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Abstract: A specific model for drug absorption is necessarily assumed in pharmacokinetic (PK)
analyses following extravascular dosing. Unfortunately, an inappropriate absorption model may
force other model parameters to be poorly estimated. An added complexity arises in population PK
analyses when different individuals appear to have different absorption patterns. The aim of this
study is to demonstrate that a deep neural network (DNN) can be used to prescreen data and assign
an individualized absorption model consistent with either a first-order, Erlang, or split-peak process.
Ten thousand profiles were simulated for each of the three aforementioned shapes and used for
training the DNN algorithm with a 30% hold-out validation set. During the training phase, a 99.7%
accuracy was attained, with 99.4% accuracy during in the validation process. In testing the algorithm
classification performance with external patient data, a 93.7% accuracy was reached. This algorithm
was developed to prescreen individual data and assign a particular absorption model prior to a
population PK analysis. We envision it being used as an efficient prescreening tool in other situations
that involve a model component that appears to be variable across subjects. It has the potential
to reduce the time needed to perform a manual visual assignment and eliminate inter-assessor
variability and bias in assigning a sub-model.

Keywords: pharmacokinetics; deep learning; machine learning; absorption models; visual inspection;
individualized models

1. Introduction

In population pharmacokinetic/pharmacodynamic (PK/PD) modeling, specific struc-
tural models are chosen to characterize the shape of the observed concentrations or effects
vs. time. These structures are usually obvious and common to all subjects. However,
sometimes additional consideration needs to be given to the absorption process from the
depot compartment to the central compartment. Given the biological complexity that
underlies absorption models and the inherent variability associated with the processes
across individuals, it is not surprising that data from different individuals in a dataset may
need different models to describe the data. In population analyses, two approaches are
frequently used. We might completely ignore the model misspecification that exists in
some individuals and allow the inflation of between-subject variability (BSV) and residual
unexplained variability (RUV) to accommodate the misspecification; or we might assume
a more highly complex model and borrow parameter information from those subjects
who are able to support the complexity of the model while letting others shrink toward
the typical values of the estimates. When observations taken during the period of drug
absorption are sparse, the choice of absorption model or even their specific parameter
values are likely trivial and have little impact on the remaining parameter estimates [1].
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In addition, the relative sparse sampling during absorption generally results in absorption
parameter estimates with high imprecision (large relative standard errors) and frequently
large BSV. However, as the frequency of observations taken during absorption increases,
the complexities of drug absorption become apparent and obvious misspecification can
sometimes be seen in diagnostic plots. Although the absorption sub-model can be adapted
to provide a better fit to the data, the increased complexity of the model will then re-
quire an increased frequency of sampling at critical times to capture those absorption
parameters with acceptable precision. A further complicating consideration can occur in
population PK analyses as the intensity of sampling during absorption increases. Some
subjects might clearly demonstrate one absorption pattern while others a different pattern.
Nonetheless, a single absorption model is generally assumed. Examples of more involved
techniques such as mechanistic models [2], or mixture modeling [3] have been applied in
these situations.

Machine learning is gaining wider attention in clinical pharmacology as computational
capacity increases. Methods for machine learning use statistical algorithms that are capable
of doing automated learning from existing data to uncover patterns [4-8]. Deep learning is
a branch of machine learning that involve artificial neural networks in their structure to
facilitate developing algorithms capable of learning from data [5,6]. Neural networks are
not new to clinical pharmacology and have been applied in response classification, dose
selection, and quantitative system pharmacology model reduction [9-11].

We have recent experience in a population PK analysis in which the absorption process
demonstrated concentration-time profiles that, while not apparent on standard mean or
spaghetti plots, appeared on closer examination to have individuals that conform to either
a first-order, Erlang, or a split-peak process, depending on the individual. Our initial
approach was to fit a Erlang-distribution absorption model to the data [12]. Given that
the specifics of the absorption process weren’t of primary importance, the input process
was considered a trivial component of the analysis. Subsequently we explored visually
prescreening the individual profiles to make an assignment of the absorption model prior
to modeling the data [13]. It was an interesting exercise, but we found this procedure
to be less than satisfactory as visually assessing the profiles took considerable time and
demonstrated inter-rater variability. The exercise motivated us to seek an alternative
approach in assigning the absorption model. The goal of this study was to build a deep
neural network (DNN) algorithm to recognize these absorption profiles and apply it to our
data as a means to evaluate the performance of the method in assigning the absorption
model structure for each individual.

2. Methods
2.1. Observed Data and Visual Assignment

The data used for this study are previously described in a nonlinear mixed-effects anal-
ysis of cortisol [12]. Briefly, after the study was approved by the University of Minnesota
Institutional Review Board (Project 1209M21101 approved on 5 July 2017). Following
each subject’s morning dose at 0800, 12 concentrations were obtained at times 0 (Predose),
0.25,0.5,0.75,1,1.25,1.5, 2, 2.5, 3, 4, and 6 hours after the dose. Concentration-time data
consisting of 682 cortisol observations from 53 patients were available. Post-publication, we
visually assessed the concentration-time data and assigned each individual as having either
a first-order absorption process (n = 20), absorption consistent with an Erlang distributed
delay model (n = 21), or a split-peak absorption process (mixed first-order, and Erlang
models; n = 12) [13] These absorption patterns are exemplified in Figure 1.
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Figure 1. Observed concentration-time profiles for three representative shapes. (red) presents the first-order process;
(blue) presents the Erlang process; (black) presents the mixed first-order and Erlang processes.

2.2. Estimation of Pharmacokinetic Model

With these individualized absorption models assigned, we performed an additional
population PK re-analysis that estimated the parameters of the pre-specified absorption
models in addition to clearance (CL) and the volume of distribution (V). NONMEM 7.5
(ICON plc development LLC) using first-order estimation with interaction (FOCE-I) was
used. Figure 2 illustrates the pharmacokinetic structural models of the three absorption
profiles. Table 1 presents the final parameter estimates from the re-analysis. The NONMEM
control stream, and individual profiles of observed and predicted concentrations as linear
(Figure S1) and semi-log (Figure S2) are available in Supplementary Materials.

Table 1. Population-level pharmacokinetic estimates and the between-subject variabilities (% CV)
from the reanalysis used in the simulation.

Parameter First-Order Erlang Split-Peak
CL (L/h/70 kg) 22.6 (29%)
V (L/70 kg) 38.9 (21%
Krg (h™1) - 8.2 (23%) 5.2 (23%)
Ka (h™h 3.3 (48%) - 7.6 (48%)
Fraction (%) - 78 (80%)

RUVprop 16.5%
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Figure 2. Pharmacokinetic structural models of the three absorption profiles. (A) First-order absorp-
tion; (B) Erlang absorption process; (C) Mixed first-order and Erlang absorption.

2.3. Simulation of Training Profiles

The parameters from the above analysis were used to generate simulated data sets for
training the DNN. Between-subject and residual unexplained variability random effects
were included in the simulation to assure a different profile for each simulated individual.
For the purpose of training the DNN, simulations were based on a standard 20-kg subject
with a 10-mg dose being administered. Concentrations were simulated at the same 12 time
points as the external dataset. Ten thousand profiles were simulated for each of the three
distinct absorption models (first-order, Erlang, and split-peak shapes) with CL and V
shared among the three absorption models. The R package mrgsolve v0.10.7 used for the
simulations [14].

These simulated concentration-time profiles were then standardized using the Feature
scaling method [15], in Equation (1) to standardize all concentrations between zero and
one while maintaining the shape of the profile.

Cij — Cuinj

CS;i =
g Cmax,j - Cmin,j

)
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where CS; ; is the i'* standardized concentration for the j individual, C;; is the i" sim-
ulated concentration for the jth individual, Cy;p,j is the minimum concentration for the
jth individual, and C,,y,j is the maximum concentration for the jth individual. From this
simulated dataset of 30,000 standardized profiles, 30% (10% from each absorption model)
were randomly selected as hold-out validation data to evaluate the performance of the
algorithm during the training.

2.4. Deep Learning Algorithm

The open-source R library packages TensorFlow v2.2 and Keras v2.0 were used to
develop the DNN algorithm. A DNN consists of an input layer, hidden layers, and an
output layer. Each hidden layer consists of a number of nodes that represents the computa-
tional unit. The output from each node in a layer will propagate as input to each node of
the subsequent layer. More formally, the layers of a DNN and a diagram of one node is
presented in Figure 3. Equation (2) presents the output of a given node.

Hidden

Figure 3. Overview of deep neural network algorithm structure.

N
Yni = f (bl +3) xnwn,l—l> ()
n=1
where v, is the output value of the nth node in the I layer. b; is the bias in the I*" layer,
N represents the number of nodes in layer ! — 1 (the previous layer), x, is the value of n"
node that is being propagated forward from layer / — 1, and w,, ;_; is the weight associated
with the n" input from the I — 1 layer to the n'" node in the 1" layer. f(.) is the activation
function defined in the algorithm (vide infra).
In our case, the input layer consisted of the 12 Feature-scaled simulated concentrations
(C Si/]-) at the aforementioned sampling times for each of the simulated subjects. The number
of hidden layers was sequentially tested from 1 to 6 and evaluated using the resulting
accuracy and loss function value (vide infra). The final output from the DNN was simply
the probability that the data set was represented by each of the three absorption profiles
(first-order, Erlang, or split-peak).
ReLU was used as a linear activation function at the hidden layers for each node and
the softmax activation was used in the last layer (output) for the purpose of classifica-
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tion [16]. Categorical cross-entropy was defined as the loss function [17] with a batch size
of 32 over 100 epochs.

2.5. Evaluation

The “true” absorption profile shape was taken to be the shape decided by visual
inspection in the estimation process and used for the accuracy determinations. At the end
of the training phase, the overall categorical cross-entropy loss function value for both
the training data split (70%) and the validation data split (30%) was calculated and the
accuracy of the algorithm was evaluated using the number of correct predictions over the
total number of simulated profiles (training and validation) in the dataset [18]. The accuracy
selection is based on the index of the highest probability in a vector of three indexes that
represent the probabilities of the three absorption shapes. Hence, if the predicted and
observed shape match, it will count as an accurate prediction.

Of the 53 external subject profiles, 5 profiles were not complete datasets and 48 profiles
from the PK study were used as external data to evaluate the algorithm classification per-
formance as a prescreening tool. The percentages of correct classifications were calculated
using a confusion matrix that summarizes the performance of algorithm prediction in
comparison to the “true” absorption profile. In addition, the accuracy rate was compared
to the uninformative rate (correct classification due to chance) of the external data to deter-
mine the extent to which the algorithm chose the correct shape using a binomial test with
p < 0.05 regarded as significant.

3. Results

No improvement was noted in the accuracy or in the loss function value when in-
creasing the number of hidden layers beyond three and all results are shown for three
hidden layers. Table 2 summarizes the number of profiles used in training, validation and
external datasets with corresponding overall accuracy and the values of loss function.

Table 2. Collection of data with associated overall accuracy and loss value.

Data N Overall Accuracy Overall Loss Value
Training 21,000 99.7% <0.01
Validation 9000 99.4% <0.01
External 48 93.7% 0.17

Figure 4 presents the output from three representative profiles (first-order, Erlang,
and split-peak) demonstrating the probabilities of each absorption profile.

Classification results are presented in Table 3 as a confusion matrix and contains the
percentages of predicting the correct shape on the diagonal and the percentage of choosing
the incorrect model on the off diagonals.

Table 3. Confusion matrix presents the classification of the external patient data.

DNN Prediction Visual Assignment
First-Order Erlang Split-Peak
First-order 18 1 1
Erlang 0 21 1

Split-peak 0 0 6
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Figure 4. The output of the developed DNN with three examples from the external cortisol data.

A difference between the accuracy rate of 93.7% and the uninformative rate of 45.8%
was significant (p < 0.001).

Of the 45 correct decisions, all were above the probability of 0.75; 89% exceeded a
probability of 0.9 (N = 40). For the three incorrect decisions, the probabilities were 0.53,
0.50, 0.56, while the true shape probabilities were 0.47, 0.48, and 0.42, respectively. Figure 5
displays a histogram of the probabilities of the classifications for all 48 subjects.

. Correct classification
40

@ Incorrect classification

30

Count

20

10

0.6 0.8 1.0

Probability

Figure 5. Probability counts for DNN model prediction. Dark blue presents the correct classification;
Light blue presents the incorrect classification.

4. Discussion

The suggested DNN algorithm can be used in the pre-modeling setting but it must
be recognized that the approach might be most appropriate when the precision of a sub-
model is perhaps of little consequence as with absorption. The raison d’étre of the method
can be stated as an approach to minimize the potential of having misspecification in one
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sub-model adversely affect the estimation of parameters in another part of the model, say,
clearance or volume of distribution.

It is important to note that our visual labeling of a profile as the “true shape” does
not make it truth. A “true shape” does not exist in real data. It is encouraging that
when the DNN algorithm is not in agreement with the original visual classification, the
certainty of that decision is low as evidenced by lower probabilities. Indeed, when the
DNN probabilities are relatively balanced across outcomes as we observed with incorrect
classifications, the choice of pattern is likely inconsequential.

Mixture models are an alternative approach in addressing these issues. It assumes
that a given parameter distribution can be composed of 2 or more subpopulations and the
software will compute the probability of being in each subpopulation and classify each
individual to the subpopulation that is most probable [3] . Although applying a mixture
model to absorption may minimize misspecification of another part of the PK model,
this approach will likely consume several degrees of freedom during the estimation step.
Additionally, it is noteworthy that the computational time is increased. To our knowledge,
while mixture models are frequently used to better understand multimodal parameter
distributions, they have not yet been applied to classify subjects into having one of several
competing absorption models.

Knowledge of the steps and processes involved with pharmacokinetics are becoming
better understood and the complexities of absorption are captured by physiologically-
based mechanistic models that have been adapted to explain differences in absorption
profiles [19]. However, due to the intensive demand of these models for prior information,
approximate mechanistic models have been developed. A gastro-intestinal transit time
model (GITT) [2] was used to characterize the timing of tablet movement in the intestine
using a step function based on prior information, and with the help of mixture modeling,
different absorption rates in different GI regions were estimated. Ruiz-Garcia et al. [20]
observed non-standard absorption profiles for dacomitinib with and without proton pump
inhibitors. They evaluated a series of increasingly complex absorption models before
assuming a global transit compartment model. As is the usual case, it does not appear
that they attempted to allow more than one absorption model across the subjects. A more
complicated method to describe absorption process has been suggested by Csajka et al. [21]
where they described the absorption after the administration of hydromorphone and
veralipride by the sum of inverse Gaussian functions. Although empirical, this method
was able to describe complicated absorption shapes such as the double peak phenomena
with much more flexibility than simpler ones, was also able to characterize BSV. A more
complicated empirical method using fractional-order kinetics have been suggested to
describe anomalous absorption kinetics based upon drug dissolution processes [22].

With all the simplifications that are often imposed on the absorption process, it is
not always trivial. The early exposure of drug is certainly affected by drug absorption
characteristics and has been shown to be important since it is associated with the onset
of response and clinical outcomes. This has led the US Food and Drug Administration to
issue draft guidances for methylphenidate [23], hydromorphone [24], and amantadine [25].
This underscores the potential importance of the absorption process, particularly in the
development of generic formulations.

A limitation of this report is that the current DNN algorithm has been developed and
trained using parameters from a cortisol population-based PK analysis, and then using
that same data as the external data set for qualification. A more fair assessment would of
course be to use an independent data set, but one wasn’t available. The purpose of this
report is to demonstrate the potential utility of using DNN to classify model components.
It has not been applied to another situation and it might be the case that the DNN will
need to be trained uniquely with data relevant to each setting. It is also recognized that
while the training sets were balanced across the shapes, the external dataset were not. We
acknowledge that the approach may perform differently with drugs having different PK
characteristics. DNN algorithms are by nature data-driven and this approach can be used
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in conjunction with pharmacometrics analyses to improve model building and estimation
process. In the future, it may be possible to build these approximation functions directly
into the estimation process.

5. Conclusions

In summary, the developed DNN algorithm was capable of predicting different ab-
sorption profiles in a population with high accuracy in both simulated and external datasets.
This DNN pre-specification algorithm may reduce the computational time of a mixture
model analysis and avoid consuming unnecessary degrees of freedom during estimation
and may obviate the need to obtain or generate compound-specific prior information for
complex physiological absorption processes. Finally, this algorithm will reduce valid con-
cerns of inter-assessor variability and bias when visually assigning the absorption shapes.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/10
.3390/pharmaceutics13060797 /s1, NONMEM control stream, and R script; Figure S1: Individual
profiles with empirical bayes estimate prediction—linear scale; Figure S2: Individual profiles with
empirical bayes estimate prediction—log scale.
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