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Abstract: Oxidative stress is implicated in many diseases, including cardiovascular and neurode-
generative diseases. Because an increased level of oxidative stress causes apoptosis, it is necessary
to inhibit cellular responses to oxidative stress. In this study, Carex, a nanovesicle from carrot, was
isolated and investigated as a novel biomaterial with antioxidative function in cardiomyoblasts
and neuroblastoma cells. A high concentration of nanovesicles was purified from carrots, using
size-exclusion chromatography in combination with ultrafiltration. The characterization of Carex
demonstrated that it had properties similar to those of extracellular vesicles. Carex showed low
cytotoxicity in both H9C2 cardiomyoblasts and SH-SY5Y neuroblastoma cells, when a high level of
Carex was delivered to the cells. Carex was further investigated for its antioxidative and apoptotic
effects, and it significantly inhibited ROS generation and apoptosis in vitro in myocardial infarction
and Parkinson’s disease models. Carex inhibited the reduction of antioxidative molecule expression,
including Nrf-2, HO-1, and NQO-1, in both models. Considering its antioxidative function and
high production yield, Carex is a potential drug candidate for the treatment of myocardial infarction
as well as Parkinson’s disease. Thus, the results demonstrated in this study will contribute to an
exploration of a novel drug, using nanovesicles from plants, including carrots.

Keywords: oxidative stress; plant-derived nanovesicle; apoptosis; extracellular vesicle; myocardial
infarction; Parkinson’s disease

1. Introduction

Reactive oxygen species (ROS) are produced by extrinsic and intrinsic factors and
participate in cellular signaling pathways [1]. Oxidative stress occurs due to an imbalance
between ROS generation and the cellular antioxidant response. Excessive ROS levels result
in the mitochondria membrane potential loss and damage to the cell membrane, DNA, pro-
teins, and lipids [2–4]. Previously, it was reported that oxidative stress plays an important
role in the initiation and progression of many diseases, including cardiovascular disease,
neurodegeneration, and diabetes [5–7]. For instance, myocardial hypoxia/reoxygenation
causes increased oxidative stress in myocardial tissues, which causes cardiovascular dis-
eases, such as cardiac hypertrophy, cardiomyocyte apoptosis, and heart failure [8]. Oxida-
tive stress in the degeneration of dopaminergic neurons also leads to Parkinson’s disease [9].
Therefore, the development of biomaterials that can inhibit oxidative stress is important
for developing efficient drugs that can prevent cardiovascular and Parkinson’s disease.

Extracellular vesicles (EVs), which are 50–1000 nm in size, are produced by cells,
including animals, humans, microbes, and plants [10–13]. In humans, EVs participate in
intercellular communication by transferring biologically active cargoes, including proteins,
RNA, DNA, and lipids [14–18]. In this context, EVs produced from mammalian cell cultures
have been extensively studied as potential therapeutics or drug delivery vehicles for disease
treatment [19–25]. However, there are crucial limitations to using cell-culture-derived EVs.
Because a large number of cell-culture-derived EVs are necessary for clinical application,
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they require high production costs and time to produce a large amount of EVs. Although
some cell-culture-derived EVs have shown certain therapeutic effects, including tissue
repair [19,20,26], they have limited biological activities in most cases. Thus, the engineering
of EVs by encapsulating pharmaceutical drugs, such as miRNA, chemicals, peptides, and
proteins into EVs, is required to endow their therapeutic activities [27–30]. Furthermore,
mammalian cell cultures accompany the use of animal-derived materials, including fetal
bovine serum, which is commonly prohibited in drug approval, due to safety issues. Thus,
it is necessary to develop alternative sources of EV production to overcome these issues.

Recently, EVs from plants have gained considerable attention as potential therapeutic
agents, owing to their anti-cancer [31–33], antioxidative [34,35], and anti-inflammatory
potential [14,36–39]. Plant-derived nanovesicles showed high biocompatibility and low
toxicity [14,40]. Previous evidence suggests that plant-derived nanovesicles can enter
mammalian cells and serve as cross-species messengers [41,42]. To date, however, there are
a limited number of studies exploring the biological activities of plant-derived nanovesicles
in various human disease models.

Carrots were introduced as novel sources of plant-derived nanovesicles because they
are widely and easily cultivated, and thus, carrot-derived EVs (Carex) were investigated
for their biological activities. To achieve this, Carex was isolated from carrots, using
size-exclusion chromatography in combination with ultrafiltration. In addition, their
antioxidative properties and regulation of antioxidative molecules in heart-derived car-
diomyoblasts and neuroblastoma cells as in vitro disease models were explored (Figure 1).
Considering its strong antioxidative activity and high productivity, Carex can be sug-
gested as a novel biomaterial that can be widely applied as a therapeutic drug for diseases,
including myocardial infarction and Parkinson’s disease.
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Figure 1. Illustration of carrot-derived nanovesicle (Carex) isolation from carrots and the investigation of the antioxidative
effects and molecular regulations in cardiomyoblast and neuroblastoma cells as in vitro model systems for myocardial
infarction and Parkinson’s disease, respectively.

2. Materials and Methods
2.1. Cell Culture and Treatment

H9C2 embryonic rat heart-derived cardiomyoblasts and human neuroblastoma SH-
SY5Y cells were obtained from the Korean Cell Line Bank (Seoul, Korea). H9C2 and
SH-SY5Y cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Corning
Inc., NY, USA), DMEM-F12 medium supplemented with 10% FBS (Gibco, Waltham, MA,
USA), and penicillin and streptomycin (Gibco, NY, USA). All the cells were cultured in 5%
CO2 at 37 ◦C. Hydrogen peroxide (H2O2; Sigma-Aldrich, St. Louis, MO, USA) was used
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to induce oxidative stress in H9C2 cells. 6-Hydroxydopamine hydrochloride (6-OHDA;
Sigma-Aldrich, MO, USA) was used as an oxidative stress inducer in SH-SY5Y cells.

2.2. Isolation of Carex from Carrot

For Carex isolation, carrots (Daucus carota subsp. Sativus) were purchased from local
farms in the Republic of Korea. The whole carrot was washed with distilled water for the
removal of soil, dust, and pesticides. The carrot juice was produced by extraction using
a blender, followed by serial centrifugation at 8000 and 20,000× g for 1 h each for large
debris removal. The juice was stored at −80 ◦C before isolation. An Amicon Ultra-15
filter unit (Millipore, Burlington, MA, USA) was used for the juice concentration, followed
by size-exclusion chromatography for Carex isolation (Izon Science, Christchurch, New
Zealand). Because PBS preserves EVs’ functionality and integrity, PBS was used for size-
exclusion chromatography. Each fraction was eluted, and the nanovesicles and protein
concentrations of each fraction were assessed.

2.3. Characterization of EVs

The Carex concentration and size distribution were measured, using nanoparticle
tracking analysis (NS300, Malvern Panalytical, Malvern, UK). The same camera level and
threshold were used for all experiments. For transmission electron microscopy (TEM)
imaging, the sample was applied to copper grids coated with a thin carbon foil (Ted Pella,
Inc., Redding, CA, USA). After allowing the sample to absorb and blotting off the buffer
solution onto Whatman paper, the sample on the grids was stained with 2% (w/v) uranyl
acetate for 1 min. Then, distilled water was added for 1 min to remove the uranyl acetate,
followed by drying for 15 min. The images were recorded using a Bio-High voltage EM
system (JEOL Ltd., Tokyo, Japan). The polydispersity index (PDI) and zeta potential were
measured, using DLS (Zetasizer NS, Malvern Panalytical, Malvern, UK) at 25 ◦C.

2.4. Intracellular Uptake of Carex

To find that Carex can be taken up by mammalian cells, Carex was stained with
PKH67 green dye (Sigma-Aldrich, MO, USA) for 15 min at 25 ◦C or DiI dye (Thermo
Scientific, Waltham, MA, USA) for 15 min at 37 ◦C. The labeled Carex was filtered by
ultrafiltration (100-kDa) to remove the free dye. H9C2 cells were cultured in a medium
with PKH67-labeled Carex at a concentration of 1.0 × 1011 particles/mL. Hoechst 33342
fluorescent dye (Cell Signaling Technology, Danvers, MA, USA) was added to the medium
for nuclei staining. Cells were washed several times and observed, using a fluorescence
microscope (Nikon Corp., Minato, Japan). The DiI dye-labeled Carex uptake was analyzed
using a flow cytometer (Beckman Coulter, Inc., Brea, CA, USA).

2.5. Intracellular ROS Generation Measurement

H9C2 cells were pre-treated with Carex (1.0 × 1011 particles/mL) for 24 h followed
by 500 µM H2O2 treatment for 3 h. Intercellular ROS levels were detected using 2′,7′-
dichlorodihydrofluorescein diacetate (H2DCFDA; Thermo Scientific, MA, USA) staining
for 1 h at 37 ◦C. After incubation, the cells were stained with Hoechst 33342 for nuclear
staining. The cells were washed with PBS and observed using fluorescence.

2.6. Cytotoxicity and Cell Proliferation Assessment

To evaluate the cytotoxicity of Carex, H9C2 and SH-SY5Y cells were treated with
Carex at different concentrations ranging from 1.0 × 109 to 1.0 × 1012 particles/mL from
48 to 96 h. Cell viability was measured by trypan blue dye staining, and cell proliferation
was assessed by a WST-1 assay.

2.7. Caspase-3 Activity Measurement

Caspase-3 activity was assessed in H2O2 or 6-OHDA-treated H9C2 and SH-SY5Y cells,
respectively. The cells were washed and lysed with RIPA buffer (ELPIS-Biotech, Korea).
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The protein concentration was quantified, using a bicinchoninic acid (BCA) assay (Thermo
Scientific, MA, USA). The cell lysates were diluted and transferred to black 384-well plates,
followed by the addition of an equal volume of Ac-DEVD-AFC (Enzo, Farmingdale, NY,
USA)-containing reaction buffer. After incubation, fluorescence intensity was measured at
excitation and emission wavelengths of 400 and 505 nm, respectively, using a VarioskanTM
Flash Multimode Reader (Thermo Scientific, MA, USA).

2.8. Real-Time Quantitative PCR

To assess the effect of Carex on nuclear factor erythroid-2-related factor 2 (Nrf-2) and
its target genes, including heme oxygenase 1 (HO-1) and NAD(P)H quinone oxidoreductase
1 (NQO-1), a real-time polymerase chain reaction (RT-PCR) was performed by StepOnePlus
Real-Time PCR System (Applied Biosystems, Waltham, MA, USA). H9C2 and SH-SY5Y
cells were cultured in the presence or absence of Carex, followed by the induction of
oxidative stress by H2O2 or 6-OHDA. RNA was isolated using the FavorPrepTM Tri-
RNA reagent (FAVORGEN Biotech Corp.,Changzhi, Taiwan), and RNA concentrations
were assessed using a plate reader (BioTek Instruments, Winooski, VT, USA). cDNA
synthesis was performed using ReverTra Ace qPCR RT Master Mix (Toyobo, Osaka, Japan),
and reverse transcription-PCR was performed using THUNDERBIRD SYBR qPCR mix
(Toyobo, Japan).

2.9. Western Blot Analysis

H9C2 cells were supplemented with Carex and incubated with H2O2 to induce oxida-
tive stress. Cells were lysed in RIPA buffer, and the protein concentration was measured,
using the BCA assay. Forty micrograms of protein were separated by SDS-PAGE. The
proteins were then transferred to a PVDF membrane at 70 V for 2 h. After blocking with
5% skim milk, the membranes were then incubated with Nrf-2 (Cell Signaling Technology,
MA, USA), HO-1 (Cell Signaling Technology, MA, USA), and GAPDH (Cell Signaling
Technology, MA, USA) antibodies overnight at 4 ◦C. After washing, an anti-rabbit IgG with
horseradish peroxidase (Cell Signaling Technology, USA) was incubated. ECL Blotting
Reagent (Cytiva, Marlborough, MA, USA) was used for the chemiluminescence reaction,
followed by analysis using the ChemiDoc™ XRS System (Bio-Rad, Hercules, CA, USA).

3. Results
3.1. Nanovesicle Isolation from Carrot Using Ultrafiltration and Size-Exclusion Chromatography

To investigate the biomedical applications of Carex, it is essential to produce nanovesi-
cles from carrots with high yield and purity. Although polyethylene glycol-based precip-
itation methods and ultracentrifugation are widely used for nanovesicle isolation, both
methods have critical defects. First, precipitation methods are criticized because they also
co-precipitate high amount of protein impurities [14,43]. Ultracentrifugation provides low
yields, as a large number of EVs are lost during centrifugation. In addition, nanovesicles
can be disrupted during isolation due to high centrifugal forces, which may complicate
the use of isolated nanovesicles as therapeutic drugs [23,44,45]. In our previous study,
nanovesicles from cabbages were successfully isolated using size-exclusion chromatogra-
phy combined with ultrafiltration [14]. Thus, the same isolation strategy was adopted for
nanovesicle isolation from carrots.

Due to the limited injection volume for size-exclusion chromatography, carrot juice
with nanovesicles was concentrated, using ultrafiltration. Then, the concentrated juice
was injected into a size-exclusion chromatography column for nanovesicle isolation. The
concentrations and size distributions of nanovesicles in each fraction (33 fractions total)
were measured using NTA, and the impurity (protein) concentrations in each fraction were
also assessed. As shown in Figure 2A,B, a high concentration of nanovesicles was collected
in fractions from 7 to 9, while most protein impurities were separated in fractions from
13 to 30, indicating that nanovesicles were successfully isolated and separated from the
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protein contaminants from carrots. The fractions from 7 to 9 were collected as Carex and
further characterized for the experiments.
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and PDI of Carex were analyzed using DLS. (G–I) Carex yield per g of carrot (G), yield per carrot price, and purity per µg
of protein impurities are shown.

3.2. Characterization of Isolated Carex from Carrots

Carex from carrots was characterized for its biophysical properties after isolation using
size-exclusion chromatography. First, the morphology of Carex was observed, using TEM.
Carex showed a spherical shape with an average size of approximately 150 nm (Figure 2C).
The size distribution of Carex was analyzed using the NTA (Figure 2D). Nanovesicles
showed several peaks, meaning that there were heterogeneous nanoparticles, and the
average size of Carex was 143.9 nm, which is within the range of the known sizes of EVs
(Figure 2D). The zeta potentials and PDI of Carex were further characterized (Figure 2E,F).
The average zeta potential of Carex was−10.2 mV, indicating that it was negatively charged,
and the PDI value was 0.43.

To be widely harnessed as a commercial therapeutic, the high productivity of Carex
from carrot is essential. The high yields based on the weight as well as the price of car-
rots can be hugely beneficial because the production of EVs from cell culture requires
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scale-up culture, high cost, and long production time. To calculate the final yield of Carex,
the fractions from size-exclusion chromatography (fraction 7–9) containing Carex were
mixed together (totally 1.5 mL), and the Carex concentration was measured using NTA.
Then, the absolute number of Carex was divided by grams of carrots used for carrot
juice production to obtain the number of Carex per gram of carrots. It is noteworthy
that the number of Carex per gram of carrots was 3.24 × 1011 particles/g (Figure 2G),
which is equal to 1.81 × 1014 particles/$ (USD) (Figure 2H). Considering that the Carex
concentration used in the following experiments was 1011 particles/mL culture medium,
only 0.55% (USD) was required for the preparation of 1 L of culture medium. This is
meaningful because the administration of EVs in human clinical trials requires a large
amount of EVs. The yield was even higher than those from other plants, including cabbage
(1.504 × 1011 particles/g) and red cabbages (1.098 × 1011 particles/g) [14]. The purity of
Carex (particles/µg protein) was also evaluated by dividing the Carex particle concentra-
tion by the protein impurity concentrations in Carex fractions (Figure 2I). As a result, the
purity of Carex was 2.58 × 1010 particles/µg. Based on the previous results using cabbage
and red cabbage as nanovesicles sources [14], Carex resulted in higher purity than those of
Cabex (1 × 1010 particles/µg, cabbage nanovesicles) and Rabex (2 × 1010 particles/µg, red
cabbage nanovesicles).

3.3. Cytotoxicity and Intracellular Delivery of Carex in H9C2 Heart-Derived Cardiomyoblasts

Before we investigated the antioxidative effect of Carex in mammalian cells, cytotox-
icity was observed by supplementing different concentrations of Carex (109–1012 parti-
cles/mL) into the culture medium. H9C2 heart-derived cells were cultured in the presence
of Carex, and cell viability was measured for 96 h using the WST-1 assay. No decrease
in cell viability was observed, regardless of Carex concentration (Figure 3A). Although
supplementation with the highest dose (1012 particles/mL) of Carex showed no difference
in cell viability, 1011 particles/mL of Carex was chosen as the final treatment dose for
the rest of the experiments. It was previously reported that EVs can be uptaken by cells
through different mechanisms, including clathrin-mediated endocytosis, macropinocytosis,
lipid raft-mediated endocytosis, caveolin-mediated endocytosis, and plasma membrane
fusion [46]. The uptake of Carex by mammalian cells was further investigated. This is an
important process because Carex should first interact with cells and deliver biomolecules
to cells to exert effects. To demonstrate the nanovesicle penetration to cells, isolated
EVs were labeled with PKH67 dye or DiI dye, followed by the removal of unstained
free dyes. H9C2 heart-derived cells were cultured with a medium supplemented with
1.0 × 1011 particles/mL of labeled Carex. High fluorescence was observed by fluorescence
microscopy, indicating that PKH67 dye-labeled Carex was taken up by the cells (Figure 3B).
The fluorescence intensities gradually increased as the incubation time increased. Quantita-
tive analysis of cellular uptake of Carex was also performed, using a flow cytometer. As
shown in Figure 3C, a large shift in the fluorescence signal was observed when the cells
were incubated with DiI dye-labeled Carex. A total of 68.0% cells were observed to take up
Carex within 4 h. Thus, Carex was capable of transferring its biomolecules to mammalian
cells, which subsequently regulated the biological activities of target cells.
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3.4. Anti-Oxidative Effect of Carex in H9C2 Heart-Derived Cardiomyoblasts

As mentioned earlier, the increased level of oxidative stress due to myocardial hy-
poxia/reoxygenation caused cardiomyocyte apoptosis and heart failure. Thus, it is nec-
essary to effectively protect cells from oxidative stress and prevent apoptosis without
inducing cytotoxicity. In this context, Carex was tested for its antioxidative effect in
heart-derived cardiomyoblasts. Oxidative stress was induced by H2O2 treatment of H9C2
cells for 2 h, followed by H2DCFDA staining to measure intracellular ROS levels (Fig-
ure 4A). Lower ROS levels were observed in cells cultured in the absence or presence of
1.0 × 1011 particles/mL of Carex when cells were not treated with H2O2. Intracellular ROS
levels drastically increased when cells were treated with 500 µM H2O2 in the absence of
Carex. In contrast, no difference was observed when cells were cultured in the presence of
Carex, even after H2O2 treatment. This indicated that Carex successfully suppressed ROS
generation in H9C2 heart-derived cells. Time- and dose-dependent inhibition of apoptosis
by Carex after H2O2 treatment was also demonstrated (Figure 4B). Cells were supple-
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mented with different doses of Carex, ranging from 1.0 × 109 to 1.0 × 1011 particles/mL,
and incubated for 24 h. Cell viability was assessed at 0, 6, and 12 h post H2O2 treatment.
The cell viability gradually decreased when cells were not supplemented with Carex at
65.0% and 33.9% at 6 and 12 h post-treatment, respectively. However, a significant dose-
dependent inhibition of apoptosis was observed when cells were incubated with Carex.
For instance, cell viability was 47.9%, 56.0%, and 59.8% when cells were supplemented
with 1.0 × 109, 1.0 × 1010, and 1.0 × 1011 particles/mL of Carex, respectively, at 12 h post
H2O2 treatment. The effect of Carex on caspase-3 activation, which is a key process in the
progression of apoptosis, was further analyzed. H9C2 cells were cultured in the absence or
presence of Carex, and H2O2 was treated thereafter. Caspase-3 activity was measured in
cell lysates 3 h post-H2O2 treatment (Figure 4C). Caspase-3 activity drastically increased
to 593.4% after H2O2 treatment for 3 h. In contrast, caspase-3 activation was significantly
inhibited by Carex supplementation, which only increased to 163.3% after H2O2 treatment.
Thus, the results indicated that Carex contains components that can suppress ROS gener-
ation and inhibit apoptosis caused by oxidative stress. The result supports the potential
use of Carex in the treatment of diseases related to aberrant apoptosis and ROS generation,
including myocardial infarction.
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Figure 4. Antioxidative and apoptotic effect of Carex in H9C2 cardiomyoblasts. (A) Cells were supplemented with
1 × 1011 particles/mL of Carex by oxidative stress induction, using H2O2. The intracellular ROS levels (green) and nuclei
(blue) were stained using H2DCFDA and Hoechst 33342, respectively, followed by fluorescence microscopic observation.
The scale bars indicate 100 µm. (B) Cells were supplemented with different concentrations of Carex for 1 d followed by H2O2

treatment. Cell viability was measured by a WST-1 assay. (C) Caspase-3 inhibition in H9C2 cells by Carex. (D–F) RT-PCR
analysis of Nrf-2 (D), HO-1 (E), and NQO-1 (F) mRNA expression levels. (G) Western blot analysis of Nrf-2 and HO-1
protein expression levels. GAPDH was used as an internal control. All values are expressed as mean ± SD (* p < 0.05,
*** p < 0.001; n = 3).

3.5. Anti-Oxidative Mechanism of Carex in H9C2 Heart-Derived Cardiomyoblasts

To explore the antioxidative molecular mechanism of Carex, the expression of antiox-
idative molecules was measured. As shown in Figure 1, the Nrf-2 signaling pathway is a
well-known pathway, and Nrf-2 is a transcription factor that promotes the expression of
antioxidative proteins, including HO-1 and NQO-1, thereby regulating cellular responses
to oxidative stress. Consequently, Nrf-2 mRNA levels significantly decreased from 102% to
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18% 3 h after H2O2 treatment in the absence of Carex (Figure 4D). The basal Nrf-2 level
was similar in healthy H9C2 cells, regardless of Carex supplementation. However, the
decrease in Nrf-2 expression was significantly suppressed when cells were supplemented
with Carex after H2O2 treatment. The Nrf-2 expression level decreased from 87% to 56%
in Carex-supplemented cells after H2O2 treatment. Thus, it is clear that Carex inhibited
the decrease in Nrf-2 expression in cardiomyoblast cells, thereby protecting cells from
oxidative stress. The downstream regulation of HO-1 and NQO-1 by Nrf-2 was analyzed
using RT-PCR (Figure 4E,F). First, the basal levels of HO-1 were almost the same in un-
treated healthy H9C2 cells in the absence and presence of Carex. After H2O2 treatment
for 3 h, however, the HO-1 expression level dropped to approximately 4% as compared
to untreated cells in the absence of Carex. This is due to the decrease in Nrf-2 expression
levels in cardiomyoblasts caused by H2O2 treatment. In contrast, the decrease in HO-1
expression was drastically reduced when cells were supplemented with Carex. Similar
expression patterns were observed for NQO-1 expression, indicating that Carex effectively
inhibited the decrease in this antioxidative protein expression (Figure 4F). The regulation
of antioxidative proteins by Carex was further demonstrated by Western blot analysis. As
shown in Figure 4G, the Nrf-2 protein level increased after H2O2 treatment in H9C2 cells
supplemented with Carex, but drastically decreased in the absence of Carex. Additionally,
no apparent decrease in HO-1 protein was also observed when cells were supplemented
with Carex after H2O2 treatment. Thus, it is clear that Carex is a novel nanovesicle that
suppresses apoptosis caused by oxidative stress by efficiently inhibiting the decrease in
antioxidative proteins.

3.6. Resistance to Oxidative Stress Induced by 6-Hydroxydopamine-Treated Human
Neuroblastoma Cells Supplemented with Carex

As described earlier, Parkinson’s disease is a chronic neurological disease; increased
oxidative stress in the degeneration of dopaminergic neurons leads to Parkinson’s disease.
Thus, increased resistance to oxidative stress and suppression of apoptosis are essential to
overcome the progression of Parkinson’s disease. Because Carex showed strong antiox-
idative and apoptotic effects, Carex was investigated for its antioxidative effect and the
regulation of antioxidative molecules in human neuroblastoma SH-SY5Y cells treated with
6-OHDA, which is widely used as an in vitro Parkinson’s disease model [47].

First, the dose-dependent cytotoxicity and the effect of Carex on neuroblastoma prolif-
eration were tested (Figure 5A). In general, cell density increased slightly in the presence of
Carex. No decrease in cellular density was observed, even for cells supplemented with the
highest dose compared to the unsupplemented control. Thus, the results indicated that
Carex exhibited a very low level of cytotoxicity. Based on this, further investigation was
performed with Carex doses lower than 1 × 10 11 particles/mL.

Then, neuroblastoma SH-SY5Y cells were treated with 200 µM 6-OHDA to induce
intracellular oxidative stress, followed by apoptosis (Figure 5B). Cell viability decreased
to 48.9% when the cells were treated in the absence of Carex. In contrast, cell viability
gradually increased, consistent with the increased Carex doses. As a result, the cell viability
was 62.8% when they were supplemented with 1 × 10 11 particles/mL of Carex 6 h after
6-OHDA treatment. The results demonstrated that Carex significantly suppressed neurob-
lastoma apoptosis caused by increased oxidative stress in cells. To further confirm the effect
of Carex, the intracellular levels of caspase-3 activity were assessed in 6-OHDA treated
neuroblastoma SH-SY5Y cells. Caspase-3 activity drastically increased 4 h after 6-OHDA
treatment in cells without Carex supplementation (Figure 5C). However, supplementation
with Carex (1 × 10 11 particles/mL) efficiently inhibited caspase-3 activation. The relative
caspase-3 activities were 5527 and 2029% in the absence and presence of Carex, respectively.
Thus, it is clear that Carex has an antioxidative effect in neuroblastoma cells in an in vitro
Parkinson’s disease model.
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The intracellular regulation of antioxidative molecules by Carex was also explored.
The Nrf-2 expression level changed from 1.03 to 0.21 (79.6% decrease) in the absence of
Carex 3 h after 6-OHDA treatment. However, the Nrf-2 expression level decreased from
0.92 to 0.61 (only 33.7% decrease) in the presence of Carex in the same treatment time
(Figure 5D). Changes in the downstream targets of Nrf-2, including HO-1 and NQO-1,
were also explored. HO-1 expression level decreased from 1.0 to 0.15 (85% decrease) when
cells were treated with 6-OHDA without Carex supplementation. However, the level
decreased from 0.94 to 0.48 (48.9% decrease) in the presence of Carex. Similar results were
observed for NQO-1 expression levels in neuroblastoma cells (Figure 5F). Overall, Carex
is a strong suppressor of apoptosis caused by oxidative stress and can be developed as a
novel inhibitor of Parkinson’s disease.

4. Conclusions

Plant-derived nanovesicles have advantages over EVs produced from cell culture in
many aspects, including productivity, safety, production cost, and diversity. In this study,
a high amount of Carex was isolated from carrots, using size-exclusion chromatography.
Carex, which has properties similar to those of EVs, was further investigated for its an-
tioxidative and apoptotic effects in both cardiomyoblasts and neuroblastoma cells. Carex
significantly inhibited ROS generation and apoptosis induction; therefore, the antioxidative
effect of Carex can be more effective in the early phase of diseases. Considering its low
cytotoxicity, antioxidative function, and high production yield with low cost, Carex is a
novel candidate for the therapeutic treatment of myocardial infarction as well as Parkin-
son’s disease. In this context, the findings of this study will contribute to functional drug
development, using nanovesicles from carrots.
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