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Abstract: Seven of the most frequent spinocerebellar ataxias (SCAs) are caused by a pathological
expansion of a cytosine, adenine and guanine (CAG) trinucleotide repeat located in exonic regions
of unrelated genes, which in turn leads to the synthesis of polyglutamine (polyQ) proteins. PolyQ
proteins are prone to aggregate and form intracellular inclusions, which alter diverse cellular path-
ways, including transcriptional regulation, protein clearance, calcium homeostasis and apoptosis,
ultimately leading to neurodegeneration. At present, treatment for SCAs is limited to symptomatic
intervention, and there is no therapeutic approach to prevent or reverse disease progression. This re-
view provides a compilation of the experimental advances obtained in cell-based and animal models
toward the development of gene therapy strategies against polyQ SCAs, providing a discussion of
their potential application in clinical trials. In the second part, we describe the promising potential of
nanotechnology developments to treat polyQ SCA diseases. We describe, in detail, how the design of
nanoparticle (NP) systems with different physicochemical and functionalization characteristics has
been approached, in order to determine their ability to evade the immune system response and to
enhance brain delivery of molecular tools. In the final part of this review, the imminent application
of NP-based strategies in clinical trials for the treatment of polyQ SCA diseases is discussed.

Keywords: spinocerebellar ataxias; polyglutamine; gene therapy; expanded triplet repeat; antisense
and interferent technology; DNA editing systems; nanoparticulate systems; blood–brain barrier

1. Introduction

Spinocerebellar ataxias (SCAs) form a clinically and genetically heterogeneous group
of autosomal dominant neurodegenerative disorders that display distinctive neuropatho-
logical features, including progressive ataxia, loss of overall movement coordination,
cerebellar dysarthria, dysmetria, adiadochokinesia and postural tremor [1–3]. Commonly,
SCAs also present extracerebellar manifestations such as pyramidal and extrapyramidal
signs, cognitive dysfunction, ophthalmoplegia, peripheral neuropathy, sleep disorder and
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dysautonomic alterations [1]. Although the majority of symptoms and signs are shared be-
tween SCAs, it is possible to clinically classify them into three different subtypes: autosomal
dominant cerebellar ataxia (ADCA) I, ADCAII and ADCA III [4]. Besides ataxia, features
of ADCA I include ophthalmoplegia, optic atrophy and extrapyramidal signs; ADCA II
is characterized by macular degeneration, in addition to ataxia and extrapyramidal signs,
while ADCA III corresponds to cases of “pure” ataxia, with the onset frequently occurring
after the fifth decade of life [5,6]. Nevertheless, based on the identification of the causative
genes, more than 40 varieties of SCAs have been described thus far, according to the Online
Mendelian Inheritance in Man (OMIM) database, distributed by the National Center for
Biotechnology (NCBI) [7,8].

The worldwide prevalence of SCAs is 2/100,000 to 43/100,000 [9], with SCA3 being
the most common SCA (21%), followed by SCA2 and SCA6 (15% each), SCA1 (6%) and
SCA7 (5%) [10]. Interestingly, all these SCAs are caused by an abnormal expansion of CAG
triplet repeats located in their respective loci [4,10]. In each SCA, the expanded CAG repeats
give rise to a mutant protein bearing an expanded polyglutamine (polyQ) tract [10], whose
expression ultimately causes neuronal damage and extensive neurodegeneration [11].
The polyglutamine SCA diseases (polyQ SCAs) include SCA 1, 2, 3, 6, 7 and 17 and
dentatorubral–pallidoluysian atrophy (DRPLA). In healthy subjects, the number of CAG
repeats is highly polymorphic, and there is a specific number of CAG repeats for each
SCA representing the threshold between the normal and the pathological state (Table 1).
However, most SCAs have been identified as having pre-mutated alleles, which cause
no clinical manifestations but are known to be unstable and expand to a full mutation
in subsequent generations [12]. Hence, CAG repeat length determination has permitted
accurate DNA-based diagnosis of polyQ SCAs [13]. The phenomenon of anticipation is
present in polyQ SCAs, which is characterized by the reduction in the age of disease onset
and worsening of symptoms in affected individuals in successive generations. Interestingly,
paternal transmission is more likely to be associated with longer repeat expansions than
maternal transmission [2,4,14]. Table 1 depicts the main clinical and neuropathological
features of polyQ SCAs.

Table 1. Genetic and clinical pathogenesis of polyQ-spinocerebellar ataxias.

Disease Gene Mutation
(Localization)

Normal
Alleles

Full
Penetration

Alleles
OMIM Clinical

Features Neuropathological Findings Ref.

SCA1 ATXN1 (CAG)n Exon
8 6p22-23 6–39 >40 164400

Ataxia, slurred
speech, spasticity,

cognitive
impairment

Atrophy of cerebellum, pons
and olives.

Degeneration of lower cranial nerve
nuclei, and atrophy of the dorsal

columns, and spinocerebellar tracts.
Loss of Purkinje cells, neurons of

dentate gyrus, Bergmann’s gliosis,
mesencephalic neurons in 3rd and 4th
cranial nerves, variable loss of granule

cells, atrophy of middle
cerebellar peduncles.

Intranuclear inclusions.

[15,16]

SCA2 ATXN2 (CAG)n Exon
1 12q23-24.12 14–31 >34 183090

Ataxia, slow
saccades,

decreased reflexes,
polyneuropathy,

motor neuropathy,
infantile variant

Atrophy of cerebellum, pons, frontal
lobe, medulla oblongata, cranial
nerves, as well as pallor of the

midbrain substantia nigra.
Cytoplasmic inclusions.

[17]

SCA3 ATXN3 (CAG)n Exon
10 14q32.1 12–44 >52 109150

Ataxia,
parkinsonism,

severe spasticity

Loss of neurons and gliosis in the
substantia nigra, pontine nuclei,

nuclei of the vestibular and cranial
nerves, columns of Clarke and

anterior horns.
The cerebellum is relatively spared,
spinal cord with loss of myelinated

fibers in the spinocerebellar tracts and
posterior funiculi.
Intranuclear and

cytoplasmic inclusions.

[18]
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Table 1. Cont.

Disease Gene Mutation
(Localization)

Normal
Alleles

Full
Penetration

Alleles
OMIM Clinical

Features Neuropathological Findings Ref.

SCA6 CACNA1A (CAG)n Exon
47 19p13 4–18 >19 183086 Ataxia, dysarthria,

nystagmus, tremor

Selective atrophy of the cerebellum
and extensive loss of PC in the

cerebellar cortex.
Numerous oval- or rod-shaped, not
ubiquitinated aggregates are seen

exclusively in the cytoplasm of PC.

[19]

SCA7 ATXN7 (CAG)n Exon
3 3p12-21.1 4–35 >47 164500 Ataxia, retinal

degeneration

Neuronal intranuclear inclusions in
multiple brain areas, although more

frequent in the inferior olivary
complex, the lateral geniculate body,

the substantia nigra and the
cerebral cortex.

Olivopontocerebellar atrophy and
thinning of the spinal cord.

Retinal degeneration.

[20]

SCA17 TBP (CAG)n Exon
3 6q27 29–42 >47 607136

Ataxia, pyramidal
and

extrapyramidal
signs, cognitive

impairment,
dementia,
psychosis,

bradykinesia
and seizures

Mild neuronal loss with compaction
of the neuropil in the cerebral cortex,

striatum and moderate loss of PC.
Nuclear inclusions.

[21]

DRPLA ATN1 (CAG)n
12p13.31 6–35 >49 125370

Ataxia, epilepsy,
choreoathetosis,

dementia

Atrophy and neuronal loss in the
globus pallidus (particularly the

lateral segment) and dentate nucleus,
brainstem, cerebellar and cerebral

white matter.
Lipofuscin deposits.

Nuclear and cytoplasmic inclusions.

[22]

ATXN: ataxin; CACNA1A: calcium voltage-gated channel subunit alpha1 A; TBP: TATA-binding protein; ATN: atrophin.

2. Molecular Basis of PolyQ SCAs

A growing body of evidence that emerged in recent years suggests that misfolding of
polyQ-containing proteins is a unifying molecular mechanism for all polyQ SCAs, which
results in the formation of intracellular aggregates/inclusions in specific brain regions and,
ultimately, in cell death and disease development [11,23–25] (Figure 1A). It is thought that
polyQ SCA pathogenesis is primarily mediated by a deleterious gain of function of the
polyQ-containing mutant proteins [26]. Thus, toxic downstream effects mediated by polyQ
proteins and their corresponding RNA transcripts alter a variety of cellular processes and
pathways, including proteostasis, as supported by experiments in cellular and transgenic
mouse models of polyQ SCAs [27–29].

A key mechanism impaired in virtually all polyQ SCAs is transcriptional regulation.
Ataxins can interact with transcription factors to regulate gene expression [30]. Different
studies have demonstrated that ataxins (ATXNs) 1, 2, 3 and 7, TATA-binding protein (TBP)
and Atrophin-1 (ATN1) are directly involved in transcription, by acting as components
of transcriptional regulatory complexes [11]. Ataxins can bind to DNA elements of some
transcription factors (TBP and α1ACT), in order to thereby control transcription repres-
sion or activation. Alternatively, binding of ataxins to chromatin can modify chromatin
complexes engaged in promoter regions (ATXN7/Spt-Ada-Gcn5 acetyltransferase (SAGA)
and ATXN3/ Histone deacetylase 3 (HDAC3)/Silencing Mediator of Retinoic Acid and
Thyroid Hormone Receptor (SMRT)/nuclear receptor co-repressor (NCOR)); facilitate the
assembly of preinitiation transcription complexes (PIC; TBP/TFIID) to deubiquitinate
substrates (ATXN3 and ATXN7/SAGA); or participate in RNA metabolism (ATXN1 and
ATXN2) [31,32] (Figure 1B). In addition, transcriptome deregulation, due to changes in the
expression profile of microRNAs (miRNAs) and non-coding RNAs, has been correlated
with specific pathological stages of polyQ SCAs [33–36], as shown by microarrays and
RNA-sequencing analyses. On the other hand, the contribution of nuclear RNA foci, which
are composed of mutant RNA transcripts and RNA-binding proteins [37,38], to cell dys-
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function and disease phenotype has been recently proposed [39] (Figure 1B). Specifically,
aberrant interaction of ataxins or their respective RNA transcripts with alternative splicing
factors implies that RNA splicing might be a new previously unrecognized alteration in
polyQ SCAs.
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Overall, abnormal interaction of ataxins with native partners and their assembly
with new partners impair multiple cellular functions, including autophagy, ubiquitin–
proteasome degradation, calcium homeostasis, mitochondrial energy production, activa-
tion of pro-apoptotic routes and synaptic neurotransmission (Figure 1C) [19,40–43].

3. Pharmacological Therapy Treatment for PolyQ SCAs

It is well known that physical exercise constitutes one of the pillars in treating polyQ
SCA patients with neurodegenerative affectations. Such rehabilitation programs signif-
icantly improved the cerebellar symptoms of SCA2, SCA3 and SCA7 patients, through
motor learning and neural plasticity mechanisms [44–46], which consequently has a ben-
eficial effect on their general health condition. Thus, therapeutic exercising, combined
with the administration of neuroprotective drugs in prodromal stages, would improve the
quality of life of patients.

On the other hand, current pharmacological treatments for polyQ SCAs are limited to
supportive care, partially alleviating some clinical manifestations but failing to halt disease
progression [47]. Clinical evidence has shown that treatment with levodopa alleviates
rigidity/bradykinesia in SCA2 patients with parkinsonism [48], while painful muscle
contractions can be ameliorated with magnesium, quinine, mexiletine or high doses of
vitamin B [17,41]. The potassium channel modulators chlorzoxazone and riluzole improved
cerebellar electrophysiology in SCA2 patients, probably by modulating the excitability
and dendritic plasticity of Purkinje cells [49–51]. Finally, 4-aminopyridine (4-AP) has been
shown to ameliorate the motor coordination deficiency of SCA1 and SCA6 mice [52,53].
Some obstacles in the search for therapeutic compounds include the following: (1) small
samples of patients recruited for clinical trials; (2) patients enrolled in clinical trials exhibited
high variability of clinical stages; and (3) lack of quantitative clinical variables to evaluate
treatment effectiveness. In fact, no drug-based treatment has been approved by the FDA
or EMA.

Some alternative approaches have been undertaken to treat motor symptoms; for
instance, thalamic and subthalamic stimulation using (123I)β-CIT single-photon emission
has been successfully tested to alleviate postural tremor (Table 2) [54,55].

Table 2. Current pharmacological treatments for polyQ SCAs.

PolyQ Disease Current Treatment Molecular Structure Ref.

SCA 1
4-aminopyridine (4-AP) to ameliorate

motor coordination deficiency of
mouse model.

4-AP:
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SCA 2

Levodopa to alleviate rigidity/
bradykinesia. Magnesium, quinine,

mexiletine or vitamin B to ameliorate
painful muscle contractions.

Chlorzoxazone and riluzole (potassium
channel modulators) to improve

cerebellar electrophysiology.

Levodopa:
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Table 2. Cont.

PolyQ Disease Current Treatment Molecular Structure Ref.

SCA 3

Varenicline (a partial agonist at α4β2
neuronal nicotinic acetylcholine

receptors) to improve axial symptoms
and rapid alternating movements. Varenicline:
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Recent advances in elucidating the molecular basis that underlies polyQ SCAs have
boosted the design of therapeutic strategies against these disorders [61]. The goal of some of
these strategies is to impede the aggregation of polyQ proteins by the following approaches:
(1) use of β-sheet structure-destabilizing compounds; (2) identification/generation of small
molecules that act as binding competitors to block the assembly between polyQ protein
monomers [62–65]; (3) overexpression of endogenous chaperones to block polyQ protein
misfolding and aggregation [66–68] (Figure 2A); (4) polyQ protein clearance by enhancing
its degradation via the ubiquitin–proteasome and autophagy pathways (Figure 2B). As a
proof of concept, it has been shown that activation of autophagy by treatment with either ra-
pamycin (an mTOR pathway inhibitor), temsirolimus, trehalose (autophagy independent of
the mTOR pathway) or lithium (reduces Ca2+ exit from receptor InsP3R1) exerts a therapeu-
tic effect in cellular and animal models of polyQ SCAs [69–72]. Likewise, autophagy induc-
tion via the administration of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin
(17-DMAG), cordycepin or resveratrol resulted in decreased polyQ protein aggregates and,
consequently, in a reduction in oxidative stress [66,73,74]. Furthermore, administration
of the drugs benzamil, Y-27632 and H1152 [75–77], including the nutraceutics catalpol,
puerarin, T- 11 and daidzein, drove the clearance of ataxin-3 and ataxin-7 in cellular models
through enhancement of the ubiquitin–proteasome mechanism [78,79]. Owing to the role
of the ubiquitin–proteasome system in the clearance of polyQ protein aggregates, sev-
eral therapeutic molecules that target components of the proteasomal system have been
generated. For instance, sulforaphane can up-regulate the expression of all proteasome
subunit genes through activation of the transcription factors Nrf1 and Nrf2 [80,81]. In
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addition, all of the following inhibitors: inhibitor of ubiquitin-specific protease 14 (IU1), an
inhibitor of Protein kinase A (S776), GSK690693, S100B inhibitor (TRTK12) and a synthetic
molecule (JMF1907), suppressed the formation of polyQ protein intranuclear inclusions in
SCA models [79,82–84].
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Despite the promissory future of the therapeutic drugs in the clinic of polyQ SCA
diseases, some limitations need to be overcome before implementing clinical trials. For
instance, virtually all these compounds exhibit poor physicochemical properties (solubility,
permeability and metabolic stability), which in turn affect their ability to penetrate the
blood–brain barrier (BBB) and exhibit central nervous system (CNS) activity [85].

4. Gene Therapy Treatment for PolyQ SCAs

It is worth to mention that elimination of polyQ protein aggregates does not warrant
a disease cure because of the existence of alternative polyQ SCA pathological mecha-
nisms, including the aberrant function of both polyQ protein monomers and mutant
CAG-containing transcripts. Thus, gene therapy strategies aimed to correct the defective
gene or neutralize the RNA toxicity offer an interesting alternative to fight polyQ SCAs. In
this section, we present an updated review of the molecular strategies toward SCA therapy
(see Table 3).
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Table 3. Gene therapeutic strategies.

Technology Characteristics Functions Advantages Limitations Ref.

ASOs

-Short single or double
strands of chemically
modified
oligonucleotides.
-Selectively bind to
complementary
mRNA.

-May induce RNase
H-mediated cleavage of
the targeted mRNA.
-May block translation of
the corresponding
protein.

-Useful to knock down a
gene or protein
expression from
RNA levels.
-ASOs have favorable
properties, including
good distribution
throughout the brain after
intracerebroventricular
(ICV) injection, excellent
uptake by neurons and
other brain cells, and high
stability with a half-life of
several months.

-Do not discriminate
between the
wild-type and the
mutant alleles.
-Require continuous
re-administration of
ASOs to offer
long-term alleviation.
-Lack of selectivity
entails a risk of
having off-target
effects.

[86]

Allele-specific ASO
-Can selectively target
the CAG repeat
expansion.

-Specifically knocks
down the mutant allele.
-Required the CAG tract
expansion to be
associated with
single-nucleotide
polymorphism (SNP), to
target and lower mutant
allele levels.

-Maintain the wild-type
protein function.
-ASOs delivered into
cerebrospinal fluid
distribute widely
throughout the central
nervous system
of mammals.

-Requires continuous
re-administration.
-CAG repeats are
ubiquitous in
the human
transcriptome,
therefore challenging.
-Not all patients have
the same SNP, so it is
limited to a reduced
number of patients.

[87]

Exon skipping
(by ASO)

-ASO-based strategy
aimed to remove the
expanded CAG tract
through alternative
splicing.

-ASOs can induce exon
skipping by sterically
blocking the binding of
splicing factors to
pre-mRNAs, maintaining
the RNA reading frame
and rendering a
truncated but
functional protein.

-Global protein levels
are maintained.

-Internally truncated
protein is obtained.
-Previous knowledge
about protein
translation is needed.
-Exon skipping might
provide a low level of
protein modification.

[88]

Interferent gene silencing

Non-allele-specific
interferent gene

silencing
(RNA interference

—RNAi)

-Cellular mechanism
that induces
post-transcriptional
gene silencing by
promoting the cleavage
of target RNAs.
-Implicates small RNAs
(21–23 nucleotides long)
that can regulate gene
expression in
eukaryotic organisms.

-RNAi is an
evolutionarily conserved
process that induces
post-transcriptional gene
silencing, initiated by
double-stranded RNA
(dsRNA) sequences,
whether small interfering
RNAs (siRNAs) or
derived from the
expression of short
hairpin RNAs (shRNAs).

Potential therapeutic tool
aimed to reduce or
silence pathogenic gene
targets, including gain of
function in CNS diseases.

-Can have low
effectiveness of
engineered
constructs at the
chromosomal target,
time-consuming
processing, and
possible undesirable
mutagenic effects.

[89]

Allele-specific small
interfering RNA

(siRNA)

-Degradation of
complementary mRNA
while selectively
discriminating between
wt and mutated alleles.

-Uses SNPs to
discriminate between WT
and mutant transcripts.
-This is a promissory
strategy against polyQ
SCA disorders.

-May use RNA duplexes
that contain mismatched
bases respective to the
CAG target.

-Off-target effects
may occur.
-Poor intracellular
uptake and stability
in plasma.
- Allele-specific gene
silencing is limited to
the identification of
gene-linked SNPs.

[90]
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Table 3. Cont.

Technology Characteristics Functions Advantages Limitations Ref.

Genome editing nucleases

CRISPR-Cas9
RNA-guided

nucleases
(CRISPR-Cas9)

-Are used to induce
targeted double-strand
breaks (DSBs) at the
desired chromosomal
locus.
-Then, non-homologous
end joining (NHEJ) or
homology-directed
repair (HDR) is used to
repair the DSB.

-Technology that uses a
guide strand and a
protein (Cas9) to
selectively bind to a DNA
region and cut. Then,
both ends can bind and
inactivate the gene or
introduce DNA templates
to edit a gene.

-Can be used to remove
duplicated exons, for
precise correction of
causative mutation and
can induce the expression
of compensatory proteins.
-May bring long-term
efficacy.
-There is no need for
repeated treatment.
-The expression of the
modified protein is under
the control of a
natural promoter.

-Need more in vivo
studies monitoring
the off-target effects.
-More studies about
the potential immune
responses activated
by viral
delivery vectors.

[91]

Transcription
activator-like effector
nucleases (TALENs)

-Are simple modular
codes for DNA
recognition.
-Can act as a versatile
platform for
programmable
DNA-binding proteins.
-A FokI nuclease domain
is found in TALENs.

-TALENs are simpler to
construct than ZFNs.
-Any DNA sequence can
be targeted by TALENs,
including small
DNA sequences.

-Single site targeting,
the occurrence of
nonspecific
mutations and
low efficiency.

[92]

Zinc-finger nucleases
(ZFNs)

-Each ZF is composed of
approximately 30 aa in a
conserved ββα
configuration.
-Then, each ZF is
combined with DNA into
the main channel of the
DNA double helix and by
a recognition of 3 to 4 bp
sequence.
-ZFNs are composed of 2
domains: the
DNA-binding ZF protein
(ZFP) domain and the
FokI restriction
enzyme site.

-Repair the gene
sequence without the
integration of any
sequence into the genome.
-Very high efficiency.

-Single site targeting,
occurrence of
nonspecific
mutations and
low efficiency.
-Might have high
immunogenic power.

[92]

4.1. mRNA-Based Technology—Antisense Oligonucleotides

A non-viral strategy to knock-down gene expression is the antisense oligonucleotide
(ASO) tool, short, single-strand chemically modified oligonucleotides that selectively bind
to complementary mRNA via Watson–Crick base pairs. ASOs can act through different
mechanisms, depending on their chemical modifications and design; ASOs can induce
RNase H-mediated cleavage of the targeted mRNA [93] or block translation of the corre-
sponding protein (Figure 3A). Intracerebroventricular (ICV) injection of an ASO, named
ASO7, in two mouse models of SCA2 resulted in decreased levels of cerebellar ATXN2
mRNA and protein and improved motor function [94]. Interestingly, treated SCA2 mice
recovered the normal firing frequency of Purkinje cells even when treatment was initiated
after the motor phenotype onset. A mouse model expressing the human ATXN3 gene
was subjected to ICV injection using 2′-MOE-modified ASOs with a chimeric (gapmer)
design. These ASOs could reduce the mutant protein levels by >50% in the diencephalon,
cerebellum and cervical spinal cord [95]. The same laboratory carried out a longitudinal
study to assess SCA3 mouse motor function. Transgenic mice were treated with ASOs
(ASO-5) at 8 weeks of age and longitudinally evaluated for up to 29 weeks. The treat-
ment with ASO-5 reduced the levels of mutant ataxin-3 in a dose-dependent manner, with
the greatest decrease observed at 16 weeks of age [96]. Remarkably, the impaired motor
function was mitigated via normalization of Purkinje neuron firing frequency and after
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hyperpolarization. A modified 2′-O-methyl phosphorothioate (CUG)7 triplet repeat ASO
was able to decrease the mRNA levels of mutant ATXN1 and ATXN3 in patient-derived
SCA1 and SCA3 fibroblasts, respectively [97]. Furthermore, ICV injection in an SCA1
knock-in mouse using gapmer ASOs resulted in efficient downregulation of ATXN1 mRNA
and protein levels, with the consequent improvement in motor function and survival [98].
Remarkably, mitigation of retinal degeneration, a major distinctive SCA7 symptom, was
observed upon a single intravitreal injection of a therapeutic ASO in an SCA7 knock-in
mouse, with effective silencing of both wild-type and mutant ATXN7 alleles, and the
consequent decrease in mutant protein aggregates [99].
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4.2. mRNA-Based Technology—Allele-Specific Antisense Oligonucleotides

The above-mentioned ASO-based experiments failed to discriminate between the
wild-type and the mutant alleles. Thus, some efforts have been conducted to specifically
knock-down the mutant allele and thereby maintain the vital function of wild-type (WT)
ataxin proteins (Figure 3B). The approach requires the CAG tract expansion to be associated
with a single-nucleotide polymorphism (SNP) to target and lower mutant allele levels
using ASOs. This strategy has been successfully implemented in Huntington’s disease
(HD) [87,100]; thus, the avenue to apply it to polyQ SCAs is open [99].

4.3. Exon Skipping by ASOs

An alternative ASO-based strategy to remove the expanded CAG tract is exon skipping
(Figure 3C). ASOs can induce exon skipping by sterically blocking the binding of splicing
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factors to pre-mRNAs, maintaining the RNA reading frame and rendering a truncated
but functional protein [88,101]. Skipping of exons 9 and 10 of the ATXN3 pre-mRNA was
obtained in fibroblast cultures derived from an SCA3 patient, using 2′-O-methyl-modified
ASOs (ASO9.1 and ASO10) that contained a phosphorothioate backbone; upon treatment, a
truncated ataxin-3 lacking 72 amino acids (aa) was synthetized [102]. Notably, these authors
showed skipping of exon 9 and exon 10 in the cerebellum of a transgenic SCA3 mouse
model after seven days of applying an ICV injection with a mixture of two ASOs directed
to the ATXN3 pre-mRNA of the mouse. Likewise, targeting of ATXN3 exon 10 with the
2′-O-methoxyethylribose ASO resulted in the removal of the expanded CAG tract in both
SCA3 mouse model and SCA3 patient-derived fibroblasts, with the subsequent synthesis
of a truncated ataxin-3 protein lacking the toxic poly-glutamine region [102]. The truncated
protein, whose ubiquitin binding and cleavage activity remained intact, was detectable
in the mouse cortex and cerebellum for up to 2.5 months of age. Upon ASO treatment, a
decrease in the accumulation of ataxin-3 protein aggregates was found [88], which implies
a significant physiological effect of the treatment. Concerning SCA1, skipping of exon
8 was induced by CAG-targeting ASOs in both patient-derived fibroblast cultures and
SCA1154Q/2Q transgenic mice [98]. Reduced mutant ATXN1 protein levels were found in
different mouse brain regions after weekly ICV injections, which suggests that this therapy
positively impacted mouse physiology [98].

As mentioned before, the ASO-based exon skipping approach has some limitations.
In addition to its inability to distinguish between WT and mutant transcripts, off-target
effects that might interfere with the alternative splicing of other genes cannot be ruled out.
It is expected that the next generation of splicing-skipping ASOs designed against polyQ
SCA diseases would specifically hybridize to the expanded allele while keeping the normal
allele expression intact.

4.4. Non-Allele Interferent Gene Silencing

RNA interference (RNAi) is a cellular mechanism that induces post-transcriptional
gene silencing, implicating small RNAs (21–23 nucleotides long) that can regulate gene
expression in eukaryotic organisms by promoting the cleavage of target RNAs [103]. Recent
progress in elucidating RNAi mechanisms has favored adapting this process to therapeutic
applications (Figure 3A) [104].

Treatment of an SCA1 mouse model at 7 weeks old, through injection into midline
cerebellar lobules with two different short hairpin RNAs (shRNA), resulted in decreased
ataxin-1 aggregates and motor improvement [105]. The same laboratory developed other
RNAi-based strategies against SCA1, using adeno-associated vectors (AAV) [104,106]. Fi-
nally, these authors extended the RNAi-mediated silencing of ATXN1 mRNA to adult
rhesus monkeys, through injection into the deep cerebellar nuclei, with AAV that expressed
an RNAi (miS1) and co-expressed enhanced green fluorescent protein [107]. Upon thera-
peutic intervention, reduced levels of endogenous ATXN1 mRNA (~30%) were found in
the cerebellum and associated structures, which would encourage its application in future
clinical trials.

With respect to SCA3, the joint action of two shRNAs (shRatatax1 and shRatatax2) led
to knock-down expression of ATXN3 mRNA and protein in 293T cells [108]. Injection of
the same mixture of shRNAs in a rat model of Machado–Joseph disease (MJD) decreased
ataxin-3 levels and ataxin-3 inclusions at two months post-injection [108]. Furthermore,
experiments in a humanized SCA3 mouse model, using an AAV-mediated delivery of
small interfering RNAs (siRNAs), which targeted the 3′ UTR of ATXN3, led to gene si-
lencing of human mutant ATXN3 [109,110]. Interestingly, this therapeutic intervention
prevented the nuclear accumulation of mutant ataxin-3 throughout the cerebellum [109].
Nonetheless, long-term treatment failed to ameliorate either motor impairment or short-
term survival [110]. On the other hand, a life-long treatment was carried out in MJD mice
of 6–8 weeks old, by injecting into cerebellar nuclei an AAV encoding microRNA-like
molecules directed to the ATXN3 3′UTR [111] (Figure 3A). Such treatment effectively sup-
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pressed mutant ATXN3 expression in the Purkinje cells and the deep cerebellar nuclei
neurons for up to 9–10 months post-injection but failed to improve motor function and
survival [111]. Likewise, the human ATXN3 mRNA and protein levels were decreased
by treatment with the ASO miR-Atx3-148, which was delivered into the cerebellum of
MJD mice, via AAV-mediated delivery [109]. Furthermore, the expression levels of some
microRNAs (miRNAs) were restored to those observed in untreated mice [109]. In addi-
tion, mitigation of behavior deficiency and neuropathology was obtained in SCA3 mice
after siRNA siMutAtax3 administration, which effectively repressed mutant ATXN3 ex-
pression [112]. Interestingly, the expression of four different miRNAs, namely, miR-25,
miR-125b, miR-29a and miR-34b, was found to be altered in ATXN3 patients [113], which
suggests their involvement in ATXN3 gene expression. Supporting this idea, transfection of
miR-25 into SCA3 cells decreased mutant ataxin-3 protein aggregates and alleviated polyQ-
associated cytotoxicity at 48 h post-transfection [36]. Notably, overexpression of three
miRNAs that target the 3′UTR ATXN3 (hsa-mir-9-5p, hsa-mir-181a-5p and hsa-mir-494-3p)
had a therapeutic effect in 5-week-old SCA3 mice, as shown by the marked reduction in
mutant ataxin-3 protein inclusions and the alleviation of neuronal dysfunction attained
after their co-injection in the striatum [33].

Regarding SCA6, viral delivery of miR-3191-5p prevented motor deficiency and Purk-
inje cell impairment in an early-onset mouse model [114]. Kubodera et al. suppressed
both WT and mutant alleles of the SCA6 causative gene (CACNA1A) in 293T cells, us-
ing a non-allele-specific siRNA [115]. Then, the expression of the WT allele was rescued
using a second vector encoding an siRNA-resistant ATXN6 cDNA [115]. A major limita-
tion of this strategy is the difficulty of achieving the required WT ataxin-6 protein levels
upon re-expression.

Concerning SCA7, rescue of the SCA7 phenotype in a mouse model was found upon bi-
lateral injection into the deep cerebellar nuclei and further AAV-mediated expression of an
siRNA [116]. In addition, these authors observed a decrease in the mutant ATXN7 mRNA
and protein levels and reduced thickness of the cerebellar molecular layer as a response
of the treatment. In the same direction, in situ administration of this siRNA in the mouse
retina, via subretinal injection of the corresponding AAV, resulted in a sustained (23 weeks)
decrease in mutant ATXN7 mRNA and protein levels, with no apparent toxicity [117].
An alternative approach to SCA7 therapy implicates the use of siRNAs composed of self-
complementary CUG repeats, containing a single base mutation to facilitate guide strand
self-duplex (sd) formation [118,119]. These sd-siRNAs efficiently formed base-mismatched
complexes with their complementary CAG repeats, which in turn resulted in the mutant
ataxin-7 protein silencing in SCA7 patient fibroblasts, through translation blockage [120].
The non-allele-specific silencing strategy has also been applied to SCA7. Simultaneous
expression of artificial mirtrons against ATXN7 mRNA and a functional mirtron-resistant
ATXN7 wild-type copy was successfully accomplished in patient-derived fibroblasts [121].
Mirtrons are introns that form pre-microRNA hairpins upon splicing. This approach can
be used to silence mutant ATXN7 expression and preserve normal protein function at the
same time.

4.5. Allele-Specific siRNA-Mediated Gene Silencing

Allele-specific silencing using an SNP to discriminate between WT and mutant tran-
scripts is a promissory strategy against polyQ SCA disorders [122,123] (Figure 3B). Allele-
specific inhibition of mutant ATN1 protein expression was obtained in DRPLA patient-
derived fibroblasts, using RNA duplexes that contain mismatched bases respective to the
CAG target [124]. Additionally, identifying ATXN7 gene-linked SNPs has facilitated the
design of allele-specific silencing strategies for this ataxia [125,126]. Remarkably, specific
suppression of mutant ATXN7 transcripts and decreased mutant protein aggregates, with
no effect on wild-type mRNA, were achieved in patient-derived fibroblasts using shRNAs
that target SNPs [127]. Unfortunately, this approach applies only to the subset of patients
that carry a targetable SNP.
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4.6. Gene Editing

The emergence of genome editing technology, including clustered regularly inter-
spaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9), transcription
activator-like effector nucleases (TALENs) and zinc-finger nuclease (ZFN) platforms, has
allowed targeting and editing polyQ-disease genes [92,128,129] (Figure 3D–F). An allele-
specific CRISPR/Cas9-mediated strategy was successfully applied to HD [130]. Likewise,
CRISPR/Cas9-based deletion of the ATXN3 gene exon 10, which carries the expanded CUG
tract, was successfully obtained in patient-derived iPSCs [131]. Remarkably, genetically
modified ATXN3 did not form aggregates but maintained its ubiquitin binding activity;
furthermore, iPSCs preserved their capacity for differentiation. Despite the high expec-
tations to apply gene editing technology in the clinic, its potential off-target effects that
might provoke undesired genomic rearrangements are still a major concern [132].

5. Limitations of Gene Therapy

Although different oligonucleotide technologies aimed to induce degradation or neu-
tralization of toxic RNA or to edit disease-causing mutations have provided promising
results in cellular and/or animal models, several hurdles are required to be overcome before
their implementation in clinical trials. For instance, ASO-based approaches require contin-
uous re-administration of ASOs to offer long-term alleviation. Thus, the development of
more stable nucleic acid chemistries is needed to reduce the dosing frequency. Furthermore,
the BBB integrity significantly limits the uptake of ASOs, which ultimately causes their
poor bioavailability and biodegradation [133,134]. Favorably, conjugates of morpholino
ASOs with arginine-rich cell-penetrating peptides or siRNA with the antigen-binding
fragment (Fab) confer to them the ability to penetrate cellular membranes, including the
BBB [135,136]. Specifically, chimeric peptides carrying both brain-specific heptapeptides
and cell-penetrating peptide domains effectively mediated the delivery of morpholino
AON and siRNAs to the CNS [137,138]. Nonetheless, inefficient processing of shRNAs into
mature siRNA can provoke neurotoxicity. In addition, high concentrations of siRNA can
saturate the RNAi system, leading to a global perturbation of miRNA-mediated regula-
tion [139,140]. Finally, as mentioned above, most ASO-mediated strategies recognize and
induce the cleavage of both wild-type and mutant mRNA alleles with similar efficacy, and
the design of allele-specific approaches is greatly limited by the low probability of finding
an SNP within the mutant allele sequence.

On the other hand, virus-based vectors, including lentivirus and adeno-associated
virus, provide highly effective and long-term production of therapeutic molecules; however,
high-pressure intravascular delivery is required for drugs to reach the different brain
regions. In addition, the immune system response to viral proteins possesses a major
obstacle [141]. In this scenario, the use of nanotechnology to carry and efficiently deliver
therapeutic molecules to the brain is an excellent alternative for treating polyQ SCA
diseases [85,142].

6. Novel Nanovector Tools for Brain Delivery of Therapeutic Molecules

Current therapeutic vectors have physicochemical characteristics that limit their ability
to pass through cellular barriers to reach the brain. To improve the brain bioavailability
of therapeutic drugs, new formulations based on nanocarriers emerge. A well-designed
nanocarrier system must meet several requirements, including high stability and specificity,
proper tissue distribution, effective cell penetration and efficient cytoplasmic or nuclear
delivery [143]. The physicochemical properties of nanocarriers including size, shape, sur-
face charge, porosity and crystalline arrangement determine their physiological behavior.
As broad types of nanoparticles (NPs) made of biological and/or synthetic materials are
available, selecting suitable particles relies mainly on the type of therapeutic molecule to
be transported.

Although viral vectors exhibited high transfection efficiency, their mutagenic/oncogenic
potential, as well as their limited drug loading capacity and high-cost production, has dis-
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couraged their use [143,144]. Conversely, NPs constitute a suitable carrier system because
they show high biocompatibility and evoke virtually no immune response. Moreover, NPs
provide cargoes protection against chemical and biological degradation, and their synthesis
is comparatively cheaper than that of viral vectors. Additional advantages of NPs include
their ability to penetrate deep tissues, tiny capillaries and cell membranes [144,145].

NP-based carrier systems designed for the brain delivery of therapeutic drugs and
molecular tools are composed of different materials, including polymers (nanocapsule,
nanosphere, polyplex and nanogel), lipids (solid lipid nanoparticle, nanoliposome, lipoplex
and polymersome), metals (magnetic nanoparticle, gold nanoparticle and silica nanopar-
ticle) or a combination of two of the above-mentioned materials (Figure 4). In addition,
nanoparticle formulation must provide high biocompatibility, biodegradability, no toxicity
and a low level of protein-mediated opsonization [145,146]. In addition, the undesired
action of NPs on platelet activation and their clearance by the reticuloendothelial system
are some obstacles for NPs to overcome [145,146].
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6.1. Lipid-Based Nanoparticles

Lipid-based NPs are commonly used as carriers for biological molecules in gene
therapy. Lipids allow the configuration of different NP systems, including micelles (small
unilamellar vesicles with a hydrophobic core and hydrophilic shell), solid lipid NPs (SLNs;
micellar vesicles with a hydrophobic solid lipid core that prevents lipid permeation and
degradation) and liposomes (large vesicles containing a lipid bilayer that forms a hy-
drophilic core and shell) (Figure 4) [147]. Different lipid-based NPs have been employed
in gene therapy. For example, a liposomal system composed of nucleic acid lipid parti-
cles, which incorporated a short peptide derived from the rabies virus glycoprotein and
embedded siRNAs against mutant ATXN3 mRNA, was evaluated in two mouse models
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of MJD [112]. Upon intravenous administration of these liposomes, the mutant ataxin-3
expression was effectively repressed, which in turn ameliorated motor behavior and neu-
ropathological alterations, showing the ability of liposomes to carry and preserve siRNAs’
functionality in the brain parenchyma [112]. Likewise, NPs composed of hydrogenated
soya phosphatidylcholine 3-nitropropionic acid and Tween 80 were synthesized to deliver
the neuroprotector rosmarinic acid to the brain of Wistar rats, previously treated with
3-nitropropionic acid (3-NP) to induce HD-like symptoms. After nasal administration
of NPs, attenuation of 3-NP-induced behavioral abnormalities and oxidative stress were
found in these rats [148]. Similarly, Rassu G. et al. designed chitosan-coated and uncoated
SLNs to achieve a nose-to-brain transport of BACE1 siRNA [149]. The authors found that
this nanoformulation increased the permeation of the BACE1 siRNA through the epithelial
monolayer of Caco-2 cells at early times upon administration (1 h), as suggested by the
chitosan action. Furthermore, two NP systems, polymer (poly (lactic-co-glycolic acid),
PLGA) and solid lipid (Witepsol E85) NPs, were functionalized with a peptide-binding
transferrin receptor to improve their ability to target human brain endothelial cells and
deliver siRNAs, with no significant toxicity [150].

6.2. Polymeric Nanoparticles

Polymeric NPs possess several properties for precise drug delivery to the CNS, includ-
ing their biocompatibility and biodegradability. The most common methods for polymeric
nanoparticle synthesis are nanoprecipitation, emulsification–diffusion, emulsification–
solvent displacement and salting-out [142]. Hydrophobic polymers and copolymers such
as poly L-lysine (PLL), polyethyleneimine (PEI), poly (lactic acid) (PLA), PLGA and poly(ε-
caprolactone) (PCL), as well as hydrophilic polymers such as chitosan, alginate, gelatin
and hyaluronic acid, are commonly used for NPs’ preparation. These polymers, alone
or in combination, can entrap biomolecules of interest for molecular therapies. In this
context, it has been shown that PLGA NPs improve drug stability and maintain a sustained
release of DNA, ASOs and siRNA [151,152]. Specifically, PLGA can react as a cationic
condenser and thereby promotes entrapment of anionic DNA and similar molecules [147].
Recently, a PLGA nanocarrier was synthesized to deliver MDR-1 and BCL2 siRNAs, with
the aim of simultaneously suppressing the drug efflux and anti-apoptotic pathways, which
are involved in multidrug-resistant ovarian cancer cells [153]. Likewise, brain distribu-
tion of aripiprazole (APZ; a small molecule that reduces the levels of mutant ataxin-3
protein [47,154]) was facilitated when it was loaded into PCL NPs and intranasally ad-
ministered to rats [155]. These PCL NPs exhibited a particle size of 199.2 ± 5.65 nm, a
zeta potential of −21.4 ± 4.6 mV and an APZ EE of 69.2 ± 2.34%. Regarding cellular
models, PCL/F68 NPs synthesized by emulsification–diffusion were effective in mediating
the delivery of curcumin (antioxidant compound) to neural-like cells with low cytotox-
icity [156]. On the other hand, NPs based on natural polymers, such as chitosan and
cyclodextrins, have been found to be suitable delivery systems because of their ability to
cross the blood–brain barrier [157,158]. In this context, chitosan/PLA/polyethylene glycol
(PEG) NPs complexed with the nerve growth factor acteoside and plasmid DNA (pDNA)
were developed to treat Parkinson’s disease [158]. Interestingly, this complex formulation
inhibited the expression of alpha-synuclein upon internalization into PC12 cells. With
respect to cyclodextrins, an siRNA loaded with amphiphilic β-cyclodextrins was designed
for Huntington’s disease treatment [159]. The authors observed a remarkable reduction in
the toxic Huntingtin mRNA levels, with low cytotoxicity.

6.3. Polyplexes

Polyplexes are polymeric systems assembled through electrostatic interactions be-
tween the cationic polymer groups and the negatively charged nucleic acids. Polyplexes
require the ability to internalize the cell and escape from endosomes to reach an effective
delivery of drug or nuclei acids [160,161]. In a recent work, a poly(trehalose) formulation
was designed to deliver siRNAs in glioblastoma cells, since this polymer possesses the
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cryoprotection capability of trehalose, while maintaining the siRNA biological role [162].
These authors reported effective internalization of poly(trehalose) and further downregu-
lation of siRNA-targeted genes [162]. Likewise, arginine-rich polyplexes modified with
short-chain PEG showed high internalization of pDNA into U-87 cells, including the nu-
cleus [163]. In 2020, Koji, K et al. developed polyethylene glycol (PEG)-coated polyplex
micelles containing highly condensed mRNA. Interestingly, these loaded bundled mRNA
micelles showed high stability in mouse blood flow and evoked efficient green fluorescent
protein expression in both cultured cells and mice brain tissues [164].

6.4. Metallic Nanoparticles

Metallic NPs have been proposed as alternative therapeutic carriers in biomedicine
because of their unique physiochemical properties. Supporting this idea, aggregation of
polyQ-containing mutant Huntingtin was hampered in neuronal cells and HD mouse
brains, by using an Fe2O3 polyacrylate-coated and covalently conjugated poly(trehalose)
nanocarrier system [165]. The authors reported a nanosystem with a size of 20–30 nm.
Thus, a similar metallic NP-based approach could be scaled to treat polyQ SCAs. However,
the fact that metallic NPs are not biodegradable and therefore accumulate in neuronal cells
could cause toxicity.

7. Targeting Strategies for Delivery of NPs into the Brain

Adjustment of physicochemical properties, including nanoparticle size, morphology,
electric charge density on the surface and capability of protection, can improve the ability
of nanocarriers to transport therapeutic cargoes to the brain. The delivery of therapeutic
molecules into the brain parenchyma largely depends on the carrier’s capacity to cross
through the BBB, a very specialized structure formed by brain capillary endothelial cells
and sustained by astrocytes and pericytes. Transportation of drugs across the BBB in-
volves different routes (see below and Figure 5). The design of multifunctional NPs with
decorated surfaces confers the ability to pass through the BBB, and NPs with modified
surfaces can cross the BBB using passive or active targeting processes, as described in the
following sections.
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(C) transporter-mediated transcytosis, (D) adsorptive-mediated transcytosis, (E) receptor-mediated
transcytosis, (F) efflux. The mechanisms indicated in (C–E) have been explored to overcome the BBB
restrictiveness and enhance drug delivery into the brain parenchyma.
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7.1. Passive Targeting

Passive targeting of NP systems does not require targeting ligands; instead, it needs
enhanced permeability and a retention (EPR) effect. The critical parameters for NPs to exert
passive targeting include the EPR effect, a proper size and surface charge, an appropriate
zeta potential and lifetime in the blood circulation. Some of these parameters, such as zeta
potential, lifetime and electric charge density, can be modulated using a flexible, hydrophilic
polymer coating. For instance, PEG NPs with charged surfaces acquired a steric barrier
that hinders their interaction with blood components; consequently, the adsorption of
plasma proteins on their surface is limited, thereby preventing rapid opsonization of NPs
by the matrix metalloproteinases (MPS). Thus, an increased circulation time in the blood
of NPs offers a better chance of extravasation through vascular tissue [166,167]. In this
regard, cationic bovine serum albumin (CBSA) NPs, conjugated with PEG and PLA, were
efficiently uptaken by rat brain capillary endothelial cells (BCECs) upon incubation at 37 ◦C.
Furthermore, CBSA NPs accumulated at a high concentration in different brain coronal
regions upon injection in the mouse caudal vein [168]. Likewise, two nanosystems termed
CBSA NPs and BSA NPs were manufactured for passive targeting [169]. These NPs were
administered to Sprague Dawley rats via the tail vein, and a fluorescence probe was coupled
to NPs to track their trafficking to the brain. Interestingly, improved accumulation of CBSA
NPs in the brain was found, compared with BSA NPs and regular CBSA conjugation,
which implies that this nanosystem enhanced bioretention [169].

Besides a prolonged lifetime in the blood, NPs need to release biomolecules into the
cell, where the lysosomal pathway might eliminate the therapeutic drugs. The sponge hy-
pothesis postulates how nucleic acids/drugs can escape from endosomes. This hypothesis
is based on the gradual osmotic change that leads to vesicle swelling and rupture to release
the loaded molecules [151]. Polymer-like polyethyleneimine (PEI) contains abundant ni-
trogen groups to buffer pH and sponge up protons. Nonetheless, PEI-mediated sponge
mechanisms remain to be demonstrated [147]. In this regard, the poly(ethylenimine)-
cholesterol (PEI-Chol) nanosystem exhibited a high transfection efficiency with little toxi-
city in Jurkat cells, as shown by green fluorescent protein expression, implying efficient
endosomal release [170]. It is thought that NPs coated with polymers improve their abil-
ity to deliver drugs to the brain parenchyma. Supporting this assumption, poly (butyl
cyanoacrylate) NPs loaded with dalargin or loperamide and coated with polysorbate 80
and apolipoprotein B or E evoked an antinociceptive effect in mice models upon intra-
venous injection [171]. The authors claimed that uptake of polysorbate 80-coated NPs by
the brain capillary endothelial cells occurred via receptor-mediated endocytosis. Likewise,
albumin-lipid NPs with entrapped docetaxel (a chemotherapy drug) accumulated in the
brains of glioma-bearing mice at 4 h post-injection, which suggests NPs’ associated passive
targeting and the EPR effect [172].

7.2. Active Targeting

Active targeting facilitates the uptake of NPs by the cells themselves. This process is
classified into three subcategories: transporter-mediated transcytosis, adsorptive-mediated
transcytosis and receptor-mediated transcytosis [173,174] (Figure 5). Adsorptive-mediated
transcytosis is a nonspecific process that involves the interaction of positively charged
peptides or proteins with negatively charged microdomains on the membrane of brain
endothelial cells. Transporter-mediated transcytosis is a substrate-selective transport that
implicates the internalization of small biomolecules. It is applied to deliver nutrients such
as glucose, amino acids and purine bases to the brain. Receptor-mediated transcytosis is
a highly selective and specific transport related to the binding between targeting ligands
and receptors expressed on the brain endothelial cells [175,176]. Due to the controlled
release capacity, protection of macromolecules from degradation and unneeded efflux,
receptor-mediated transport is one of the most promising brain drug delivery strategies.

Thus, surface modifications to improve NPs’ crossing of the BBB and their uptake by
specific cells using different ligands have been approached, including transferrin (Tf) recep-
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tor, lactoferrin (Lf) receptor, insulin receptor (IR), low-density lipoprotein receptor-related
protein (LDLR) and nicotinic acetylcholine receptors (nAChRs). Table 4 illustrates the differ-
ent transport systems and some examples of their applications on brain-targeting delivery.

Table 4. Different ligands used in nanoparticle coatings for brain targeting and drug delivery.

Type of Transport Specific Target Ligand

Examples of
Nanosystems Using

Ligands for
Brain Delivery

Biological Effect Ref.

Transporter-
mediated

transcytosis

Glucose receptors Glucose
Mannose

Paclitaxel-loaded PEG-
co-poly(trimethylene

carbonate) NPs
modified with

2-deoxy-D-glucose

The glycosylated NPs were
higher internalized compared
to the NPs control. Modified
NPs had high specificity and

efficiency in intracranial
tumor accumulation.

[177]

Silica NPs modified
with glucose and

glucose-PEG- methyl
ether amine

Both NP systems exhibited a
significant uptake in the brain

region compared with the
control NPs at 1 h

post-administration.

[178]

Neutral amino acid
transporter

Tyrosine
Histidine

Asparagine
Phenylalanine

threonine

Dendrimer of poly
(propylene imine)

coated with
maltose-histidine

Maltose-histidine presence
remarkably improved the
biocompatibility and the

ability to cross the
blood–brain barrier in vivo in

male wild-type mice.

[179]

Cationic amino acid
transporter

Arginine
Lysine

Flurbiprofen-loaded
poly (epsilon-lysine)

dendrons

The penetration of the drug in
bEnd.3 monolayer culture

increased with the
nanoformulation.

[180]

Monocarboxylate
transporter

Lactate
Biotin

Salicylic acid
Valproic acid

Avidin-functionalized
PEG- polypeptide

[poly(α,β-aspartic acid)
nanomicelles

Biotin targets were generated
on EC surfaces. This

selectively labeling promoted
the targeting of avidin

nanomicelles specifically to
the brain microvasculature
with minimal targeting into

peripheral organs.

[181]

Choline transporter Choline
Thiamine

Doxorubicin-loaded
polymeric micelles

modified with
choline derivate

Nanocarriers treated with
20% of choline presented an

enhancement in cellular
uptake and

antitumor activity.

[182]

Adsorptive-
mediated

transcytosis

Cell-penetrating
peptides

Penetrating/Albumin

Triethylenetetramine-
loaded liposomes

functionalized with
albumin or penetratin

In vivo analysis showed that
surface modification

remarkably increased the
drug uptake into the brain
tissue compared with free
drug or non-modification

liposome behavior.

[183]

K16ApoE

PLGA/chitosan NPs
conjugated with IgG4.1

or 125I-IgG4.1 and
modified with
K16ApoE by

physical absorption

K16ApoE-targeted NPs were
injected via femoral vein in

DutchAβ40-treated WT mice.
The results showed the

accumulation of the NPs in
various brain regions

compared to
non-modified NPs.

[184]
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Table 4. Cont.

Type of Transport Specific Target Ligand

Examples of
Nanosystems Using

Ligands for
Brain Delivery

Biological Effect Ref.

Receptor-mediated
transcytosis

Transferrin receptor Lactoferrin
Transferrin

Clofazimine-loaded
PLGA-PEG NPs
modified with

transferrin
receptor-binding

peptide

NPs presented an adequate
cell interaction and high

permeability across
hCMEC/D3 cell monolayers.

[185]

Dopamine-loaded
mPEG-PLGA NPs

modified with
lactoferrin

Cellular uptake of SH-SY5Y
cells and 16HBE cells

improved due to lactoferrin
modification of NPs.

[186]

Endothelial LDL
receptor

LDL
ApoE

Doxorubicin-loaded
silk fibroin/Tween

80 NPs

Tween-80 modification
improved circulating time

and facilitated their uptake by
low-density lipoprotein.

[187]

Rosmarinic acid-loaded
polyacrylamide-

chitosan-PLGA NPs
functionalized

with ApoE

A decrement in electrical
resistance and increment in
the ability to cross the BBB

were observed with the
concentration of
ApoE increase.

[188]

Glutathione receptor Glutathione

Liposomal
formulations

(hydrogenated soy
phosphatidylcholine or

egg yolk
phosphatidylcholine)

conjugated with
glutathione for

methotrexate delivery

Hydrogenated soy
phosphatidylcholine-
glutathione liposomal

increased 4-fold the drug
brain delivery.

[189]

PEG: polyethylene glycol, EC: epithelial cells, PLGA: poly(lactic-co-glycolic acid), hCMEC/D3: human cortical microvessel endothelial cells/D3.

8. Transporter-Mediated Strategies for Drug Delivery into the Brain
8.1. Glucose

Since glucose is a key energy source for various biochemical reactions, the cell pos-
sesses a variety of glucose transporters [190,191]. Therefore, glucose-modified NPs have
been evaluated to enhance the efficacy of therapeutic drug delivery. Hydroxyapatite NPs
with or without glucose modification were complexed with plasmid DNA and further
transfected into endothelial cells [192]. The authors observed increased internalization of
glucose-modified HAp/pDNA NPs, compared with unmodified NPs, and demonstrated
that the uptake route was the glucose transporter 1 (GLT1) [192].

8.2. Transferrin

Transferrin (Tf) is a monomeric glycoprotein consisting of two homologous lobes
called N and C lobes, which are connected to each other by a short peptide. The transport
of plasma circulating iron into BBB endothelial cells via transferring receptor (TfR) is a
classic example of receptor-mediated endocytosis (Figure 6) [175,193–195]. In this context,
the therapeutic effects of an siRNA delivery system against EGFR were evaluated in vivo,
composed of Tf-mediated core-shell NPs (T7-LPC/siEGFR NPs) [196]. Remarkably, down-
regulation of EGFR expression in tumor tissues was found in mice bearing an intracranial
U87 glioma treated with T7-LPC/siEGFR NPs, compared with mice treated with other for-
mulations [196]. Since apolipoprotein E2 (ApoE2) is employed in Alzheimer’s disease (AD)
gene therapy, the therapeutic effect of liposomes entrapping ApoE2 plasmid DNA, which
were functionalized with transferrin and penetratin (Tf-Pen-liposomes), was analyzed.
Interestingly, increased ApoE2 levels were observed in mouse brains after intravenous
administration of Tf-Pen-liposomes [197].
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endocytosis (RME) mechanisms. Additional endocytic mechanisms have been described, including those mediated by 
flotillin, ARF6, RhoA and CDC42. In neurologic tissues, CME is the predominant mechanism of endocytosis. The final fate 
of endosome and endosome-like vesicles is to fuse with lysosomes. Thus, endosome-containing NPs need to escape from 
lysosomes to deliver the molecular tools within the nucleus. 
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Lactoferrin (Lf) is an iron-carrying glycoprotein that belongs to the Tf protein family. 

Lf’s polypeptide chain (approximately 690 residues) is folded into two globular lobes con-
nected by a short peptide forming a three-turn α-helix. It is synthetized by mucosal epi-
thelial cells and neutrophils in various mammalian species and is involved in various pro-
tective activities related to antioxidant, anticancer, anti-inflammatory and antimicrobial 
activities [198,199]. Experimental evidence demonstrated that brain capillary endothelial 
cells internalized Lf-modified NPs efficiently [195]. Furthermore, the neuroprotective ef-
fect of the human GDNF gene (hGDNF) was analyzed in a rotenone-induced chronic Par-
kinson’s disease model, using hGDNF-loaded NPs modified with Lf [199]. Supporting the 
role of Lf as a ligand to improve the BBB crossing of therapeutic agents, the locomotor 
activity of rats was improved upon multiple intravenous injections of Lf-modified NPs 
loaded with hGDNF, with a reduction in the loss of dopaminergic neurons and an increase 
in monoamine neurotransmitter levels [199]. In a subsequent study, a higher accumula-
tion of Lf-modified NPs in the brain was confirmed by in vivo imaging, compared with 
unmodified NPs [200]. Owing to the presence of Lf receptors in the brain, the use of Lf-
modified NPs could be adapted to treat different polyQ-disorders. In a recent study, 
higher cellular uptake of Lf-conjugated PEG-PCL NPs was observed in brain endothelial 
cells than Lf-free NPs [201]. Likewise, higher accumulations of PLGA- and PEG-conju-
gated Lf-NPs were found in the mouse brain after intravenous administration, compared 
to unconjugated NPs [202]. In line with the above data, the anti-neoplastic effect of te-
mozolomide (TMZ) was enhanced by using TMZ-loaded NPs functionalized with Lf 
(TMZ-LfNPs) as the delivery system for the brain [198]. These Lf NPs could cross the BBB 
and target overexpressed Lf receptors on mouse glioma to further release TMZ, as shown 
by the significant reduction in tumor volume and improved median survival of glioma-
bearing mice [198]. Finally, Qingqing Meng et al. found high concentrations of Lf-modi-
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Figure 6. Receptor-mediated endocytosis. Macropinocytosis forms macropinosomes that in turn generate early endosomes.
Clathrin-mediated endocytosis (CME) and caveolin-mediated endocytosis (CVME) are the main receptor-mediated endocy-
tosis (RME) mechanisms. Additional endocytic mechanisms have been described, including those mediated by flotillin,
ARF6, RhoA and CDC42. In neurologic tissues, CME is the predominant mechanism of endocytosis. The final fate of
endosome and endosome-like vesicles is to fuse with lysosomes. Thus, endosome-containing NPs need to escape from
lysosomes to deliver the molecular tools within the nucleus.

8.3. Lactoferrin

Lactoferrin (Lf) is an iron-carrying glycoprotein that belongs to the Tf protein family.
Lf’s polypeptide chain (approximately 690 residues) is folded into two globular lobes
connected by a short peptide forming a three-turn α-helix. It is synthetized by mucosal
epithelial cells and neutrophils in various mammalian species and is involved in various
protective activities related to antioxidant, anticancer, anti-inflammatory and antimicrobial
activities [198,199]. Experimental evidence demonstrated that brain capillary endothelial
cells internalized Lf-modified NPs efficiently [195]. Furthermore, the neuroprotective
effect of the human GDNF gene (hGDNF) was analyzed in a rotenone-induced chronic
Parkinson’s disease model, using hGDNF-loaded NPs modified with Lf [199]. Supporting
the role of Lf as a ligand to improve the BBB crossing of therapeutic agents, the locomotor
activity of rats was improved upon multiple intravenous injections of Lf-modified NPs
loaded with hGDNF, with a reduction in the loss of dopaminergic neurons and an increase
in monoamine neurotransmitter levels [199]. In a subsequent study, a higher accumulation
of Lf-modified NPs in the brain was confirmed by in vivo imaging, compared with unmod-
ified NPs [200]. Owing to the presence of Lf receptors in the brain, the use of Lf-modified
NPs could be adapted to treat different polyQ-disorders. In a recent study, higher cellular
uptake of Lf-conjugated PEG-PCL NPs was observed in brain endothelial cells than Lf-free
NPs [201]. Likewise, higher accumulations of PLGA- and PEG-conjugated Lf-NPs were
found in the mouse brain after intravenous administration, compared to unconjugated
NPs [202]. In line with the above data, the anti-neoplastic effect of temozolomide (TMZ)
was enhanced by using TMZ-loaded NPs functionalized with Lf (TMZ-LfNPs) as the
delivery system for the brain [198]. These Lf NPs could cross the BBB and target overex-
pressed Lf receptors on mouse glioma to further release TMZ, as shown by the significant
reduction in tumor volume and improved median survival of glioma-bearing mice [198].
Finally, Qingqing Meng et al. found high concentrations of Lf-modified NPs in different
mouse brain regions after intranasal administration, including the mouse olfactory bulb,
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cerebellum and hippocampus [203]. Overall, these results demonstrate that Lf-modified
NPs present an efficient brain delivery platform for therapeutic drugs.

8.4. Insulin Receptor

The insulin receptor (IR) is another receptor expressed at the BBB, which transports
insulin to the brain in a receptor-mediated transport fashion. However, insulin has barely
been used in nanosystems, due to its short serum half-life (10 min), and the possibility of
triggering hypoglycemia. Instead, an anti-IR monoclonal antibody-based strategy (mAbs)
has been tested for brain delivery of drugs [204]. In this regard, carmustine (BCNU)-
loaded solid lipid NPs (SLNs) attached to anti-insulin monoclonal antibody 83-14 (83-14
MAb/BCNU-SLNs) were proved for brain targeting [205]. Noteworthy, 83-14 MAb/BCNU-
SLNs promoted endocytosis in vitro in human brain endothelial cells via IRs and enhanced
BCNU permeability through the BBB. Finally, insulin or anti-insulin receptor monoclonal
antibodies (29B4) covalently coupled to human serum albumin (HSA) NPs were able to
transport loperamide across the BBB, as shown by the induction of antinociceptive effects
in ICR (CD-1) mice after intravenous injection [206].

8.5. Low-Density Lipoprotein Receptor-Related Protein

Apolipoprotein E (ApoE) is a structural component of lipoproteins, acting as a lig-
and to bind specific cell surface receptors and lipid transport proteins. ApoE maintains
cholesterol homeostasis by binding to specific cell surface receptors, including low-density
lipoprotein receptor (LDLR) and LDLR-related protein 1 (LRP1) [207] (Figure 6). Therefore,
ApoE is another attractive molecule to improve nanocarriers’ transport through the BBB.
Ana Rute Neves et al. functionalized resveratrol-loaded SLNs with ApoE to enhance
BBB permeability via LDL receptors [208]. The authors observed a significant increase
in drug permeability in hCMEC/D3 cells when ApoE-SNLs were applied compared to
non-functionalized SLNs. Furthermore, a delivery system composed of ApoE-modified
liposomal NPs was found to stimulate the uptake of siRNAs by brain endothelial cells in
an ApoE concentration-dependent manner [209]. They also demonstrated that the internal-
ization of ApoE-modified NPs occurred through both clathrin-mediated endocytosis and
caveolae-mediated endocytosis.

9. Proof of Concept of NPs Delivery on PolyQ Diseases

In recent studies, active and passive targeting of NPs has been approached in polyQ
disorder models, such as Huntington’s disease. In this regard, a system comprising PLGA
NPs loaded with synthetic peptides (QBP1 and NT17) and coated with polysorbate 80
inhibited polyQ protein aggregation in both Neuro 2A and PC12 cells [210]. Moreover, the
larval crawling activity was significantly higher in an HD Drosophila model upon dosages
of peptide-loaded polysorbate 80-coated NPs, compared to empty NPs [210]. Likewise,
biodegradable trehalose-conjugated catechin-loaded polylactide NPs were elaborated to
enhance neuroprotection against polyQ expansion in Huntingtin [211]. Trehalose possesses
the ability to impede protein aggregation [165]. Strikingly, hindered polyQ aggregation
decreased oxidative stress, and an augmented proliferation was observed in HD150Q
cells upon NP uptake. In a recent work, LNP-loaded siRNA duplexes, which target CAG
repeats, were able to suppress the polyQ-expanded androgen receptor (AR) expression
in cultured cells [212]. Remarkably, the LNP-mediated delivery system was effective in
selectively suppressing the mutant AR in both the central nervous system and the skeletal
muscle of an SBMA mouse model [212].

10. The Challenge of Cytoplasmic Transit and Nuclear Internalization of NPs

The entry of NPs into neurons is influenced by their size and the interaction between
surface components and the cell membrane (passive and active targeting, see previous
sections). Typically, the smaller the size, the greater the capacity of internalization into the
cytoplasm. In addition, the surface composition and architecture can favor and comple-
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ment the internalization capacity of NPs [213] (Figure 6). Internalization strategies involve
the presence of the stabilizer type, the zeta potential and the presence of cell-penetrating
peptides (CPPs) on the surface [214,215]. The most widely used CPPs for NPs’ docking
is the transactivating-transduction (TAT) peptide (GRKKRRQRRRPQ), which is derived
from human immunodeficiency virus. CPPs can be categorized into three types: amphi-
pathic, cationic and hydrophobic. Amphipathic CPPs are internalized by macropinocytosis
through an adsorption-governed process due to lipophilic–hydrophilic interactions on the
cell membrane surface. Examples of this type of CPP include Pep-1, MPG, pVEC, MAP and
CADY. Cationic CPPs generated an opposite charge-based assembly on the cell membrane
via the interaction of negatively charged phosphates with sulfates, thereby facilitating
internalization; examples of these CPPs include polyarginine, TAT 49-57, penetratin, P22N,
DPV3 and DPV6CADY. Finally, hydrophobic CPPs contain hydrophobic amino acids that
form hydrogen bonds and favor their passage through the cell membrane. Hydropho-
bic CPPs include K-FGF and C105Y [214]. Typically, NPs suffer encapsulation inside
endosomes after internalization, followed by their fusion with lysosomes (Figure 6) [216].
Endosome-mediated encapsulation is accompanied by acidification, with the presence of
proteases, lipases and nucleases in these structures. As NPs can suffer degradation via
lysosomes, some approaches have been designed to escape the endo-lysosomal degra-
dation pathway. For instance, “proton sponge” strategies include the use of PEI or low
pH-sensitive fusogenic peptides derived from the amino-terminus sequence of influenza
virus hemagglutinin 2, in order to destabilize the endosomal membrane and provoke
NP release [213]. Besides the escape from lysosomes, NPs need to enter the nucleus to
accomplish their function.

L-lysine repeats promote nuclear accumulation of NPs after caveolin-mediated en-
docytosis and evasion of lysosomal degradation by trafficking through the endoplasmic
reticulum (ER) and Golgi apparatus (GA). The above route is safe for various NPs. Likewise,
L-arginine and saccharide moieties evoke the same caveolae-mediated nucleus targeting
pathway, using membrane transit through the ER and GA. Another nuclear internaliza-
tion strategy involves the passage through the nuclear pore complexes (NPCs) by using
importin-mediated active transport governed by nuclear localization signals (NLSs), which
are short amino acid (aa) sequences (7–10 aa) rich in basic residues [216,217] (Figure 6).
Some NLSs that have been coupled to NPs include the sequences CGGGPKKKRKVGG,
CGYGPKKKRKVGG and H-Cys-Gly-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Pro-
OH [213,216].

11. Conclusions

Recent advances in understanding the molecular basis that underlies polyQ SCAs
have allowed the development of ASOs/siRNA-based and gene editing strategies to silence
the mutant RNA expression and correct the causative disease DNA mutations, respectively.
Despite the tremendous progress obtained by evaluating gene therapy approaches in
different cellular and animal models, their implementation in clinical trials is limited due
to their toxicity, poor BBB permeability and/or metabolic instability. NP systems offer
an attractive and feasible strategy to improve drug delivery to the brain because of their
flexibility to encapsulate different therapeutic molecules and cross the BBB and deliver
their content in a prolonged/modulated manner. Future development of NPs with suitable
physicochemical and functionalization characteristics will surely facilitate the translation
of such technological findings to clinical trials for treating polyQ SCAs.
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