
 

 
 

 

 
Pharmaceutics 2021, 13, 1016. https://doi.org/10.3390/pharmaceutics13071016 www.mdpi.com/journal/pharmaceutics 

Review 

The Role of Mathematical Models in Immuno-Oncology:  

Challenges and Future Perspectives 

Aymara Sancho-Araiz 1,2, Victor Mangas-Sanjuan 3,4,* and Iñaki F. Trocóniz 1,2 

1 Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of 

Navarra, 31009 Pamplona, Spain; aaraizsanch@alumni.unav.es (A.S.-A.); itroconiz@unav.es (I.F.T.) 
2 Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain 
3 Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia,  

46100 Valencia, Spain 
4 Interuniversity Research Institute for Molecular Recognition and Technological Development,  

46100 Valencia, Spain 

* Correspondence: victor.mangas@uv.es; Tel.: +34-96354-3351 

Abstract: Immuno-oncology (IO) focuses on the ability of the immune system to detect and elimi-

nate cancer cells. Since the approval of the first immune checkpoint inhibitor, immunotherapies 

have become a major player in oncology treatment and, in 2021, represented the highest number of 

approved drugs in the field. In spite of this, there is still a fraction of patients that do not respond to 

these therapies and develop resistance mechanisms. In this sense, mathematical models offer an 

opportunity to identify predictive biomarkers, optimal dosing schedules and rational combinations 

to maximize clinical response. This work aims to outline the main therapeutic targets in IO and to 

provide a description of the different mathematical approaches (top-down, middle-out, and bot-

tom-up) integrating the cancer immunity cycle with immunotherapeutic agents in clinical scenarios. 

Among the different strategies, middle-out models, which combine both theoretical and evidence-

based description of tumor growth and immunological cell-type dynamics, represent an optimal 

framework to evaluate new IO strategies. 

Keywords: immuno-oncology; PK/PD; mathematical modeling; bottom-up approach; middle-out 

approach; top-down approach 

 

1. Introduction 

Cancer is one of the leading causes of death worldwide with a growing incidence 

due, in part, to increased life expectancy and diagnosis. Research advances in molecular 

biology have led to an expansion in the knowledge about the etiology of cancer, means of 

increasing the number of targets, as well as the therapeutic strategies available. Immuno-

oncology (IO) focuses on stimulating the patient’s own immune system to act selectively 

against tumor cells treatments through the production of sustainable T cell responses and, 

thereby, diminishing the toxicity linked with traditional treatments [1–3]. In this sense, IO 

has revolutionized the cancer therapeutic paradigm, especially in non-solid hematologi-

cal tumors and metastatic cancer, with an exponential growth in the number of scientific 

publications since 2016 and becoming, in 2021, the therapeutic oncology strategy with the 

highest number of approved drugs by the Food and Drug Administration (FDA) and the 

European Medicines Agency (EMA) (Table 1). 
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Table 1. Approved immuno-oncology treatments by the FDA and EMA in 2020 and 2021. 

Therap

y 
Date 

Active 

Principle 

Commerc

ial Name 
Company Indication Agency 

C
h

ec
k

p
o

in
t 

In
h

ib
it

o
r 

2020 

January 
Pembrolizuma

b 
Keytruda MSD 

Bacillus Calmette–Guerin (BCG)-unresponsive, 

high-risk, non-muscle invasive bladder cancer 

(NMIBC) with carcinoma in situ (CIS) with or 

without papillary tumors who are ineligible for or 

have elected not to undergo cystectomy 

FDA 

March 

Durvalumab Imfinzi AstraZeneca 
First-line treatment of patients with extensive-stage 

small cell lung cancer (ES-SCLC) 
FDA 

Nivolumab + 

Ipilimumab 

Opdivo/ 

Yervoy 

Bristol-Myers 

Squibb 

Hepatocellular carcinoma (HCC) who have been 

previously treated with sorafenib 
FDA 

May 

Nivolumab Opdivo 
Bristol-Myers 

Squibb 

Metastatic non-small cell lung cancer (NSCLC) with 

epidermal growth factor receptor (EGFR) exon 19 

deletions or exon 21 (L858R) mutations 

FDA 

Atezolizumab Tecentriq Genentech 
Unresectable or metastatic hepatocellular carcinoma 

who have not received prior systemic therapy 
FDA 

Nivolumab + 

Ipilimumab 

Opdivo/ 

Yervoy 

Bristol-Myers 

Squibb 

First-line treatment for patients with metastatic or 

recurrent NSCLC, with no epidermal growth factor 

receptor (EGFR) or anaplastic lymphoma kinase 

(ALK) genomic tumor aberrations 

FDA 

Atezolizumab Tecentriq Genentech 

First-line treatment of adult patients with metastatic 

NSCLC whose tumors have high PD-L1 expression 

with no EGFR or ALK genomic tumor aberrations 

FDA 

Nivolumab + 

Ipilimumab 

Opdivo/ 

Yervoy 

Bristol-Myers 

Squibb 

First-line treatment for patients with metastatic 

NSCLC whose tumors express PD-L1(≥1%) with 

EGFR or ALK genomic tumor aberrations 

FDA 

June 

Avelumab Bavencio EMD Serono 

Maintenance treatment of patients with locally 

advanced or metastatic urothelial carcinoma (UC) 

that has not progressed with first-line platinum-

containing chemotherapy 

FDA 

Pembrolizuma

b 
Keytruda MSD 

First-line treatment of patients with unresectable or 

metastatic microsatellite instability-high (MSI-H) or 

mismatch repair deficient (dmmr) colorectal cancer 

FDA 

Recurrent or metastatic cutaneous squamous cell 

carcinoma (cscc) that is not curable by surgery or 

radiation 

FDA 

Pembrolizuma

b 
Keytruda MSD 

Unresectable or metastatic tumor mutational 

burden-high (TMB H) [≥10 mutations/megabase 

(mut/Mb)] solid tumors 

FDA 

July Atezolizumab Tecentriq Genentech 
BRAF V600 mutation-positive unresectable or 

metastatic melanoma 
FDA 

Septemb

er 

Nivolumab Opdivo 
Bristol-Myers 

Squibb 
Nd EMA 

Ipilimumab Yervoy 
Bristol-Myers 

Squibb 
Nd EMA 

Atezolizumab Tecentriq Roche Nd EMA 

October 
Pembrolizuma

b 
Keytruda MSD 

Relapsed or refractory classical Hodgkin lymphoma 

(chl) 
FDA 
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Pembrolizuma

b 
Keytruda MSD 

Pediatric patients with refractory chl, or chl that has 

relapsed after 2 or more lines of therapy 
FDA 

Nivolumab + 

Ipilimumab 

Opdivo/ 

Yervoy 

Bristol-Myers 

Squibb 

First-line treatment for adult patients with 

unresectable malignant pleural mesothelioma 
FDA 

Novemb

er 

Pembrolizuma

b 
Keytruda MSD 

Locally recurrent unresectable or metastatic triple-

negative breast cancer (TNBC) whose tumors 

express PD-L1 (CPS ≥ 10) 

FDA 

2021 

January 
Nivolumab + 

Cabozantinib 

Opdivo/ 

Cabomet

yx 

Bristol-Myers 

Squibb/Exelixi

s 

First-line treatment for patients with advanced renal 

cell carcinoma 
FDA 

February 

Cemiplimab Libtayo 

Regeneron 

Pharmaceutica

ls 

First-line treatment of patients with advanced 

NSCLC whose tumors have high PD-L1 expression 
FDA 

Cemiplimab Libtayo 

Regeneron 

Pharmaceutica

ls 

Locally advanced and metastatic basal cell 

carcinoma 
FDA 

Dostarlimab Jemperli GSK 
Treatment of certain types of recurrent or advanced 

endometrial cancer 
EMA 

Nivolumab Opdivo 
Bristol-Myers 

Squibb 
Nd EMA 

March 

Atezolizumab Tecentriq Roche 

First-line treatment of adult patients with metastatic 

NSCLC whose tumours have a PD-L1 expression ≥ 

50% tumour cells or ≥ 10% tumour-infiltrating 

immune cells and who do not have EGFR mutant or 

ALK-positive NSCLC 

EMA 

Pembrolizuma

b 
Keytruda MSD 

Metastatic or locally advanced esophageal or 

gastroesophageal carcinoma who are not candidates 

for surgical resection or definitive chemoradiation 

FDA 

 

Dostarlimab Jemperli GSK 
Mismatch repair deficient recurrent or advanced 

endometrial cancer 
FDA 

Nivolumab Opdivo 
Bristol-Myers 

Squibb 

Advanced or metastatic gastric cancer, 

gastroesophageal junction cancer, and esophageal 

adenocarcinoma 

FDA 

Nivolumab Opdivo 
Bristol-Myers 

Squibb 
Malignant pleural mesothelioma EMA 

Ipilimumab Yervoy 
Bristol-Myers 

Squibb 
Malignant pleural mesothelioma EMA 

M
o

n
o

cl
o

n
al

 A
n

ti
b

o
d

y
 

2020 

March 

Isatuximab-

irfc 
Sarclisa Sanofi 

Multiple myeloma who have received at least two 

prior therapies including lenalidomide and a 

proteasome inhibitor 

FDA 

Isatuximab-

irfc 
Sarclisa Sanofi Multiple myeloma EMA 

May 

Daratumumab 

+ 

hyaluronidase

-fihj 

Darzalex 

Faspro 

Janssen 

Biotech 

Newly diagnosed or relapsed/refractory multiple 

myeloma 
FDA 

July 
Tafasitamab-

cxix 
Monjuvi 

MorphoSys 

US 

Relapsed or refractory diffuse large B-cell 

lymphoma not otherwise specified, including 

DLBCL arising from low grade lymphoma, and who 

are not eligible for autologous stem cell transplant 

FDA 
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August 

Belantamab 

mafodotin-

blmf 

Blenrep GSK 

Relapsed or refractory multiple myeloma who have 

received at least 4 prior therapies, including an anti-

CD38 monoclonal antibody, a proteasome inhibitor, 

and an immunomodulatory agent 

FDA 

Novemb

er 
Naxitamab Danyelza 

Y-mAbs 

Therapeutics 

Pediatric patients one year of age and older and 

adult patients with relapsed or refractory high-risk 

neuroblastoma in the bone or bone marrow 

demonstrating a partial response, minor response, 

or stable disease to prior therapy 

FDA 

Decembe

r 

Margetuximab

-cmkb 

Margenz

a 
MacroGenics 

Metastatic HER2-positive breast cancer who have 

received two or more prior anti-HER2 regimens, at 

least one of which was for metastatic disease 

FDA 

2021 March 
Isatuximab-

irfc 
Sarclisa Sanofi 

Relapsed or refractory multiple myeloma who have 

received one to three prior lines of therapy 
FDA 

A
n

ti
b

o
d

y
 D

ru
g

 C
o

n
ju

g
at

e 

2020 April 
Sacituzumab 

govitecan-hziy 
Trodelvy 

Immunomedic

s 

Metastatic TNBC who received at least two prior 

therapies for metastatic disease 
FDA 

2021 April 

Loncastuxima

b tesirine-lpyl 
Zynlonta 

ADC 

Therapeutics 

Relapsed or refractory large B-cell lymphoma after 

two or more lines of systemic therapy, including 

DLBCL not otherwise specified, DLBCL arising 

from low grade lymphoma, and high-grade B-cell 

lymphoma 

FDA 

Sacituzumab 

govitecan 
Trodelvy 

Immunomedic

s 
Advanced urothelial cancer FDA 

Sacituzumab 

govitecan 
Trodelvy 

Immunomedic

s 

Unresectable locally advanced or metastatic TNBC 

who have received two or more prior systemic 

therapies, at least one of them for metastatic disease 

FDA 

C
A

R
 T

-C
el

l 
T

h
er

a
p

y
 

2020 

June 
Gemtuzumab 

ozogamicin 
Mylotarg Wyeth 

Newly-diagnosed CD33-positive acute myeloid 

leukemia (AML) to include pediatric patients 1 

month and older 

FDA 

July 
Brexucabtagen

e autoleucel 
Tecartus Gilead Relapsed or refractory mantle cell lymphoma FDA 

2021 

January 

Daratumumab 

+ 

Hyaluronidase 

Darzalex 

Faspro 

Janssen 

Biotech 
Newly diagnosed light chain (AL) amyloidosis FDA 

February 

Lisocabtagene 

maraleucel 
Breyanzi Juno 

Relapsed or refractory large B-cell lymphoma after 

two or more lines of systemic therapy 
FDA 

Isatuximab Sarclisa Sanofi 
Multiple myeloma who have received at least one 

prior therapy 
EMA 

March 

Idecabtagene 

vicleucel 
Abecma 

Bristol-Myers 

Squibb 

Relapsed or refractory multiple myeloma after four 

or more prior lines of therapy, including an 

immunomodulatory agent, a proteasome inhibitor, 

and an anti-CD38 monoclonal antibody 

FDA 

Axicabtagene 

ciloleucel 
Yescarta Kite Pharma 

Relapsed or refractory follicular lymphoma (FL) 

after two or more lines of systemic therapy 
FDA 

ND—not described; FDA—Food and Drug Administration; EMA—European Medicines Agency; GSK—Glax-

oSmithKline; MSD—Merck Sharp and Dohme. Source: EMA [4] and FDA [5] webpages. 

The tumor microenvironment (TME) comprises a heterogeneous population of can-

cer cells, as well as a variety of resident and infiltrating host cells, secreted factors and 

extracellular matrix proteins. The study of TME has provided insight on the possible fac-

tors controlling tumor progression and determining if the primary tumor eradicates, 
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metastasizes or establishes dormant micrometastases [2]. Factors such as transforming 

growth factor-β (TGF-β), interleukin (IL)-4, programmed cell death 1 (PD-1), and pro-

grammed death ligand 1 (PD-L1) have been identified as fundamental elements devel-

oped by the tumor itself to escape the immune response [3]. 

Despite the successful path undertaken, the complexity associated with pharmaco-

logical agents, the pathophysiology of the tumor and the immune response are factors 

that may explain the absence of clinical response or the appearance of resistance mecha-

nisms in at least 60% of patients [6]. Given the complexity of the tumor-immunogenicity 

tandem, pharmacometrics is being considered as a potential tool to bring together and 

understand the interplay of multiple factors affecting the pathophysiological and drug 

response, together with the identification of the different sources of variability. Traditional 

population pharmacokinetic and pharmacodynamic (PK/PD) models, which in essence 

are fully data-driven, typically connect modulation of pharmacological targets to clinical 

outcomes through empirical models, but do not fully capture all the existing mechanistic 

descriptions. In contrast, quantitative system pharmacology (QSP) follows the bottom-up 

paradigm and integrates knowledge of molecular and cellular interactions involved in the 

tumor growth and immune response. Regardless of the modelling approach, the use of 

model-based strategies has become an essential tool in the decision-making process to ef-

ficiently guide the selection of therapeutic agents, dosing regimens, biomarkers and/or 

clinical outcomes during the drug discovery and development process [7–9]. 

Several articles have already reviewed the different QSP models developed in the IO 

area and their role in drug development [10–14]. Those types of models are hard to apply 

to in vivo data with the aim of estimating individual parameters and correlating them 

with patients’ specific characteristics. The current review is intended to highlight model-

ling efforts that stretch the granularity of the in vivo longitudinal data, and can serve as a 

template for semi-mechanistic PKPD modelling in clinical trials. Prior to discussing mod-

elling cases, we provide a comprehensive summary of different pharmacological targets 

for a better understanding of the models’ structures. 

2. Current and Emerging Targets in Immuno-Oncology 

Immune checkpoint inhibitors (ICIs) currently represent the most promising cancer 

therapeutics, producing durable responses in 40–50% of the patients administered them as 

monotherapies [15–20]. Among the different checkpoints expressed by cancer cells, cyto-

toxic T-lymphocyte-associated protein 4 (CTLA-4) and PD-1 are the most explored check-

points for ICI-based therapeutics. Nevertheless, single drug checkpoint inhibitors did not 

achieve adequate response rates or prolonged disease control for ovarian [21–23], prostate 

and pancreatic cancers [22,24,25]. In this sense, current efforts are focused on developing 

predictors of response to immunotherapy and rational therapeutic combinations of current 

immune checkpoint inhibitors (PD-1 and CTLA-4) with novel checkpoints, cellular immu-

notherapies and delivery strategies, to improve the success rates in oncology [15]. 

2.1. Current Immune Checkpoint Inhibitors 

CTLA-4 is a checkpoint of the immune system involved in the negative regulation of 

T cells at early immune response and is upregulated in activated T cells and expressed on 

regulatory T cells (Figure 1). The interaction between CTLA-4 and B7 molecules leads to 

an inhibitory signal to T cells and prevents the co-stimulatory signal transduction [26]. 

Anti-CTLA-4 agents are able to decrease regulatory T cells (Tregs) in the TME [27,28] and 

promote the activation of effector cells by blocking the inhibitory axis. Following CTLA-

4, the PD-1/PD-L1/PD-L2 axis was the next prime target that received more attention for 

immune checkpoint therapies. These receptors are expressed on the cell surface of im-

mune cells, dendritic cells and cancer cells. Similarly to CTLA-4, PD-1 ligation inhibits 

signaling downstream of the T cell receptor [29] (TCR) (Figure 1). Therefore, the develop-

ment of antagonist against PD-1 or PD-L1 has emerged as a valuable therapeutic strategy 

to enhance the activity of T cells against tumoral cells, especially for melanoma, non-small 
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cell lung cancer, renal cell carcinoma or Hodgkin lymphoma, among others, where dura-

ble responses were observed in 20–40% of patients [30,31]. 

 

Figure 1. Main target and receptor of immunotherapies. Targets (inner circle) and receptors (outer 

circles) of the immune checkpoint inhibitors, monoclonal antibodies, antibody drug conjugates and 

CAR T-cell therapies described in Table 2 and the main text are summarized in the figure. Abbrevi-

ations: Siglec-3—sialic acid binding Ig-like lectin 3, BCMA—B-cell maturation antigen, MIC—MHC 

class I-related chain, RAET—retinoic acid early transcript, ULBP—UL16 binding protein, BAFF—B 

cell activation factor, APRIL—a proliferation-inducing ligand, NS—not specified; other abbrevia-

tions are found in the text. 

2.2. Novel Immune Checkpoint Inhibitors 

Tim-3 (T cell immunoglobulin and mucin domain 3) is highly expressed on dysfunc-

tional or “exhausted” T cells in chronic viral infections and cancer (Figure 1). Tim-3 can in-

teract with its different ligands, resulting in the inhibition of innate immune responses to 

nucleic acids, the induction of Th1 cells’ apoptosis and T cell tolerance, and the promotion 

of cross-presentation by dendritic cells (DCs) [32]. It has been shown that Tim-3 blockade 

increases cytokine production and tumor-antigen specific T cells’ proliferation [33–35]. 

T cell immunoglobulin and ITIM domain (TIGIT) is present in cytotoxic CD8+ T cells, 

regulatory T cells and other immune cells [36,37] (Figure 1). The dual blockade of TIGIT 

and PD-1 has proven to enhance CD8+ T cell expansion and cytotoxic activity against tu-

mor cells [37]. Furthermore, lymphoid cells (cytotoxic and regulatory T cells) express the 

co-inhibitory receptor LAG3 (Figure 1), which promotes the inactivation of regulatory T 

cells. This process inhibits the T cell killing activity over tumor cells [38–40]. Therefore, 

the blockade of LAG-3 helps to restore the immune activity of T cells and, consequently, 
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their anti-tumor activity. Several clinical trials have shown the potential role of LAG-3 

inhibitors as an adjuvant therapy for melanoma, prostate and metastatic breast cancer, 

with tumor response rates of 50% [41–43]. 

V-domain Ig suppressor of T cell activation (VISTA) is a transmembrane protein in-

volved in antitumor immunity through the negative regulation of T cells [44] (Figure 1). 

VISTA is an immune checkpoint gene that is structurally similar to PD-L1 and PD-L2 [45], 

and its over-expression in tumor cells inhibits T cell proliferation and cytokine produc-

tion, resulting in tumor evasion [46–48]. High levels of VISTA have been identified in sev-

eral malignant tumors, including oral squamous cell carcinoma, gastric carcinoma, hepa-

tocellular carcinoma, prostate carcinoma, and melanoma [49,50]. 

B and T lymphocyte attenuator (BTLA) is a recently investigated inhibitory receptor, 

present in lymphoid cells, with promising preclinical results [51] (Figure 1). BTLA has struc-

tural and functional similarities with CTLA-4 and PD-1, and it has been found to be highly 

expressed in tumor antigen-specific CD8+ T cells of melanoma patients after peptide vac-

cinations. Preclinical evaluations in melanoma evidence the promising activity of monoclo-

nal anti-BTLA antibodies by leading the promotion of T cell immune response [52,53]. 

2.3. Adoptive Cellular Immunotherapy 

Adoptive cellular immunotherapy is an innovative and recently developed treatment 

strategy of promising success in the treatment of cancer patients [54], which aims to stim-

ulate durable anti-tumor immune activity. These strategies include tumor-infiltrating 

lymphocytes (TIL), gene modified T cells expressing novel T cell receptors (TCR) and chi-

meric antigen receptors (CAR) [55,56]. 

CAR T cell therapies on the cell surface transmembrane protein of B cells’ CD19, the 

most studied target [57], have emerged as a promising tool in the management of hema-

tologic malignancies [57,58] (acute lymphoblastic leukemia, diffuse large B cell lym-

phoma, chronic lymphocytic leukemia, and B cell non-Hodgkin lymphomas) (Figure 1). 

Despite the efficacy rates (50–90%) [59] of CAR T cell therapies on hematological malig-

nancies observed in clinical trials [59–61], safety concerns (neurotoxicity, hepatotoxicity 

and multi-organ failure [58,62–64]) and tumor relapses have been identified [65,66]. In this 

sense, antigen escape resistance mechanisms have been recognized as a relevant factor to 

explain tumor relapse. This mechanism is enhanced in solid tumors, which might explain 

the reduced efficacy observed. 

The use of TIL therapy has also emerged as an alternative tool to increase response 

rates and/or to reduce relapse rates, especially in metastatic melanoma and testis cancer 

patients [67–74]. Autologous lymphocytes are removed from the patient, externally ex-

panded and re-infused to the patients to promote the immune response against tumor 

cells. Investigations are currently ongoing to evaluate the efficacy and safety of TIL ad-

ministered as a monotherapy or in combination for different cancer treatments [75–77]. 

3. Mathematical Approaches Integrating Cancer Immunity Cycle with  

Immuno-Oncology Therapies 

Mathematical modelling has broadly been used in support of preclinical and clinical 

research, as well as in decision-making in the oncology field [12]. This review will focus on 

those mathematical models that use ordinary differential equations to describe the IO sys-

tem dynamics and that have been applied to clinical data. Additionally, we will divide the 

different works according to the modelling approach used: (i) top-down data-driven models 

built predominantly on the observed clinical data, and with a reduced number of parame-

ters and equations leading to an empirical description of the biological system; (ii) bottom-

up models based on knowledge about the human body and that are, therefore, as mecha-

nistic as possible, utilizing in vitro as well as preclinical and clinical information as input 

data; and (iii) models that utilize a middle-out approach, combining bottom-up (model) and 

top-down (data) systems and applying different modeling strategies (Figure 2). 
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3.1. Top-Down Modelling and Simulation Approaches 

Pharmacokinetic/pharmacodynamic (PK/PD) modeling has been used in the devel-

opment of IO agents such as immune checkpoint inhibitors [78], monoclonal antibodies, 

toll-like receptor (TLR) agonists or cancer vaccines. As an example, PK/PD models have 

played an important role in supporting the dose setting and characterization of pembroli-

zumabs’ clinical pharmacology, a monoclonal antibody directed to PD-1 receptors. In par-

ticular, Elassaiss-Schaap et al. [79] developed a PK and a PK/PD model describing the 

pembrolizumab concentrations and doses at which maximal target engagement was 

achieved (Figure 2). As a major assumption, the IL-2 stimulation ratio in blood was con-

sidered as a surrogate for target engagement in the tumor, and, thus, a potential marker 

for antitumor efficacy. Similarly, Lindauer et al. [80] built a translational PKPD model that 

aimed to optimize dose setting in early clinical development in oncology, integrating in 

vitro, preclinical and clinical (Phase I, Phase II and Phase III clinical trial) data (Figure 2). 

The components of the final structure are: an empirical model for pembrolizumab PK in 

plasma, a mechanistic tissue compartment representing the site of drug action, a mecha-

nistic binding model for drug–receptor interaction, and a tumor growth model. Finally, 

Chatterjee et at. [81] developed two top-down models describing the tumor size changes 

in melanoma patients (Phase I, Phase II and Phase III). Both models show the lack of clin-

ically relevant impact of pembrolizumab exposure on response rate. Contrary, baseline 

disease, BRAF mutation, the degree of PD-1 receptor and ipilimumab treatment history 

were identified as possible predictors of individual variability. One of the limitations of 

this analysis for clinical extrapolation of the simulations is that the model does not con-

sider dropouts (patients that discontinued the clinical trial), which could potentially im-

pact the results. In spite of the different modeling approaches, equations and assumptions, 

all these models were developed for the same therapeutic agent and the same study pop-

ulation, and, thus, we can also find some similarities. In particular, these works described 

tumor growth following a simple exponential model ����
��� =  � ��� with a constant 

growth rate (�) ranging from 0.0017 to 0.0088 1/day and an initial tumor size (���) esti-

mated to be between 23.4 and 41.5 mm3 (Table 2). 

A different PKPD model was developed by Ribba et al. [82] to guide a dose escalation 

study design of cergutuzumab amunaleukin (CEA-IL2v), a monoclonal antibody directed 

against carcinoembryonic antigens. In this study, a relation between drug plasma concen-

tration (PK) and immune cell count (PD), including NK cells, CD4, CD8 T cells, was es-

tablished using data from 74 patients with advanced and/or metastatic solid CEA+ tu-

mors. Therefore, limited validation with clinical data was performed during model devel-

opment. Besides, as the model equations describe drug, target (immune cells expressing 

IL2 receptor in blood) and complex drug–receptor concentrations, instead of tumor 

growth dynamics, the schematic representation does not fit the structure of Figure 2.
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Figure 2. Characteristics of the modelling approaches developed in immuno-oncology. Dashed black arrows indicate activation, solid blocked arrows indicate inhibition, solid sharped 

arrows indicate transit between compartments, and ∅  indicates death. Colored compartments are used to depict modeling approaches that are contrary to those in the grey 
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compartments. Abbreviations: IL—Interleukin, NR—non-responders, SD—stable disease, PR—partial response, CR—complete response, NK—natural killer, TIL—Tumor infiltrate 

lymphocyte, CTL—cytotoxic T lymphocytes, ADT—androgen deprivation therapy, CIK—cytokine-induced killer cell, BCG—Bacillus Calmette Guérin, ORR—overall response rate, 

OS—overall survival, PSA—prostate specific atnigen, NSCLC—non-small cell lung cancer, CLL—chronic lymphocytic leucemia, TCE—T-cell-engager, CAR—chimeric antigen receptor. 
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The mathematical models described until this point are focused on dealing with a 

specific pharmacological question such as the lowest effective dose to be used in a clinical 

trial [80], the optimal dosing schedule [82] or the quantification of the exposure–response 

relationships determining the efficacy of a certain therapeutic agent [81]. However, they 

do not consider the interactions between the immunological system and cancer cells. In 

this sense, more mechanistic models that aim to incorporate more components of the bio-

logical system can help to understand the mechanisms of actions of immunotherapies 

(Figure 2). 

Parra-Guillen et al. [83,84] developed a model combining mechanistic features, spe-

cifically tumor resistance mechanisms, and mixed effects to describe tumor growth dy-

namics after the administration of different combinations of an antitumor vaccine, a TLR-

9 agonist (CpG), chemotherapy (cyclophosphamide) and IL-2. This approach is also an 

example of how the kinetics of the therapeutic agents can be analyzed and simulated in 

the absence of PK information. Plasma concentration–time profiles of a drug are usually 

necessary to establish a relationship between the administered dose and the kinetics of 

drug action [85]. However, is not always possible to collect all the required PK data and 

several models have been proposed. Even so, despite the fact that this model is based on 

preclinical data only, it was successfully applied to reproduce clinical outcomes from 

three different studies (Phase I and Phase II data) (Figure 2). Still, the simplistic descrip-

tion of the tumor and immune system interactions is a handicap to be generalized to other 

mechanisms of actions. 

Table 2. Summary of system- and drug-related pharmacodynamic parameters estimated with clinical data and published 

in the literature to account for immuno-oncology treatments. 

Parameter Value Units Estimation Indication Treatment Ref. 

Tumor 

Tumor growth    

 Lineal: � 
��� = 1.16 × 10�� 

� = 0.354 
mm 
mm/day 

Colon cancer Colon cancer IL-2 [84] 

 Exponential: � �� 
��� = 41.5 
� = 0.0088 − 0.0017 

mL 
day�� 

Melanoma patients [80] Melanoma Anti-PD1 [80] 

  
��� �ℎ����� ����� = 57.9 
��� ���� ����� = 23.4 
� = 0.00267 

mm 
mm 
day�� 

Melanoma patients [81] Melanoma Anti-PD1 [81] 

 
Logistic: � ��(1 −

���) 

� = 2. 065 × 10�� 
� = 2.145 × 10��� 

day�� 
cell�� 

Renal carcinoma [86,87] 
Renal 

carcinoma 
Sunitinib [88] 

  
AD: � = 2.025 

AI: � = 0.006 

ng/mL 
day�� 

Prostatic cancer [89] Prostate 
Intermittent ADT + 

DC vaccine 
[90] 

Tumor cell kill by CD8      

 
Fractional: 

�(���/��)�

��(���/��)�
�� 

� = 5.80 
� = 1.36 
� = 0.512 − 0.839 

day�� 

None 

None 

3 × 105 B16-BL6 cells 

[91]/Human [92] 

Metastatic 

melanoma 

Chemotherapy + 

TIL 
[93] 

  
� = 1.88 − 2.34 
� = 1.81 − 2.09 
� = 0.25 

day�� 

None 

None 

3 × 105 B16-BL6 cells 

[91]/Human [92] 

Metastatic 

melanoma 

Chemotherapy + 

TIL + IL2 + cancer 

vaccine 

[94,9

5] 

 Linear: � ��8 �� � = 1.1 × 10�� cell�� × day�� 
High grade gliomas patients 

[96] 
Bladder IL2 + BCG 

[97,9

8] 

 Equation in [99] ������ = 4 day�� Assumed [99] NSCLC Anti-PD1 [99] 

Tumor cell kill by NK cells      

 � � �� � = (3.23 × 10��) cell�� × day�� 
3 × 105 B16-BL6 cells 

[91]/Human [92] 

Metastatic 

melanoma 

Chemotherapy + 

TIL 
[93] 

  � = (2.9077 × 10���) cell�� × day�� 
3 × 105 B16-BL6 cells 

[91]/Human [92] 

Metastatic 

melanoma 

Chemotherapy + 

TIL + IL2 
[100] 

  � = (6.41 × 10���) cell�� × day�� 
3 × 105 B16-BL6 cells 

[91]/Human [92] 

Metastatic 

melanoma 

Chemotherapy + 

TIL + IL2 + IFNα 
[95] 

CD8 cells 

Number of CD8 per microliter of blood  

  1000 - 
CD4+ count of 640-1175/µL 

humans 
Melanoma Pembrolizumab [80] 
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CD8 recruitment by tumor      

 By CD8 killing: 
���� ���

��� ���
��8 

���� = (3.75 × 10��) 
�� = 2.0 × 10� 

day�� 
cell� 

BCL 1 lymphoma of chimeric 

mice [91–101]/Human [92] 

Metastatic 

melanoma 

Chemotherapy + 

TIL 
[93] 

 
���� = (32.49 × 10��) 
�� = (23.66 − 5.66) × 10� 

day�� 
cell� 

BCL 1 lymphoma of chimeric 

mice [91,101]/Human [92] 

Metastatic 

melanoma 

Chemotherapy + 

TIL + IL2 + IFNα 
[95] 

 
���� ��

�� +  ��
��8 

���� = (1.245 × 10��) 
�� = 2.019 × 10� 

day�� 
cell� 

BCL 1 lymphoma of chimeric 

mice [91–101]/Human [92] 

Metastatic 

melanoma 

Chemotherapy + 

TIL + IL2 
[100] 

 

By BCG killing: By 

CD8 killing: 
���� ��

��� ��
��2 

���� =  1.45 × 10� 
�� = 10�� 
���� =  1.514 × 10� 
�� = 10�� 

cell�� × day�� × IL2�� 
cell�� 
cell�� × day�� × IL2�� 
cell�� 

In vitro/Estimated bladder 

cancer patients [102] 

In vitro/Estimated bladder 

cancer patients [103] 

Bladder IL2 + BCG [97] 

CD8 activation by APCs      

 
� ���

� +  ���
 

� =  20 × 10� 
� = 400 × 10� 

cells × day�� 
cells 

Preclinical experiments [104] 

Prostate cancer [105] 
Prostate 

Intermittent ADT + 

DC vaccine 
[90] 

NK cells 

Production rate NK  

 
From circulating 

lymphocytes:� � 
� =  8.68 × 10��� L × cell�� × day�� 

Preclinical experiments renal 

carcinoma [86,87] 

Renal 

carcinoma 
Sunitinib [88] 

NK recruitment      

 By tumor: 
���� ���

��� ���
� 

���� = (2.5 × 10��) 
�� = 2.02 × 10� 

day�� 
cell� 

BCL 1 lymphoma of chimeric 

mice [91–101]/Human [92] 

Metastatic 

melanoma 

Chemotherapy + 

TIL + IFNα 

[93–

95] 

TS—Tumor size, TS0—Initial tumor size, AD—androgen dependent, AI—androgen independent, IL—Interleukin, NK—

natural killer, TIL—Tumor infiltrate lymphocyte, ADT—androgen deprivation therapy, CIK—cytokine-induced killer cell, 

BCG—Bacillus Calmette Guérin, NSCLC—non-small cell lung cancer, CLL—chronic lymphocytic leucemia, APC—anti-

gen presenting cells, DC—dendritic cells, BCL—B cell leukemia. 

3.2. Middle-Out Modelling and Simulation Approaches 

Middle-out approaches aim to incorporate the main biological and pharmacody-

namic mechanisms of the system while maintaining a simplified model structure. How-

ever, keeping the principle of parsimony represents a challenge since it is probable that 

some model parameters will be hard to estimate precisely. As a consequence, the integra-

tion of different pharmacometric techniques, such as the use of Bayesian priors based on 

previous knowledge to inform poorly estimated parameters, is warranted [106]. 

This strategy provides a quantitative platform for model development in clinical sce-

narios (Figure 2). The first attempt to describe the interactions between the immune sys-

tem and cancer cells [101] was a model of two ordinary differential equations (ODEs) de-

scribing the dynamics of CD8 T cells and their effect on tumor cell killing. On this basis, 

and with the increasing experimental data available, models were expanded to include 

different entities, including immune cells and cytokines, and mechanisms such as receptor 

expression dynamics. 

At first, aiming to incorporate cytokines’ function into the models, Kirschner and 

Panetta [104] built a three-ODE system addressing the potential of IL-2 and its effects on 

tumor relapse. Similarly, in a more recent work carried out by Isaeva et al. [107], the effects 

of chemotherapy and immunotherapy (IL-2 and IFN-α) were studied using a middle-out 

approach. A limitation of this analysis is that in order to reflect the different clinical out-

comes, patients were conditionally divided into three groups characterized by tumor an-

tigen expression, the strength of the immune response and the reaction to vaccination 

(Figure 2 covariates). 

On the other hand, with the goal of adding new entities, de Pillis et al. [93] developed 

a very simple model that included three cell populations: tumor cells, natural killer (NK) 

cells and CD8 T cells. This work supported the relevance of considering multiple cell types 

in the overall anti-tumor immune activity. In spite of the model’s simplicity, it is able to 

fit data from two metastatic melanoma patients treated with tumor-infiltrating lympho-

cytes (TIL) after chemotherapy. An essential feature of this model is the cell killing term 

defining the interaction of tumor cells with either NK or CD8 T cells. Although for NK 

cells, a linear product (Table 2; tumor cells killed by NK cells) was sufficient to reproduce 

the experimental data, for CD8 T cells, a rational form was needed. In Table 2 (fractional 
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tumor cell kill by CD8), the parameter � gives the maximum lysis rate, the exponent � 

represents how the lysis rate depends on the effector/target ratio, and � is the parameter 

affecting the steepness of the curve. This new term and the parameter values have been 

used in previous works [94,95,100]. Although the model fits the empirical data, its struc-

ture is still very simple and does not incorporate self-regulatory terms or down-regulation 

of the activated immune response, among other mechanisms. In a different approach, 

Perlstein et al. [108] incorporated memory T cells and the senescence and exhaustion 

mechanisms of PD-1/PD-L1 checkpoint blockade immunotherapy in their model. One of 

their limitations is that the model was adjusted to fit the clinically measured dynamics of 

just one reference patient from a hospital cohort suffering from metastatic melanoma. Fur-

thermore, Xuefang et al. [109] developed a mathematical prognosis model for pancreatic 

cancer patients including not only cancer cells and CD8 T cells, but also pancreatic stellate 

cells, other immune cells (NK cells and helper T cells) and cytokines (IL-2, IFN-α and TGF-

β). They assumed that survival time is the time taken for the cancer cell density to reach a 

certain threshold (500 cells per µL). 

Some of the common biological assumptions of the previously described models in-

clude: (i) cancer cells grow logistically in the absence of an immune response; (ii) both NK 

cells and CD8 T cells are capable of killing cancer cells; (iii) both NK cells and CD8 T cells 

are activated by cancer cells; (iv) both NK cells and CD8 cells eventually become inacti-

vated after some number of interactions with tumor cells; (v) as part of the innate system, 

NK cells are always present, but CD8 T cells are only present when tumor is present. 

The aforementioned models incorporate an increasing number of immune cells. 

However, they do not include immune-suppressive components, which have been 

demonstrated to play a critical role in tumor evasion mechanisms. Tumors escape the im-

mune-mediated elimination by producing substances, such as TGF-β and IL-10, that stim-

ulate the expansion of immunosuppressive cells, particularly regulatory T cells (Tregs), 

MDSCs, and M2 macrophages. With the aim of including these mechanisms, de Pillis et 

al. [88] expanded their previous model and incorporated Tregs as the main immunosup-

pressive component. This analysis studies the anti-angiogenic effect of sunitinib as well 

as its ability to directly inhibit the immunosuppressive environment by reducing the num-

ber of Tregs. 

Whereas, until this point, the new entities incorporated into the models included im-

mune players or cytokines, other authors have focused on including different tumor cell 

clones. Mahasa et al. [110] used a middle-out approach, with a model structure able to fit 

the representation of Figure 2, to study the immune surveillance of tumors including im-

mune cells, different tumor cell populations (naïve and resistant), and the complexes 

formed among these. The model describes how tumor cell populations escape and acquire 

resistance after the interaction with the immune system mediated by NK and CD8 T cells. 

In a different work, Portz et al. [90] extended the model proposed by Kirschner and Pan-

etta [104] and developed a system of six ODEs in which tumor mass was divided into 

androgen dependent and independent cells. This approach was driven by the fact that 

patients were treated with androgen deprivation therapy, which prevents growth and in-

duces apoptosis only of androgen dependent cells. On a similar basis, Bunimovich-Men-

drazitzky et al. [98] developed a model considering two different populations of tumor 

cells—infected and uninfected tumor cells. They studied Bacillus Calmette–Guerin (BCG) 

immunotherapy for superficial bladder cancer patients. This work was later expanded 

[97] by adding IL-2. In both situations, they modeled the encounter of effector cells and 

cancer cells with proportional rate constant (� ��8 ��). Despite the fact that more mech-

anisms are incorporated, the limited validation with clinical data together with the re-

maining simple description of the tumor and immune system interactions makes the ex-

trapolation of this model to other immunotherapies challenging. 

It can be noticed that the middle-out approaches include mechanistic features as part 

of relatively simple mathematical models. Furthermore, although most of the models fol-

low a common structure, each of them focuses on those specific aspects that might be 
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considered more relevant or with a bigger impact in immunotherapy. The mathematical 

framework depicted in Figure 3 summarizes the main mechanisms characterized in mid-

dle-out approaches, incorporating the mathematical functions proposed using clinical 

data. This framework integrates the current knowledge on several cell types and tissues 

with the main mathematical functions to provide a general scenario that could be used to 

develop future models based on available experimental evidence. 

 

Figure 3. Middle-out approach model representation. The equations that are common to most of the middle-out ap-

proaches are described in the figure. Dashed black arrows indicate activation, solid blocked arrows indicate inhibition, 

solid sharped arrows indicate transit between compartments, and ∅ indicates death. Colored compartments are used to 

depict modeling approaches that are contrary those in the grey compartments. Abbreviations: NK—natural killer, 

nTCD4—naïve CD4 cells, nTCD8—naïve CD8 cells, Treg—regulatory T cells, Thelper—Helper T cells, aCD8—activated 

CD8 T cells, mAPC—mature antigen presenting cells, APC—immature antigen presenting cells, TS—tumor size, L—lym-

phocytes. Other parameters are presented in Table 2. 

3.3. Bottom-Up Modelling and Simulation Approaches 

Large-scale QSP platform models are able to integrate the current knowledge of the 

cancer immunity-cycle (Figure 2) by incorporating more mechanisms, different cell-types 

(tumor cells, innate and adaptive immune cells, and stromal cells) and diverse molecular 

components (cytokines, cell-surface receptors, etc.). However, these bottom-up modelling 

approaches are built up with a very large number of parameters and equations, and model 

calibration is usually challenging. 

Popel’s group developed one of the first full-scale QSP platforms in IO, describing 

cancer cells, the dynamics and development of antigen presenting cells (APCs), T cells 

(naïve, primed, effector and regulatory) and myeloid derived suppressor cells (MDSCs) 

in the tumor, the tumor draining lymph node, the blood and other tissues. This framework 

has been validated for melanoma, breast cancer, and NSCLC patients treated with anti-

PD1, anti-PD-L1, anti-CTLA4 and epigenetic inhibitors [99,111–113]. Moreover, the cellu-

lar interactions of TCR, MHC I, CD28, CD80, CD86, PD1, PD-L1, PD-L2, and CTLA4 sur-

face receptor were considered. In these works, rather than developing a model from 

scratch in each particular situation, a platform model was created and then used to se-

quentially add components and/or adapt it to other tumor types. Wang et al. [47] studied 

the combination of entinostat (histone deacetylase inhibitor) with ICIs in breast cancer 
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patients incorporating PD-L1 expression and tumor mutational burden (TMB). Then, 

Jafarnejad et al. [99] included a detailed model for APC antigen presentation, and Milberg 

et al. [111] proved that this platform was able to predict longitudinal tumor size profiles 

and the number of patients showing partial or complete response for anti-PD1 and anti-

CTLA4 combinations in melanoma. 

A different QSP model for anti-CD19 chimeric antigen receptor T cells (CAR T) in a 

patient with chronic lymphocytic leukemia (CLL) was developed by Hardiansyah et al. 

[114]. Since we are dealing with a non-solid tumor, the model-based platform developed 

by the authors does not fit the bottom-up structure shown in Figure 2. In this case, the 

authors have included the dynamics of B-cells, effector and memory CAR T cells, and 

inflammatory cytokines (interleukin-6, Interleukin-10, and interferon gamma) in periph-

eral blood and tissue. The proposed model is able to describe the observed CART kinetic 

and pro-inflammatory cytokine profiles in a clinical scenario. 

In bottom-up approaches, although the majority of model parameters are literature-

based (Table 2), a selected set of parameters are adjusted using clinical data. Nevertheless, 

one of their main limitations in drug development is building confidence intervals for a 

very large number of parameters. In spite of this, QSP models have been demonstrated to 

be a valuable tool for deepening our understanding on how the mechanism of action con-

nects to the clinical outcomes and, therefore, may serve as important model-based plat-

forms to guide the development of, and personalize, treatment therapy. 

4. Conclusions 

The number of approved immunotherapies has grown exponentially in the past two 

years, particularly immune checkpoint inhibitors, monoclonal antibodies, antibody drug 

conjugates and CAR T-cell therapies. Despite the improvement in response rates, there is 

still a high percentage of patients that do not respond to these treatments. For this reason, 

current efforts are focused on finding new therapeutic targets and different combination 

strategies. In this sense, mathematical strategies have proven to be an efficient tool to char-

acterize, select and predict optimal therapeutic alternatives in the field of IO. However, it 

is still necessary to develop a quantitative framework that allows the evaluation of two or 

more agents administered in combination and to identify their possible interactions. 

Among the different mathematical models proposed to describe the tumor and immune 

cells’ interactions, in this review, we have focused on those that use ordinary differential 

equations and have been applied to clinical settings. Additionally, models have been clas-

sified into top-down, middle-out or bottom-up approaches, according to the modelling 

strategy applied. 

On the one hand, data-driven top-down models have been demonstrated to be a suc-

cessful tool in clinical trials, for example, to predict the minimum efficacious dose of ICIs. 

However, one of the limitations is that due to the simplicity of such models, some assump-

tions have to be considered, for example, the simplification of the drug delivery process 

or the extrapolation of parameters from animals to humans. Furthermore, since the inter-

actions of the tumor and the immune system are not considered, they cannot be general-

ized to therapeutic agents with other mechanisms of action or their combinations. On the 

other hand, QSP models simulate various biological processes and interactions on differ-

ent tissues and, thus, can help to overcome the challenges of understanding the immune 

response dynamics and the interplay of tumor infiltration processes and tumor cell 

growth. Nevertheless, the large number of parameters, and the relatively small amount of 

observed data usually available, makes the development of these models very complex. 

In between these two approaches, middle-out strategies offer theoretical and evi-

dence-based description, representing an optimal framework for the evaluation of new 

strategies in IO. These models are based on experimental and/or clinical data while con-

straining the model structure to the current knowledge of the system. Therefore, this mod-

eling strategy needs either data from specific biomarkers that allow the identification of 

immune cells’ dynamics, or an experimental design in which immune-modulators acting 
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on different steps of the cancer-immunity cycle are studied. Moreover, a relevant aspect 

to be incorporated into mathematical models is the development of biomarkers capable 

of predicting degrees of response in cancer patients. 

In this regard, the design of studies that allow the collection of informative longitu-

dinal data, together with the integration of pharmacogenetics, can contribute to establish-

ing early response indicators. On the whole, this work provides a schematic representa-

tion (Figure 2), including the description of tumor growth and immunological cell-type 

dynamics, as well as a range of model equations and parameters, with the aim of estab-

lishing an optimal theoretical framework for middle-out approaches, which may help to 

evaluate new IO strategies. 
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