage and memory deficiency [185,186].
Having a remarkable effect regarding the phospholipid profile, and as such fluidity of the
mitochondrial membrane, DHA was observed to play a critical role in maintaining stability
of the structure, and as such functions of the mitochondrial membrane, and thereby in
non-amyloidogenic processing of APP in the HEK-APP cell line [187].

Immune Modulating Myxobacterial Compounds

Employment of Myxobacterial secondary metabolites such as Soraphen A, bengamide
A and B and Spirangiens as immune-enhancing compounds has attracted the attention of
different researchers throughout the world [188]. Castro et al. worked out the immune-
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enhancing responses of Soraphen A [189]. Acting on the biotin carboxylase (BC) domain,
Soraphen A extracted from Sorangium cellulosum So ce26 was found to exert an inhibitory
effect on acetyl-CoA carboxylase (ACC) [141]. Bengamides, an important class of sec-
ondary metabolites produced by Myxococcus virescens, exert both anti-inflammatory as
well as immune-boosting effects via regulation of the nuclear factor-KB (NF-KB) and
pro-inflammatory cytokines (IL-6, TNFα and MCP-1) [190]. Spirangien A produced by
Sorangium cellulosum strain So ce90 shows antifungal activity, as well as suppressing tran-
scription of IL-8 in response to IL-1 (cytotoxic activity). The compound along with its
derivative, spirangien M522, were found effective in inhibiting IL-8 gene expression in the
HeLa cell line [145].

4.4. Myxobacterial Compounds Attributing Cytotoxic Effects

Myxobacterial secondary metabolites display unique structural properties and exhibit
novel modes of action. These metabolites mainly target the cellular structures that are
rarely hit by metabolites from other sources.

4.4.1. Compounds Targeting Electron Transport

Myxobacterial compounds such as crocacins [191] and aurachin C [192,193], along with
a group of closely related bithiazole derivatives, particularly myxothiazol, cystothiazol
and melithiazole [66,194–196], were found effective in inhibiting mitochondrial respiration
through interference in the functioning of complex-I (NADH-Ubiquinone oxidoreductase)
and complex-III (Cyt b–C1 complex). Stigmatellin was found to exert its inhibitory effect
at complex III of the mitochondria [6] and Cyt b6/f of the photosynthetic apparatus in
plants [197–199].

4.4.2. Compounds Targeting RNA and Protein Synthesis

With enormous potential to lead as building blocks for drug development, com-
pounds of Myxobacteria origin such as saframycin tie to DNA [200], ambruticin helps in
osmoregulation of fungi [126] and gephyronic acid [201] and myxovalargin [93,202] repress
eukaryotic and prokaryotic protein synthesis, respectively [83]. Etnangien is a metabolite
that targets protein synthetic machinery via inhibition of the eubacterial RNA polymerases.
In addition to rifampicins utilized maximally in clinics, other inhibitors of RNA polymerase
of Myxobacterial origin include thiolutin [203,204], streptolydigin [205] and holomycin [206].
These molecules (ripostatin and corallopyronin) show no cross-resistance with rifamycin,
and likewise concentrate on the commencement of RNA synthesis [207]. Acting in an
alternate way to rifamycin, it is believed that these metabolites can potentially be used
to overcome rifamycin resistance in bacteria [208,209]. Inhibition of the protein synthetic
machinery is mediated by both naturally occurring compounds such as sorangicins and
ripostatins that exert their effect during initiation (sorangicins) [210,211] and chain elon-
gation (ripostatins) [212,213], as well as by chemically related myxopyronins [93] and
corallopyronins [214].

Compounds of Myxobacterial origin (10% of Myxobacterial compounds), that interfere
with the microtubule assembly (cytoskeleton) and thereby hinder cell proliferation and
promote apoptosis, are currently being used in cancer chemotherapies. Similar to notorious
fungal toxins obtained from mushrooms (preferably green and white cap mushrooms),
Myxobacterial compounds such as rhizopodin [215,216] and chondramides [159,217,218]
are reported to work explicitly on the actin [214]. Though all chondramide variants exert
similar effects, chondramide C was found to be most effective in its action on actin [217]. Of
the different compounds, a few compounds, such as epothilones [219,220], play important
roles in retaining tubular polymerization under in vitro conditions, while others, such
as tubulysins [221,222], favor depolymerization events of the tubulin. Epothilones and
their analogs have shown antitumor activity towards multidrug-resistant and paclitaxel-
safe tumor cell lines [223]. In 2007, the FDA recommended Ixabepilone (IxempraTM)—a
derivative of epothilone—for the treatment of metastatic breast cancer, while epothilones B
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and D are currently undergoing clinical trials [224]. From the tubulysins class, tubulysin
D displays action that surpasses other tubulin modifiers, such as taxol, epothilones and
vinblastine, by 20–100-fold [225,226]. Additionally, tubulysin A is currently explored for
its pharmacological properties related to its use as an antiangiogenic and antiproliferative
agent [227].

4.4.3. Other Activities

Soraphen A from Sorangium cellulosum was found to hinder normal functioning of
acetyl-CoA carboxylase through interference with its biotin carboxylase (BC) domain. With
its novel modus operandi, Soraphen A has explicit utility as a promising therapeutic (novel
inhibitor of ACCs) in the treatment of cancers [3,228]. Its utility as a potent inhibitor in
cancers hindered by its poor water solubility and less bioavailability is overruled through
generation of either structural variants of this metabolite or through the genetic engineering
approach, upholding its bioactivity.

4.5. Myxobacteria and Plant Diseases of Bacterial and Fungal Origin

Although the contribution of Myxobacteria to plant health remains largely unexplored,
studies have assessed the role of Myxobacterial secondary metabolites in the predation of
microorganisms and other plant pathogens. Based on their ability to degrade biomolecules,
two groups of Myxobacterial spp., i.e., bacteriolytic and cellulolytic, have been formed [229].
The Myxobacteria of the bacteriolytic category produce a large number of agriculturally
important compounds such as pyrrolnitrin, a thiangazoletic that acts as an antagonis-
tic in the control of phytopathogens that destroy crops [230]. Pyrrolnitrin produced by
Myxobacterial spp. (Myxococcus fulvus, Cystobacter ferrugineus and Corallococcus exiguous) was
found effective in controlling the damping-off of diseases of cotton caused by Rhizoctonia
solani [229,230]. The ability of Myxobacteria to utilize cellulose categorizes them into two
groups: Group I, capable of utilizing inorganic nitrogen compounds during their growth on
cellulose and glucose sources (members of the Sorangineae suborder), and Group II, unable
to make direct use of cellulose (majority of Myxobacterial spp.) and as such, dependent on
enzymatic degradative products of proteins (peptides and amino acids) as their source of
nitrogen [230]. Under natural conditions, Group II Myxobacterial spp. causes lysis of other
organisms, such as eubacteria, via secretion of exoenzymes (proteases, lipases, xylanases,
etc.). The lysate generated thereof is used as a nutrient by these Myxobacterial spp., and tags
them with the name “micro-predators” [231], Myxobacterial proteolytic enzymes exhibiting
both cellulolytic (genus Sorangium) and predatory roles (genus Myxococcus). These pro-
teases are believed to perform lysis of prey, cellular membrane disruption for cytoplasmic
content release and protein hydrolysis for supplying amino acids to the Myxobacteria-like
functions [232]. Lipids containing fatty acids c16:1ω5c, utilized along with proteins as an
energy and carbon source during the growth of myxobacteria, play pivotal roles in the pre-
dation by acting as chemo-attractants for the prey. In Myxococcus xanthus, lipolytic enzymes
belonging to three families—α/β hydrolases, patatin and GDSL lipases—disintegrate
the membrane barrier, thereby releasing fatty acids and cytoplasmic contents of the prey.
Genus Polyangium was found perforating, and as such lysing, the conidia of Cochliobolus
miyabeanus and hyphae of R. solani. Genus Sorangium reduces damping-off of conifers in
addition to lysis of microorganisms under culture conditions [231,232]. Additionally, the
production of unsaturated fats by Myxoxoccus xanthus was found to exert an inhibitory
effect on the growth of Fusarium roseum [233]. Taken together, the production of agricul-
turally important compounds along with a series of lytic enzymes show that Myxobacteria
have potential for use as biocontrol agents.

5. Techniques for Exploring Myxobacterial Metabolites

As emerging endeavors of whole-genome sequencing together with metabolic profil-
ing of Myxobacterial species revealed high profundity of secondary metabolites, it becomes
necessary to have information on mining genomes of both terrestrial and marine Myxobac-
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teria for novel metabolites [234]. It becomes obligatory to have a strategic plan regarding
the methodology (in terms of media composition, temperature, pH, along with others)
adopted for identification of secondary metabolites from cultivated strains under stan-
dard research laboratory conditions. One such strategy is OSMAC (one strain many
compounds), initially introduced in Actinomycetes and fungi during isolation of new
secondary metabolites [235]. Traditional but untested strategies for isolation of secondary
metabolites include inoculation of microorganisms into the culture, much like induction of
cytotoxic compounds [236].

Optimization of the growth conditions along with addition of the explicit precursors
would be a way to support generation and expansion of the metabolite yield [234]. The
adoption of the genetic engineering techniques for producing a strain with desired charac-
ters can be achieved. For instance, overexpression of a particular gene activator regulating
biosynthesis of a cryptic gene cluster might be activated, as recently illustrated for the
fungus Aspergillus nidulans [237]. The irregular transposon mutagenesis approach was
adopted to obtain genetic information regarding gene clusters of metabolites produced
from a prepared cosmid library of the strain [238]. The methodology helped in obtaining
information of the gene clusters for ambruticin/jerangolid [239,240], aurachin [240,241],
disorazol [242] and tubulysin [243] metabolites. In Cystobacter fuscus Cb f17, irregular
transposon mutation helped in the recognition of a particular regulatory element for a
metabolite [244]. The adopted methodology helped in unravelling information of the
biosynthetic gene cluster with two components (StiR) associated with the synthesis of the
polyketide stigmatellin. Recognition of ChiR protein following detachment of the promoter
binding protein by the biomagnetic bead assay revealed its role in the biosynthesis of
the metabolite chivosazol in Sorangium cellulosum So ce56, as its overexpression led to a
5-fold increase in the production of chivosazol [245]. Alternatively, intentional inactivation
of the gene cluster followed by screening of mutants for non-production of the explicit
metabolite compared with the wild phenotypes helped in the recognition of myxochelins,
myxochromides and aurafurones [246,247]. Additionally, shot-gun genome sequencing
can be adopted to obtain information of the gene clusters for the identification of different
metabolites, as observed for phosphoglycolipid moenomycin A [248,249].

To overcome the problem of recalcitrance of a strain for manipulation, heterologous
expression of gene clusters (both orphan and known) in a suitable host that offers ad-
vantages for genetic manipulation seems a suitable alternative for exploring the function
of genes [247]. Using specific hosts such as Myxococcus xanthus and a few other bacte-
rial strains such as Pseudomonas, it is possible to arrange different gene sets in a codon-
optimized manner for heterologous expression that abolishes the requirement for genetic
engineering of the host [250]. Though Myxococcus xanthus shares codon usage and other
physiological parameters with a majority of the Myxobacterial species, Pseudomonads offers
the advantage of a growth rate on par with E. coli, with plasmids harboring inducible
promoters. Examples of heterologous expression of gene clusters for metabolites, such as
epothilone in M. Xanthus [251], Streptomyces coelicolor [252] and E. coli [253], myxochromide
S in Pseudomonas putida [247,254], soraphen in Streptomyces lividans [255], myxothiazol in
both M. Xanthus [256] and P. putida [257] and flaviolin in three Pseudomonas strains [257], are
available. Employment of Red/ET recombination technology has overcome the limitation
of cluster reconstruction associated with the heterologous gene expression by enabling
reconstruction of gene clusters onto a suitable vector [258]. Recently, an approach of com-
bining Myxobacterial biosynthetic machineries has been explored for production of novel
metabolites in a so-called combinatorial biosynthesis approach [259].

6. Conclusions and Future Perspectives

The escalating problem of resistance against the current regime of antibiotics has
increased concern, particularly related to treatment of human diseases. It has resulted in a
community crisis, necessitating the requirement to undertake studies towards development
of effective alternatives that could replace or supplement the antibiotics in counteracting
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occurrence at a global scale. Based on this scenario, studies were undertaken to explore
natural resources towards the development of potent products that offer promise for treat-
ment of different diseases. Exhibiting potent antimicrobial activity, secondary metabolites
of microbial origin (in particular Myxobacteria) were investigated for possible use in the
prevention and treatment of diseases. Myxobacteria, a highly adaptable and cosmopolitan
group of microorganisms, were screened at genome and metabolome levels for identifica-
tion and characterization of metabolites that can serve as potent lead structures for drug
development. Evaluation of the rich repertoire of Myxobacterial metabolites for safety, speci-
ficity, distribution, immune modulation and anti-infectivity potential revealed information
of novel antimicrobials that offer great potential to be utilized in the manufacturing of
drugs. Despite the fact that Myxobacterials exhibit survival under different habitats and
extreme climatic conditions, secondary metabolites of Myxobacterial origin were found
effective in the treatment of a wide range of diseases. Studies need to be undertaken to gain
insight into the production mechanism that holds promise in elucidating the regulatory
circuit of different secondary metabolites towards optimal design of a strategic plan for
enhancing their production. Alongside strategic approaches for elucidating the potency
of the secondary metabolites using recently developed techniques that offer flexibility
to approval strategies, consistency in safety, efficacy and delivery methods need to be
adapted to broaden exploration, and as such adoption of the secondary metabolites of
Myxobacterial origin.
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9. Wrótniak-Drzewiecka, W.; Brzezińska, A.J.; Dahm, H.; Ingle, A.P.; Rai, M. Current trends in myxobacteria research. Ann. Microbiol.

2016, 66, 17–33. [CrossRef]

http://doi.org/10.1016/j.jbiotec.2003.07.015
http://www.ncbi.nlm.nih.gov/pubmed/14651865
http://doi.org/10.1039/c001260m
http://www.ncbi.nlm.nih.gov/pubmed/20520915
http://doi.org/10.1111/j.1574-6976.2000.tb00548.x
http://doi.org/10.1038/sj.jim.7000025
http://www.ncbi.nlm.nih.gov/pubmed/11780785
http://doi.org/10.1128/AEM.68.2.893-900.2002
http://doi.org/10.1016/j.ygeno.2020.11.030
http://doi.org/10.1007/s13213-015-1104-3


Pharmaceutics 2021, 13, 1265 23 of 32

10. Livingstone, P.G.; Morphew, R.M.; Whitworth, D.E. Genome Sequencing and Pan-Genome Analysis of 23 Corallococcus
spp. Strains Reveal Unexpected Diversity, With Particular Plasticity of Predatory Gene Sets. Front. Microbiol. 2018, 9, 3187.
[CrossRef]

11. Sajedi, H.; Mohammadipanah, F.; Pashaei, A. Automated identification of Myxobacterial genera using Convolutional Neural
Network. Sci. Rep. 2019, 9, 18238. [CrossRef]

12. Mohr, K.I. Diversity of Myxobacteria-We Only See the Tip of the Iceberg. Microorganisms 2018, 6, 84. [CrossRef]
13. Azam, M.; Jan, A.T.; Haq, Q.M.R. blaCTX-M-152, a Novel Variant of CTX-M-group-25, Identified in a Study Performed on the

Prevalence of Multidrug Resistance among Natural Inhabitants of River Yamuna, India. Front. Microbiol. 2016, 7, 176. [CrossRef]
14. Hemlata; Jan, A.T.; Tiwari, A. The Ever-Changing Face of Antibiotic Resistance: Prevailing Problems and Preventive Measures.

Curr. Drug Metab. 2017, 18, 69–77. [CrossRef]
15. Hemlata; Bhat, M.A.; Kumar, V.; Ahmed, M.Z.; Alqahtani, A.S.; Alqahtani, M.S.; Jan, A.T.; Rahman, S.; Tiwari, A. Screening of

natural compounds for identification of novel inhibitors against β-lactamase CTX-M-152 reported among Kluyvera georgiana
isolates: An in vitro and in silico study. Microb. Pathog. 2021, 150, 104688. [CrossRef] [PubMed]

16. Sultan, I.; Rahman, S.; Jan, A.T.; Siddiqui, M.T.; Mondal, A.H.; Haq, Q.M.R. Antibiotics, Resistome and Resistance Mechanisms:
A Bacterial Perspective. Front. Microbiol. 2018, 9, 2066. [CrossRef] [PubMed]

17. AlSheikh, H.M.A.; Sultan, I.; Kumar, V.; Rather, I.A.; Al-Sheikh, H.; Tasleem Jan, A.; Haq, Q.M.R. Plant-Based Phytochemicals as
Possible Alternative to Antibiotics in Combating Bacterial Drug Resistance. Antibiotics 2020, 9, 480. [CrossRef] [PubMed]

18. Ringel, S.M.; Greenough, R.C.; Roemer, S.; Connor, D.; Gutt, A.L.; Blair, B.; Kanter, G.; von Strandtmann, M. Ambruticin (W7783),
a new antifungal antibiotic. J. Antibiot. 1977, 30, 371–375. [CrossRef]

19. Wu, Z.H.; Jiang, D.M.; Li, P.; Li, Y.Z. Exploring the diversity of myxobacteria in a soil niche by myxobacteria-specific primers and
probes. Environ. Microbiol. 2005, 7, 1602–1610. [CrossRef]

20. Hook, L.A. Distribution of Myxobacters in Aquatic Habitats of an Alkaline Bog. Appl. Environ. Microbiol. 1977, 34, 333–335.
[CrossRef] [PubMed]

21. Rückert, G. Myxobakterien-Artenspektren von Boden in Abhängigkeit von bodenbildenden Faktoren unterbesonderer Berück-
sichtigung der Bodenreaktion. Z. Pflanzenernaehr. Bodenkd. 1979, 142, 330–343. [CrossRef]

22. Reichenbach, H. The ecology of the myxobacteria. Environ. Microbiol. 1999, 1, 15–21. [CrossRef]
23. Li, S.G.; Zhou, X.W.; Li, P.F.; Han, K.; Li, W.; Li, Z.F.; Wu, Z.H.; Li, Y.Z. The existence and diversity of myxobacteria in lake mud-A

previously unexplored myxobacteria habitat. Environ. Microbiol. Rep. 2012, 4, 587–595. [CrossRef] [PubMed]
24. Brockman, E.R. Fruiting myxobacteria from the South Carolina coast. J. Bacteriol. 1963, 94, 1253–1254. [CrossRef]
25. Felder, S.; Dreisigacker, S.; Kehraus, S.; Neu, E.; Bierbaum, G.; Wright, P.R.; Menche, D.; Schäberle, T.F.; König, G.M. Salimabro-

mide: Unexpected chemistry from the obligate marine myxobacterium Enhygromxya salina. Chemistry 2013, 19, 9319–9324.
[CrossRef]

26. Felder, S.; Kehraus, S.; Neu, E.; Bierbaum, G.; Schäberle, T.F.; König, G.M. Salimyxins and enhygrolides: Antibiotic, sponge-related
metabolites from the obligate marine myxobacterium Enhygromyxa salina. Chem. Bio. Chem. 2013, 14, 1363–1371. [CrossRef]

27. Fudou, R.; Iizuka, T.; Sato, S.; Ando, T.; Shimba, N.; Yamanaka, S. Haliangicin, a novel antifungal metabolite produced by a
marine myxobacterium. 2. Isolation and structural elucidation. J. Antibiot. 2001, 54, 153–156. [CrossRef] [PubMed]

28. Sun, Y.; Tomura, T.; Sato, J.; Iizuka, T.; Fudou, R.; Ojika, M. Isolation and Biosynthetic Analysis of Haliamide, a New PKS-NRPS
Hybrid Metabolite from the Marine Myxobacterium Haliangium ochraceum. Molecules 2016, 21, 59. [CrossRef] [PubMed]

29. Fudou, R.; Jojima, Y.; Iizuka, T.; Yamanaka, S. Haliangium ochraceum gen. nov., sp. nov. and Haliangium tepidum sp. nov.:
Novel moderately halophilic myxobacteria isolated from coastal saline environments. J. Gen. Appl. Microbiol. 2002, 48, 109–116.
[CrossRef]

30. Iizuka, T.; Jojima, Y.; Fudou, R.; Tokura, M.; Hiraishi, A.; Yamanaka, S. Enhygromyxa salina gen. nov.; sp. nov., a slightly halophilic
myxobacterium isolated from the coastal areas of Japan. Syst. Appl. Microbiol. 2003, 26, 189–196. [CrossRef]

31. Iizuka, T.; Jojima, Y.; Fudou, R.; Hiraishi, A.; Ahn, J.W.; Yamanaka, S. Plesiocystis pacifica gen. nov.; sp. nov.; a marine
myxobacterium that contains dihydrogenated menaquinone, isolated from the Pacific coasts of Japan. Int. J. Syst. Evol. Microbiol.
2003, 53, 189–195. [CrossRef]

32. Iizuka, T.; Jojima, Y.; Hayakawa, A.; Fujii, T.; Yamanaka, S.; Fudou, R. Pseudenhygromyxa salsuginis gen. nov., sp. nov., a
myxobacterium isolated from an estuarine marsh. Int. J. Syst. Evol. Microbiol. 2013, 63, 1360–1369. [CrossRef] [PubMed]

33. Brinkhoff, T.; Fischer, D.; Vollmers, J.; Voget, S.; Beardsley, C.; Thole, S.; Mussmann, M.; Kunze, B.; Wagner-Döbler, I.; Daniel,
R.; et al. Biogeography and phylogenetic diversity of a cluster of exclusively marine myxobacteria. Int. J. Syst. Evol. Microbiol.
2012, 6, 1260–1272. [CrossRef]

34. Tian, F.; Yong, Y.; Chen, B.; Li, H.; Yao, Y.F.; Guo, X.K. Bacterial, archaeal and eukaryotic diversity in Arctic sediment as revealed
by 16S rRNA and 18S rRNA gene clone libraries analysis. Polar Biol. 2009, 32, 93–103. [CrossRef]

35. Zhang, X.; Yao, Q.; Cai, Z.; Xie, X.; Zhu, H. Isolation and Identification of Myxobacteria from Saline-Alkaline Soils in Xinjiang,
China. PLoS ONE 2013, 8, e70466. [CrossRef] [PubMed]

36. Li, B.; Yao, Q.; Zhu, H. Approach to analyze the diversity of myxobacteria in soil by semi-nested PCR-denaturing gradient gel
electrophoresis (DGGE) based on taxon-specific gene. PLoS ONE 2014, 9, e108877. [CrossRef]

http://doi.org/10.3389/fmicb.2018.03187
http://doi.org/10.1038/s41598-019-54341-5
http://doi.org/10.3390/microorganisms6030084
http://doi.org/10.3389/fmicb.2016.00176
http://doi.org/10.2174/1389200217666161014163324
http://doi.org/10.1016/j.micpath.2020.104688
http://www.ncbi.nlm.nih.gov/pubmed/33307120
http://doi.org/10.3389/fmicb.2018.02066
http://www.ncbi.nlm.nih.gov/pubmed/30298054
http://doi.org/10.3390/antibiotics9080480
http://www.ncbi.nlm.nih.gov/pubmed/32759771
http://doi.org/10.7164/antibiotics.30.371
http://doi.org/10.1111/j.1462-2920.2005.00852.x
http://doi.org/10.1128/aem.34.3.333-335.1977
http://www.ncbi.nlm.nih.gov/pubmed/16345252
http://doi.org/10.1002/jpln.19791420307
http://doi.org/10.1046/j.1462-2920.1999.00016.x
http://doi.org/10.1111/j.1758-2229.2012.00373.x
http://www.ncbi.nlm.nih.gov/pubmed/23760929
http://doi.org/10.1128/jb.94.4.1253-1254.1967
http://doi.org/10.1002/chem.201301379
http://doi.org/10.1002/cbic.201300268
http://doi.org/10.7164/antibiotics.54.153
http://www.ncbi.nlm.nih.gov/pubmed/11302488
http://doi.org/10.3390/molecules21010059
http://www.ncbi.nlm.nih.gov/pubmed/26751435
http://doi.org/10.2323/jgam.48.109
http://doi.org/10.1078/072320203322346038
http://doi.org/10.1099/ijs.0.02418-0
http://doi.org/10.1099/ijs.0.040501-0
http://www.ncbi.nlm.nih.gov/pubmed/22821734
http://doi.org/10.1038/ismej.2011.190
http://doi.org/10.1007/s00300-008-0509-x
http://doi.org/10.1371/journal.pone.0070466
http://www.ncbi.nlm.nih.gov/pubmed/23936436
http://doi.org/10.1371/journal.pone.0108877


Pharmaceutics 2021, 13, 1265 24 of 32

37. Thomas, S.H.; Padilla-Crespo, E.; Jardine, P.M.; Sanford, R.A.; Löffler, F.E. Diversity and distribution of anaeromyxobacter strains
in a uranium-contaminated subsurface environment with a nonuniform groundwater flow. Appl. Environ. Microbiol. 2009, 75,
3679–3687. [CrossRef]

38. Treude, N.; Rosencrantz, D.; Liesack, W.; Schnell, S. Strain FAc12, a dissimilatory iron-reducing member of the Anaeromyxobacter
subgroup of Myxococcales. FEMS Microbiol. Ecol. 2003, 44, 261–269. [CrossRef]

39. Lin, J.; Ratering, S.; Schnell, S. Microbial iron cylce in corrosion material of drinking water pipelines. Ann. Agrar. Sci. 2011, 9,
18–25.

40. Kudo, K.; Yamaguchi, N.; Makino, T.; Ohtsuka, T.; Kimura, K.; Dong, D.T.; Amachi, S. Release of arsenic from soil by a novel
dissimilatory arsenate reducing bacterium, Anaeromyxobacter sp. strain PSR-1. Appl. Environ. Microbiol. 2013, 79, 4635–4642.
[CrossRef]

41. Brockman, E.R. Myxobacters from Arid Mexican Soil. Appl. Environ. Microbiol. 1976, 32, 642–644. [CrossRef]
42. Gerth, K.; Müller, R. Moderately thermophilic Myxobacteria: Novel potential for the production of natural products isolation and

characterization. Environ. Microbiol. 2005, 7, 874–880. [CrossRef]
43. Mohr, K.I.; Moradi, A.; Glaeser, S.P.; Kämpfer, P.; Gemperlein, K.; Nübel, U.; Schumann, P.; Müller, R.; Wink, J. Nannocystis

konarekensis sp. nov.; a novel myxobacterium from an Iranian desert. Int. J. Syst. Evol. Microbiol. 2018, 68, 721–729. [CrossRef]
[PubMed]

44. Reichenbach, H. The Myxococcales. In Bergey’s Manual of Systematic Bacteriology, 2nd ed.; Garrity, G.M., Ed.; Springer: New York,
NY, USA, 2005.

45. Mohiuddin, A.K. Chemistry of Secondary Metabolites. Ann. Clin. Toxicol. 2019, 2, 1014.
46. Xiao, Y.; Wei, X.; Ebright, R.; Wall, D. Antibiotic production by myxobacteria plays a role in predation. J. Bacteriol. 2011, 193,

4626–4633. [CrossRef] [PubMed]
47. Wenzel, S.C.; Muller, R. Myxobacteria-Microbial factories for the production of bioactive secondary metabolites. Mol. BioSyst.

2009, 5, 567–574. [CrossRef]
48. Herrmann, J.; Fayad, A.A.; Müller, R. Natural products from myxobacteria: Novel metabolites and bioactivities. Nat. Prod. Rep.

2017, 34, 135–160. [CrossRef] [PubMed]
49. Korp, J.; Gurovic, M.S.V.; Nett, M. Antibiotics from predatory bacteria. Beilstein J. Org. Chem. 2016, 12, 594–607. [CrossRef]

[PubMed]
50. Albataineh, H.; Stevens, D.C. Marine Myxobacteria: A Few Good Halophiles. Mar. Drugs 2018, 16, 209. [CrossRef]
51. Reichenbach, H.; Höfle, G. Myxobacteria as Producers of Secondary Metabolites. In Drug Discovery from Nature; Grabley, S.,

Thiericke, R., Eds.; Springer: Berlin, Germany, 1999; pp. 149–179.
52. Reichenbach, H.; Höfle, G. Biologically active secondary metabolites from myxobacteria. Biotechnol. Adv. 1993, 11, 219–277.

[CrossRef]
53. Kaur, R.; Singh, S.K.; Kaur, R.; Kumari, A.; Kaur, R. Myxococcus xanthus: A source of antimicrobials and natural bio-control agent.

Pharm. Innov. 2017, 6, 260–262.
54. Wilson, C.N. Endacea Inc. Methods for Preventing and Treating Tissue Injury and Sepsis Associated with Yersinia pestis Infection.

U.S. Patent 12/220,377, 19 February 2009.
55. Raju, R.; Garcia, R.; Müller, R. Angiolactone, a new Butyrolactone isolated from the terrestrial myxobacterium, Angiococcus sp.

J. Antibiot 2014, 67, 725–726. [CrossRef]
56. Tautz, T.; Hoffmann, J.; Hoffmann, T.; Steinmetz, H.; Washausen, P.; Kunze, B.; Huch, V.; Kitsche, A.; Reichenbach, H.; Muller,

R.; et al. Isolation, structure elucidation, biosynthesis, and synthesis of Antalid, a secondary metabolite from Polyangium species.
Org. Lett. 2016, 18, 2560–2563. [CrossRef]

57. Hofle, G.; Böhlendorf, B.; Fecker, T.; Sasse, F.; Kunze, B. Semisynthesis and antiplasmodial activity of the quinoline alkaloid
aurachin E. J. Nat. Prod. 2008, 71, 1967–1969. [CrossRef] [PubMed]

58. Kunze, B.; Reck, M.; Dötsch, A.; Lemme, A.; Schummer, D.; Irschik, H.; Steinmetz, H.; Wagner-Döbler, I. Damage of Streptococcus
mutans biofilms by carolacton, a secondary metabolite from the myxobacterium Sorangium cellulosum. BMC Microbiol. 2010,
10, 199. [CrossRef]

59. Jungmann, K.; Jansen, R.; Gerth, K.; Huch, V.; Krug, D.; Fenical, W.; Müller, R. Two of a Kind-The Biosynthetic Pathways of
Chlorotonil and Anthracimycin. ACS Chem. Biol. 2015, 10, 2480–2490. [CrossRef] [PubMed]

60. Schiefer, A.; Schmitz, A.; Schäberle, T.F.; Specht, S.; Lämmer, C.; Johnston, K.L.; Vassylyev, D.G.; König, G.M.; Hoerauf, A.; Pfarr,
K. Corallopyronin A specifically targets and depletes essential obligate Wolbachia endobacteria from filarial nematodes in vivo.
J. Infect. Dis. 2012, 206, 249–257. [CrossRef]

61. Schmitz, A.; Kehraus, S.; Schaberle, T.F.; Neu, E.; Almeida, C.; Roth, M.; König, G.M. Corallorazines from the Myxobacterium
Corallococcus coralloides. J. Nat. Prod. 2014, 77, 159–163. [CrossRef] [PubMed]

62. Kunze, B.; Jansen, R.; Höfle, G.; Reichenbach, H. Crocacin, a new electron transport inhibitor from Chondromyces crocatus
(myxobacteria). Production, isolation, physico-chemical and biological properties. J. Antibiot. 1994, 47, 881–886. [CrossRef]

63. Baumann, S.; Herrmann, J.; Raju, R.; Steinmetz, S.; Mohr, K.I.; Huttel, S.; Harmrolfs, K.; Stadler, M.; Muller, R. Cystobactamids:
Myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity. Angew. Chem. Int. Ed. 2014, 53, 14605–14609.
[CrossRef] [PubMed]

http://doi.org/10.1128/AEM.02473-08
http://doi.org/10.1016/S0168-6496(03)00048-5
http://doi.org/10.1128/AEM.00693-13
http://doi.org/10.1128/aem.32.4.642-644.1976
http://doi.org/10.1111/j.1462-2920.2005.00761.x
http://doi.org/10.1099/ijsem.0.002569
http://www.ncbi.nlm.nih.gov/pubmed/29458458
http://doi.org/10.1128/JB.05052-11
http://www.ncbi.nlm.nih.gov/pubmed/21764930
http://doi.org/10.1039/b901287g
http://doi.org/10.1039/C6NP00106H
http://www.ncbi.nlm.nih.gov/pubmed/27907217
http://doi.org/10.3762/bjoc.12.58
http://www.ncbi.nlm.nih.gov/pubmed/27340451
http://doi.org/10.3390/md16060209
http://doi.org/10.1016/0734-9750(93)90042-L
http://doi.org/10.1038/ja.2014.55
http://doi.org/10.1021/acs.orglett.6b00810
http://doi.org/10.1021/np8004612
http://www.ncbi.nlm.nih.gov/pubmed/18922036
http://doi.org/10.1186/1471-2180-10-199
http://doi.org/10.1021/acschembio.5b00523
http://www.ncbi.nlm.nih.gov/pubmed/26348978
http://doi.org/10.1093/infdis/jis341
http://doi.org/10.1021/np400740u
http://www.ncbi.nlm.nih.gov/pubmed/24422674
http://doi.org/10.7164/antibiotics.47.881
http://doi.org/10.1002/anie.201409964
http://www.ncbi.nlm.nih.gov/pubmed/25510965


Pharmaceutics 2021, 13, 1265 25 of 32

64. Nadmid, S.; Plaza, A.; Garcia, R.; Müller, R. Cystochromones, Unusual Chromone-Containing Polyketides from the Myxobac-
terium Cystobacter sp. MCy9104. J. Nat. Prod. 2015, 78, 2023–2028. [CrossRef] [PubMed]

65. Etzbach, L.; Plaza, A.; Garcia, R.; Baumann, S.; Müller, R. Cystomanamides: Structure and biosynthetic pathway of a family of
glycosylated lipopeptides from myxobacteria. Org. Lett. 2014, 16, 2414–2417. [CrossRef]

66. Ojika, M.; Suzuki, Y.; Tsukamoto, A.; Sakagami, Y.; Fudou, R.; Yoshimura, T.; Yamanaka, S. Cystothiazoles A and B, new
bithiazole-type antibiotics from the myxobacterium Cystobacter fuscus. J. Antibiot. 1998, 51, 275–281. [CrossRef] [PubMed]

67. Surup, F.; Viehrig, K.; Mohr, K.I.; Herrmann, J.; Jansen, R.; Müller, R. Disciformycins A and B: 12-membered macrolide glycoside
antibiotics from the myxobacterium Pyxidicoccus fallax active against multiresistant staphylococci. Angewandte Chemie (International
ed. in English). Angew. Chem. Int. Ed. Engl. 2014, 53, 13588–13591. [CrossRef]

68. Muddala, R.; Acosta, J.A.; Barbosa, L.C.; Boukouvalas, J. Synthesis of the Marine Myxobacterial Antibiotic Enhygrolide A. J. Nat.
Prod. 2017, 80, 2166–2169. [CrossRef]

69. Schieferdecker, S.; König, S.; Weigel, C.; Dahse, H.M.; Werz, O.; Nett, M. Structure and biosynthetic assembly of gulmirecins,
macrolide antibiotics from the predatory bacterium Pyxidicoccus fallax. Chemistry 2014, 20, 15933–15940. [CrossRef] [PubMed]

70. Dávila-Céspedes, A.; Hufendiek, P.; Crüsemann, M.; Schäberle, T.F.; König, G.M. Marine-derived myxobacteria of the suborder
Nannocystineae: An underexplored source of structurally intriguing and biologically active metabolites. Beilstein J. Org. Chem.
2016, 12, 969. [CrossRef] [PubMed]

71. Nadmid, S.; Plaza, A.; Lauro, G.; Garcia, R.; Bifulco, G.; Müller, R. Hyalachelins A-C, unusual siderophores isolated from the
terrestrial myxobacterium Hyalangium minutum. Org. Lett. 2014, 16, 4130–4133. [CrossRef]

72. Okanya, P.W.; Mohr, K.I.; Gerth, K.; Steinmetz, H.; Huch, V.; Jansen, R.; Müller, R. Hyaladione, an S-methyl cyclohexadiene-dione
from Hyalangium minutum. J. Nat. Prod. 2012, 75, 768–770. [CrossRef]

73. Okanya, P.; Mohr, K.; Gerth, K.; Kessler, W.; Jansen, R.; Stadler, M.; Müller, R. Hyafurones, hyapyrrolines and hyapyrones:
Polyketides from Hyalangium minutum. J. Nat. Prod. 2014, 77, 1420–1429. [CrossRef]

74. Zander, W.; Mohr, K.I.; Gerth, K.; Jansen, R.; Müller, R. P-hydroxyacetophenone amides from cystobacter ferrugineus, strain Cb G35.
J. Nat. Prod. 2011, 74, 1358–1363. [CrossRef]

75. Jansen, R.; Sood, S.; Huch, V.; Kunze, B.; Stadler, M.; Müller, R. Pyrronazols, metabolites from the mxobacteria Nannocystis pusilla
and N. exedens are unusual chlorinated pyrone-oxazole-pyrroles. J. Nat. Prod. 2014, 77, 320–326. [CrossRef]

76. Barbier, J.; Jansen, R.; Irschik, H.; Benson, S.; Gerth, K.; Böhlendorf, B.; Höfle, G.; Reichenbach, H.; Wegner, J.; Zeilinger, C.; et al.
Isolation and total synthesis of icumazoles and noricumazoles-Antifungal antibiotics and cation-channel blockers from Sorangium
cellulosum. Angew. Chem. Int. Ed. 2012, 51, 1256–1260. [CrossRef]

77. Steinmetz, H.; Mohr, K.; Zander, W.; Jansen, R.; Müller, R. Indiacens A and B: Prenyl indoles from the myxobacterium Sandaracinus
amylolyticus. J. Nat. Prod. 2012, 75, 1803–1805. [CrossRef] [PubMed]

78. Marsch, N.; Jones, P.G.; Lindel, T. SmI2-mediated dimerization of indolylbutenones and synthesis of the myxobacterial natural
product indiacen B. Beilstein J. Org. Chem. 2015, 11, 1700–1706. [CrossRef] [PubMed]

79. Symkenberg, G.; Kalesse, M. Structure elucidation and total synthesis of kulkenon. Angew. Chem. Int. Ed. 2014, 53, 1795–1798.
[CrossRef]

80. Kopp, M.; Irschik, H.; Gemperlein, K.; Buntin, K.; Meiser, P.; Weissman, K.J.; Bode, H.B.; Müller, R. Insights into the complex
biosynthesis of the leupyrrins in Sorangium cellulosum So ce690. Mol. Biosyst. 2011, 7, 1549–1563. [CrossRef] [PubMed]

81. Keller, L.; Plaza, A.; Dubiella, C.; Groll, M.; Kaiser, M.; Müller, R. Macyranones: Structure, Biosynthesis, and Binding Mode of an
Unprecedented Epoxyketone that Targets the 20S Proteasome. J. Am. Chem. Soc. 2015, 137, 8121–8130. [CrossRef] [PubMed]

82. Irschik, H.; Washausen, P.; Sasse, F.; Fohrer, J.; Huch, V.; Müller, R.; Prusov, E.V. Isolation, structure elucidation, and biological
activity of maltepolides: Remarkable macrolides from myxobacteria. Angew. Chem. Int. Ed. 2013, 52, 5402–5405. [CrossRef]

83. Irschik, H.; Schummer, D.; Höfle, G.; Reichenbach, H.; Steinmetz, H.; Jansen, R. Etnangien, a macrolide-polyene antibiotic from
Sorangium cellulosum that inhibits nucleic acid polymerases. J. Nat. Prod. 2007, 70, 1060–1063. [CrossRef]

84. Hoffmann, T.; Müller, S.; Nadmid, S.; Garcia, R.; Müller, R. Microsclerodermins from terrestrial myxobacteria: An intriguing
biosynthesis likely connected to a sponge symbiont. J. Am. Chem. Soc. 2013, 135, 16904–16911. [CrossRef]

85. Guzman, E.A.; Maers, K.; Roberts, J.; Kemami-Wangun, H.V.; Harmody, D.; Wright, A.E. The marine natural product microsclero-
dermin A is a novel inhibitor of the nuclear factor kappa B and induces apoptosis in pancreatic cancer cells. Invest. New Drugs
2015, 33, 86–94. [CrossRef] [PubMed]

86. Kunze, B.; Bedorf, N.; Kohl, W.; Höfle, G.; Reichenbach, H. Myxochelin A, a new iron-chelating compound from Angiococcus
disciformis (Myxobacterales). Production, isolation, physico-chemical and biological properties. J. Antibiot. 1989, 42, 14–17.
[CrossRef]

87. Schieferdecker, S.; König, S.; Koeberle, A.; Dahse, H.M.; Werz, O.; Nett, M. Myxochelins target human 5-lipoxygenase. J. Nat.
Prod. 2015, 78, 335–338. [CrossRef]

88. Gulder, T.A.; Neff, S.; Schüz, T.; Winkler, T.; Gees, R.; Böhlendorf, B. The myxocoumarins A and B from Stigmatella aurantiaca
strain MYX-030. Beilstein J. Org. Chem. 2013, 9, 2579–2585. [CrossRef] [PubMed]

89. Cortina, N.S.; Krug, D.; Plaza, A.; Revermann, O.; Müller, R. Myxoprincomide: A natural product from Myxococcus xanthus
discovered by comprehensive analysis of the secondary metabolome. Angew. Chem. Int. Ed. 2012, 51, 811–816. [CrossRef]

http://doi.org/10.1021/acs.jnatprod.5b00343
http://www.ncbi.nlm.nih.gov/pubmed/26214047
http://doi.org/10.1021/ol500779s
http://doi.org/10.7164/antibiotics.51.275
http://www.ncbi.nlm.nih.gov/pubmed/9589062
http://doi.org/10.1002/anie.201406973
http://doi.org/10.1021/acs.jnatprod.7b00405
http://doi.org/10.1002/chem.201404291
http://www.ncbi.nlm.nih.gov/pubmed/25287056
http://doi.org/10.3762/bjoc.12.96
http://www.ncbi.nlm.nih.gov/pubmed/27340488
http://doi.org/10.1021/ol501826a
http://doi.org/10.1021/np200776v
http://doi.org/10.1021/np500145f
http://doi.org/10.1021/np1006789
http://doi.org/10.1021/np400877r
http://doi.org/10.1002/anie.201106435
http://doi.org/10.1021/np300288b
http://www.ncbi.nlm.nih.gov/pubmed/23035772
http://doi.org/10.3762/bjoc.11.184
http://www.ncbi.nlm.nih.gov/pubmed/26664588
http://doi.org/10.1002/anie.201309386
http://doi.org/10.1039/c0mb00240b
http://www.ncbi.nlm.nih.gov/pubmed/21365089
http://doi.org/10.1021/jacs.5b03833
http://www.ncbi.nlm.nih.gov/pubmed/26050527
http://doi.org/10.1002/anie.201210113
http://doi.org/10.1021/np070115h
http://doi.org/10.1021/ja4054509
http://doi.org/10.1007/s10637-014-0185-3
http://www.ncbi.nlm.nih.gov/pubmed/25416019
http://doi.org/10.7164/antibiotics.42.14
http://doi.org/10.1021/np500909b
http://doi.org/10.3762/bjoc.9.293
http://www.ncbi.nlm.nih.gov/pubmed/24367422
http://doi.org/10.1002/anie.201106305


Pharmaceutics 2021, 13, 1265 26 of 32

90. Goldman, B.S.; Nierman, W.C.; Kaiser, D.; Slater, S.C.; Durkin, A.S.; Eisen, J.A.; Ronning, C.M.; Barbazuk, W.B.; Blanchard, M.;
Field, C.; et al. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl. Acad. Sci. USA 2006, 103,
15200–15205. [CrossRef] [PubMed]

91. Schley, C.; Altmeyer, M.O.; Swart, R.; Müller, R.; Huber, C.G. Proteome analysis of Myxococcus xanthus by off-line two-dimensional
chromatographic separation using monolithic poly-(styrene-divinylbenzene) columns combined with ion-trap tandem mass
spectrometry. J. Proteome Res. 2006, 5, 2760–2768. [CrossRef]

92. Moy, T.I.; Daniel, A.; Hardy, C.; Jackson, A.; Rehrauer, O.; Hwang, Y.S.; Zou, D.; Nguyen, K.; Silverman, J.A.; Li, Q.; et al.
Evaluating the activity of the RNA polymerase inhibitor myxopyronin B against Staphylococcus aureus. FEMS Microbiol. Lett.
2011, 319, 176–179. [CrossRef]

93. Irschik, H.; Gerth, K.; Kemmer, T.; Steinmetz, H.; Reichenbach, H. The myxovalargins, new peptide antibiotics from Myxococcus
fulvus (myxobacterales). I. cultivation, isolation, and some chemical and biological properties. J. Antibiot. 1983, 36, 6–12.
[CrossRef]

94. Gerth, K.; Irschik, H.; Reichenbach, H.; Trowitzsch, W. The myxovirescins, a family of antibiotics from Myxococcus virescens
(Myxobacterales). J. Antibiot. 1982, 35, 1454–1459. [CrossRef]

95. Vogeley, L.; El-Arnaout, T.; Bailey, J. Structural basis of lipoprotein signal peptidase II action and inhibition by the antibiotic
globomycin. Science 2016, 351, 876–880. [CrossRef] [PubMed]

96. Gentzsch, J.; Hinkelmann, B.; Kaderali, L.; Irschik, H.; Jansen, R.; Sasse, F.; Frank, R.; Pietschmann, T. Hepatitis C virus complete
life cycle screen for identification of small molecules with pro- or antiviral activity. Antivir. Res. 2011, 89, 136–148. [CrossRef]

97. Beck, S.; Henß, L.; Weidner, T.; Herrmann, J.; Müller, R.; Chao, Y.; Weber, C.; Sliva, K.; Schnierle, S. Identification of inhibitors of
Ebola virus pseudotyped vectors from a myxobacterial compound library. Antivir. Res. 2016, 132, 85–91. [CrossRef]

98. Guo, W.J.; Tao, W.Y. Phoxalone, a novel macrolide from Sorangium cellulosum: Structure identification and its anti-tumor bioactivity
in vitro. Biotechnol. Lett. 2008, 30, 349–356. [CrossRef]
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