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Abstract: Human-derived in vitro models can provide high-throughput efficacy and toxicity data
without a species gap in drug development. Challenges are still encountered regarding the full
utilisation of massive data in clinical settings. The lack of translated methods hinders the reliable
prediction of clinical outcomes. Therefore, in this study, in silico models were proposed to tackle
these obstacles from in vitro to in vivo translation, and the current major cell culture methods were
introduced, such as human-induced pluripotent stem cells (hiPSCs), 3D cells, organoids, and mi-
crophysiological systems (MPS). Furthermore, the role and applications of several in silico models
were summarised, including the physiologically based pharmacokinetic model (PBPK), pharmacoki-
netic/pharmacodynamic model (PK/PD), quantitative systems pharmacology model (QSP), and
virtual clinical trials. These credible translation cases will provide templates for subsequent in vitro
to in vivo translation. We believe that synergising high-quality in vitro data with existing models
can better guide drug development and clinical use.

Keywords: in vitro to in vivo translation; human-induced pluripotent stem cells; organoid; micro-
physiological systems; pharmacokinetic/pharmacodynamic model; quantitative systems pharmacol-
ogy model; physiologically based pharmacokinetic model

1. Introduction

Despite the extensive investigation of drug candidates, the attrition rate remains
extremely high in drug development [1]. Over 90% of drug candidates entering clinical
trials are finally disapproved [2]. Surveys have suggested that more than half of these
drug candidates fail in Phases II and III because of a lack of efficacy, and another third of
failures are attributed to safety issues [3,4]. Regardless, dismissing ineffective and/or toxic
compounds at the early stage of drug development will reduce the cost of failed molecules
and prioritise promising candidates [5,6].

In drug development, in vitro and animal models are currently essential tools for
evaluating the safety and efficacy of a drug candidate before clinical trials [7,8]. They are
developed to mimic human disease and then used to predict the response of humans to
the drug candidate. Compared to in vitro models, animal models are more acceptable
substitutes for human safety and efficacy evaluation, as conventional in vitro models can
only be tested in isolation, while animal models exhibit a response after complex in vivo
dispositions [9,10]. However, the value of animal models in drug development has long
been questioned because of their inaccurate predictability [11]. With the species gap, the
biology and mechanisms of a disease are almost impossible to completely mimic by animal
models [12,13]. Compared to animal models, cell culture models can be generated with
human-derived cells, generating a more human-relevant system to predict the safety and
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efficacy of a drug candidate [14,15]. Additionally, other advantages of cell culture models
include high-throughput compatibility and relative inexpensiveness [16,17]. The recently
emerged in vitro models (Figure 1), such as 3D cell culture, organoid, and tissue chips, have
been developed to recapitulate the influence of in vivo biology and microenvironmental
factors on target cells, performing a more in vivo-relevant response to drug candidates.
They are expected to replace animal models in drug development for safety and efficacy
testing. However, due to the in vitro–in vivo gap, challenges remain in predicting the
safety and efficacy of drug candidates with these advanced cell culture models.
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In silico models are effective tools for bridging the preclinical to clinical translational
gaps by quantitatively revealing the drug disposition processes and the drug exposure–
response relationship [26]. For instance, a physiologically based pharmacokinetic model
(PBPK) can integrate our understanding of the anatomy, physiology, physicochemical
properties of drug candidates; compound–biological properties; and administration pro-
tocol to predict pharmacokinetics (PK) in humans based on preclinical PK studies [27].
Pharmacokinetic/pharmacodynamic models (PK/PD) are extensively utilised in transla-
tional pharmacology by quantifying the drug exposure–response relationship [28]. The
implementation of quantitative models in drug development has been defined as model-
informed drug development (MIDD) and is utilised to integrate preclinical and clinical data
sources to facilitate the decision-making process [29]. The application of novel cell culture
models will provide an additional data source to address questions in drug development. It
emerges as a new challenge to integrate this information and address the questions in drug
development for decision-making. Thus, the present review focuses on the application of
in silico models from in vitro to in vivo translation.

2. Cell Culture Models

Cell culture is a rapid and inexpensive method for investigating the disposition,
efficacy, and toxicity of drug candidates. Historically, immortalised cell phenotypes or
tumour-derived cell lines are cultured on a flat surface to form monolayers of cells, which
poorly mimic the complexity of tissues and lack physiological relevance to humans [30]. The
recent advances in both cell origins and culture technologies have significantly improved
the biological relevance of cell culture models for drug development (Figure 2).



Pharmaceutics 2021, 13, 704 3 of 22Pharmaceutics 2021, 13, x FOR PEER REVIEW 3 of 23 
 

 

 
Figure 2. The current various in vitro tools. (a) 2D cell culture. (b) 3D cell culture. (c) hiPSC culture pro-
cess. Somatic cells are extracted from healthy people or patients and converted into hiPSC through re-
programming. The obtained cells can be differentiated into other cells, such as cardiomyocytes, neurons 
cells, and endothelial cells. (d) Organoid culture process. Organoids can be cultured from human-de-
rived single cell, homogeneous multicellular ensemble, and heterogeneous coculture of different cell 
types through self-organization. (e) Microphysiological systems: (1) controllable and programmable 
microfluidic cell culture system; (2) structure of organ-on-chips; and (3) integration of or-gan-on-chips, 
body-on-chips. hiPSC: human-induced pluripotent stem cell. 

Figure 2. The current various in vitro tools. (a) 2D cell culture. (b) 3D cell culture. (c) hiPSC culture
process. Somatic cells are extracted from healthy people or patients and converted into hiPSC through
reprogramming. The obtained cells can be differentiated into other cells, such as cardiomyocytes,
neurons cells, and endothelial cells. (d) Organoid culture process. Organoids can be cultured from
human-derived single cell, homogeneous multicellular ensemble, and heterogeneous coculture of
different cell types through self-organization. (e) Microphysiological systems: (1) controllable and
programmable microfluidic cell culture system; (2) structure of organ-on-chips; and (3) integration of
or-gan-on-chips, body-on-chips. hiPSC: human-induced pluripotent stem cell.



Pharmaceutics 2021, 13, 704 4 of 22

2.1. Cell Origins
2.1.1. Primary Cells

Primary cells are harvested or isolated directly from living tissues and usually retain
the unique characteristics of the tissue or organ [31]. For example, primary cardiomyocytes
preserve contractile function, while primary hepatocytes preserve the metabolic func-
tion [32,33]. Primary cells are the most desirable cell tools regarding functionality in drug
discovery and development. However, as terminally differentiated cells, their applications
are infrequent because of their short lifespan, limited availability, and interdonor variability.
For example, the primary cardiomyocytes maintain their beating ability just after they are
isolated, and the contractile function will gradually be lost even in an optimum culture
environment [34]. For the primary cells with proliferative capacity, they will undergo
rapid phenotypic changes. Primary hepatocytes have a strong metabolic capacity in the
first generation, but the enzyme content in the cells will decrease or lose after four to five
generations [35].

2.1.2. Immortal Cells

Immortal cells are substitute for primary cells. They lose the cell cycle checkpoint path-
ways and divide indefinitely. They are generated by introducing telomerase or telomerase
reverse transcriptase, mutation of cell cycle checkpoints, and transformation of oncogenes
and oncoproteins [36]. With the advantages of quick and infinite division and a relatively
homogeneous phenotype, immortalised cells provide an inexpensive and stable platform
for drug discovery and development. However, the response of immortalised cells to drug
candidates might differ significantly from in vivo conditions because of the abnormal gene
expression and unreserved functions of tissue or organ. The predictability and in vivo
relevance of immortalised cell lines have been greatly doubted [37].

2.1.3. Transfected Cells

Transfected cells are cells with foreign nucleic acids stably or transiently introduced
with biological, chemical, or physical approaches to modify the gene expression [38]. The
integrated gene can be passed on to offspring in stable transfection, while it cannot be
inherited in transient transfection. Virus-mediated biological transfection is currently
the most popular approach for transfection with high efficiency and stability. Based
on the principle of ‘opposites charges attract’, positively charged nucleic acid/chemical
complexes would be attracted to the cell membrane and then deliver the foreign nucleic
acids to the cell nucleus in the chemical transfection method. Diverse types of physical
transfection methods have been proposed, including micro injection, electroporation, laser-
based transfection, and biolistic particle delivery.

In preclinical studies, transfected cell lines expressing specific enzymes, targets, or
transporters have been established to determine the interactions between drug candidates
and cells. For instance, Madin–Darby canine kidney epithelial cells (MDCK) transfected
with the human multidrug resistance (MDR1) gene are recommended to evaluate whether a
new drug candidate is a substrate or inhibitor of the transporter P-glycoprotein (P-gp) [39].
Human embryonic kidney cells (HEK293) transfected with human tau441 and mouse
neuroblastoma (N2a) cells expressing amyloid precursor protein were implemented to
reveal CDT2-controlled cell cycle re-entry in Alzheimer’s disease (AD) [40]. This transfected
cell line was developed to screen novel therapeutics for AD.

2.1.4. Induced Pluripotent Stem Cells

In 2006, induced pluripotent stem cells (iPSCs) were successfully constructed by
modifying mouse embryos and adult fibroblasts [23]. One year later, they reprogrammed
human somatic cells into a pluripotent state [41]. iPSCs are originated from somatic cells
and can proliferate and differentiate in vitro. Presently, the successfully differentiated
cell lines include endothelial cells, cardiomyocytes, hepatocytes, neuron cells, and mes-
enchymal cells [42]. Compared to the previously mentioned cell lines, iPSCs have the
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advantages of humanisation and unlimited division, offering unique opportunities for
drug discovery and development, such as disease modelling, drug candidate screening,
drug disposition investigation, efficacy, and toxicity evaluation. Nonetheless, the complex
reprogramming and differentiating processes remain major challenges for applying iPSCs
in drug development.

With the properties of humanisation and reserved tissue function, iPSCs emerged as
potent platforms to screen drug candidates or predict their toxicity. As a rare disease, drug
screening for skeletal dysplasias is hindered by the lack of disease model. Yamashita et al.
developed degraded cartilage by chondrogenic differentiation of iPSCs generated from pa-
tients with thanatophoric dysplasia or achondroplasia. With this disease cell model, stains
were identified as drug candidates for skeletal dysplasia therapies. With human-induced
pluripotent stem cell-cardiomyocytes (hiPSC-CMs) derived from healthy people or pa-
tients, Arun et al. proposed the heart safety index to evaluate drug-induced cardiotoxicity
with tyrosine kinase inhibitor (TKI) approved by the US Food and Drug Administration
(FDA) [43]. In their study, changes in cardiomyocyte viability, contractility, electrophysiol-
ogy, calcium processing, and signal transmission were determined after drug exposure,
and the results were utilised to calculate the heart safety index. Their results suggested that
compounds with ‘heart safety index’ ≤0.1 might possess serious cardiotoxicity. Despite the
correct prediction of cardiotoxic drugs, such as vemurafenib and sorafenib, a false positive
was also observed. Although the calculated cardiac safety index of imatinib was close to
0.1, no cardiotoxicity was observed in their clinical application. These studies suggest that
with the improvement of this technology, hiPSCs could be a potential platform to screen
the drug or predict drug-related toxicity for specific tissues or organs.

2.2. Cell Origins
2.2.1. 2D Culture

In a 2D cell culture system, cells grow on a flat surface, such as a glass or polystyrene
Petri dish. These surfaces provide mechanical support for the cells, and the culture medium
supplies the necessary nutrients and growth factors for cell proliferation. The formed 2D
monolayer cells can be directly exposed to compounds in culture medium to assay their
disposition, efficacy, and/or toxicity on specific cell lines in drug development. Despite
the advantages of convenience, reproducibility, and high throughput, a major drawback
of a conventional 2D cell culture system is the poor mimic of in vivo conditions because
of the differences in cell morphology and expression and the absence of cell–cell and
cell–extracellular matrix interactions.

2.2.2. 3D Culture

To bridge the knowledge gap between the cell culture model and real-life in vivo
scenarios, a 3D cell culture system has been developed. In this system, cells grow into
3D aggregates or spheroids, which can mimic the cell–cell and cell–extracellular matrix
(ECM) interactions and the oxygen and nutrient gradients [44]. Several 3D cell culturing
techniques have been developed, such as forced-floating, hanging drop, agitation-based
approaches, scaffolds, and matrices [45]. In the forced-floating method, cells are cultured
in vessels coated with poly-hydroxyethyl methacrylate (HEMA) or agarose suspensions
to promote the formation of a multicellular sphere. In the hanging drop method, the tray
with seeded cells is inverted to formulate the hanging drops of the cell suspension under
surface tension. In agitation-based approaches, multicellular spheroids are generated by a
motional cell suspension with external force under suspension stirring or container rotating.
In the scaffold and matrix methods, extracellular supports are provided to support the
formation of 3D spheroids.

Compared to 2D culture, the 3D cell culture system shows a higher relevance on
physiopathology and drug response to the in vivo scenario. The overexpressed human
epidermal growth factor receptor 2 (HER2) is a major target of breast tumours. SKBR3
cells with overexpressed HER2 were cultured in either 2D or 3D cell culture systems. The
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HER2 and HER3 heterodimers were formed in a 2D culture, while HER2 homodimers
were formed in a 3D culture of SKBR3 cells, resulting in different signalling pathway
activation and inconsistent response to trastuzumab, an HER2-targeted antibody. The
authors suggested that the 3D culture is more representative of the related signalling
pathway in vivo [46].

The in vivo drug gradients in tumour tissues can also be mimicked by a 3D cell
culture system. In 2D monolayer cells, the drug is accessible to all cells. With the multiple
layers of cells in a 3D culture, a limited drug can be delivered to the core of the spheroids,
thereby leading to a reduced therapeutic effect. In Tung et al.’s study, 3D cell spheroids
and conventional 2D cell monolayers were compared using high-throughput screening
instruments [47]. In that study, 5-fluorouracil, a conventional cytotoxic drug, showed a
higher antiproliferative effect on a 2D culture compared to a 3D culture. In another two
examples, tumour cells grown in a 3D culture system represented a higher resistance to
cytotoxic agents, probably because of the lower drug accessibility to tumour cells in the
core of the spheroids [48,49].

2.2.3. Organoids

Organoids are referred to as 3D cellular clusters that contain multiple cell types and
are capable of self-renewal and self-organisation. Cells in organoids are derived from
primary tissue, embryonic stem cells, or induced pluripotent stem cells. A major advantage
of organoids is the similarity in organ architecture and functionality between organoids and
the original tissue, which has been properly validated by image and animation approaches.
Until now, multiple important organs have been mimicked by organoid technology, in-
cluding the lung, stomach, intestine, liver, kidney, pancreas, prostate, and brain. Organoid
biobanks for human cancers, including liver, breast, gastro-intestinal, and bladder cancer,
have also been developed [50].

As physiologically relevant culture systems, these organoids provide faithful ex vivo
models for drug development in a physiologically relevant context. Healthy organoids
originating from humans are valuable tools for investigating the PK and toxicity of drug
candidates, while disease organoids could be utilised in PD studies. Pharmacokinetically
functional intestinal organoids derived from hiPSC have been established to investigate
drug absorption in small intestine [51]. Drug disposition-related transporters and metabolic
enzymes were successfully expressed in this intestinal organoid, providing a human-
relevant tool for PK studies. To screen for hepatotoxic compounds, human liver organoids
with bile canaliculi-like architectures were developed using hiPSC [52]. The generated liver
organoids were considered a potential assay platform for liver toxicity screening due to
their high sensitivity and specificity in predicting the hepatotoxicity of marketed drugs.
Organoids derived from colorectal and gastroesophageal cancer patients have been used
as preclinical models to predict the clinical responses [53]. The phenotypic and genotypic
profiling of these organoids are highly like the original tumours and also the drug response,
suggesting the potential values of organoids in the drug candidate screening.

2.2.4. Microphysiological Systems

Organ-on-chips, also known as tissue chips or microphysiological systems (MPS), are
microfluidic cell culture devices that recapitulate the functional properties of tissues and
organs [54]. The first organ-on-chips were reported by Donald Ingber et al. in 2010 [25].
This lung-on-chips comprised two microchannels separated by a thin, flexible, and porous
membrane, which was made from polydimethylsiloxane (PDMS). The flexible membrane
was completely covered with ECM, and two types of human-derived lung cells were
cultured on the opposite side to simulate alveolar-capillary. The presence of air in the
epithelial compartment resulted in the creation of an air–liquid interface to mimic the
alveolar. By now, diverse organs-on-chips have been developed to model organs, such
as the skin, intestine, liver, kidney, and lung [55–59]. By linking chips mimicked different
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organs, multiorgan systems have also been established to investigate organ interactions,
which provide significant benefits in modelling organ-organ interactions [60].

As innovative devices, there are at least three distinct advantages of organs-on-chips.
First, dynamic culture by introducing microfluidic cell culture technology can mimic
biomechanical forces in vivo, such as shear stress for blood vessels and stretch forces
for lung tissues. Furthermore, the continuous perfusion can also persistently provide
nutrients and remove cell metabolites and detritus, which might affect cell growth and
differentiation. Second, multiple cell types representing the same or different organs
are integrated into chips to mimic a specific organ or the system with multiple organs,
providing a new culture system to replicate the organ–organ interactions [61]. Third, the
3D nature and arrangements of the tissues are generated on the platforms, which might
promote reproductivity compared to organoids with stochastic self-organised tissue [62].
Nonetheless, significant challenges remain in the development and utilisation of organ-on-
chips. Given system complexity, the essentially required components and aspects for the
functions of specific organs or tissues should first be identified and then constructed by
considering the functional interplay of these components [63,64]. For a multiorgan system,
organs related to disease development or drug response should be carefully considered
and then integrated. In addition, the culture medium, the cell source and scaffold, and the
platform are required to optimise, as the integrated cell types for organ-on-chips require
diverse culture conditions.

Regardless of the challenges and complexity, organs-on-chips have emerged as a
promising alternative to animal models to address questions in drug development. Tradi-
tionally, toxicity assessments involve single-cell type culture, and organoids have advanced
it to single tissue or organ culture. In organs-on-chips, multiple organs are integrated
to promote the predictability of the physiological relevance of toxicity. For instance, the
efficacy and/or toxicity generated by the metabolites of xenobiotics cannot be identified
in the absence of metabolic processes. In Chang et al.’s study, microfluidically linked
liver-on-a-chip and kidney-on-a-chip were developed to investigate the nephrotoxins
and carcinogens of aristolochic acids [65]. In this multiorgan system, the integration of
liver-on-a-chip generated human hepatocyte-specific metabolism of aristolochic acid-I,
and the kidney-on-a-chip exhibited the cytotoxicity of this metabolite on human kidney
proximal tubular epithelial cells, providing a platform to investigate the drug-induced
toxicity related to organ–organ interactions.

PK is determined by the dynamic interactions between blood and drug disposition-
related organs, such as the intestine, liver, and kidney. Compared to conventional static
mono-cell type culture, organs-on-chips not only provide a dynamic culture system to
mimic the blood–organ interactions but also the organ–organ interactions in multiorgan
system. Edington et al. established an in vitro PK investigation platform with seven organs
to mimic the in vivo disposition of diclofenac, where chips for the liver, gut, lung, heart,
pancreas, brain, and endometrium were included and perfused with physiologically related
flow rate [66]. The developed multiorgan system could reliably and robustly operate and
maintain phenotypic function for three weeks, providing a potential platform for in vitro
PK studies.

With human-derived cells to accurately recapitulate their physiopathological proper-
ties, organ-on-chips can also be used to evaluate the efficacy of therapeutic agents. Drug
efficacy is conventionally assayed under static concentrations in cell culture. Drug exposure
magnitude (concentration) and duration (time) are two critical properties associated with
drug efficacy. With a dynamic culture system, organ-on-chip technology could mimic
the in vivo-like drug concentration, providing a more physiologically relevant platform
to determine the efficacy and optimise the therapeutic schedules. In the tumour-on-chip
established by Komen et al., a cell culture chamber and a drug-dosing channel are separated
by a transparent membrane [67]. Dynamic drug concentration profiles were modelled by
controlling the drug concentration in the drug-dosing channel. Compared to static concen-
tration culture, dynamic exposure showed suboptimal efficacy in assaying the antitumour
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efficacy of oxaliplatin on HCT116 colorectal cancer cells. With in vivo-like drug exposure,
organ-on-chip technology could improve the efficacy prediction of in vitro models, facili-
tating drug candidate screening and development. In addition, the obstacle of the efficacy
test of prodrugs by traditional cell culture could also be disrupted using multiorgan chips.
For instance, liver-on-chip and tumour-on-chip are integrated to determine the antitumour
effect of capecitabine and tegafur, two prodrugs [68].

3. Model Informed In Vitro to In Vivo Translation

Despite the innovative and physiological relevance of cell culture models, accurate
translation of efficacy and safety from in vitro to in vivo remains a major challenge in drug
development (Figure 3). The basic principles of PK, pharmacology, and physiology have
long been utilised as the foundation of interspecies translation, and several in silico tools
have been established in drug development practice [26]. With an identical clinical PK/PD
relationship, these in silico tools can also be promising approaches for in vitro to in vivo
translation (Table 1).
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Figure 3. The progress of in vitro to in vivo translation. It is a bottom-up research method. Through
high-quality in vitro experimental data and mathematical models, more accurate predictions of
in vivo outcome can be obtained. PBPK: physiologically based pharmacokinetic model; PK/PD:
pharmacokinetic/pharmacodynamic model; QSP: quantitative systems pharmacology model; MPS:
microphysiological system; hiPSC: human-induced pluripotent stem cell.

3.1. Conventional PK/PD Model

PK encompasses the time course of drug concentrations in relevant biological fluids
and the effect of intrinsic and extrinsic factors on drug concentrations [69]. PD refers to the
relationship between drug exposure and pharmacological or toxicological responses [70].
PK/PD models are mathematical models that quantify the relationship among dose, expo-
sure, and response, providing an alternative to the traditional “dose–response” analysis
of drug response [71]. Drug exposure, drug concentration-effect relationship, and phys-
iological turnover and homeostasis are the three essential components in developing
PK/PD model.
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In most PK/PD models, plasma drug concentrations, either total or free form, are
utilised as the driver of pharmacological and most toxicological effects because of the
conveniently blood sampling [72]. Alternatively, tissue concentrations are occasionally
accessible and are used to drive the response in PK/PD models [73]. To quantify the
drug concentration, compartmental models are usually applied, mostly in plasma and
occasionally in hypothetical effective compartments, if a significant delay in response was
observed [74]. Drug disposition information from cell culture studies cannot be trans-
lated to predict clinical PK, and simple interspecies allometric scaling is more commonly
used [75,76]. The mechanism-based PBPK model is a promising approach for the in vitro
to in vivo translation of PK, which will be introduced later.

PD models, such as the sigmoidal Emax model, are usually used to establish the
concentration-efficacy relationship [77,78]. Capacity of efficacy and potency are PD param-
eters that link the drug concentration and effect. In the translation of drug efficacy from
in vitro to in vivo, inconsistent potency acts as the major obstacle. In most cell culture stud-
ies, the target cells are directly exposed to the drug, and the established potency represents
the relationship between concentration in cell level and effect. Additionally, the in vivo
PD model usually describes the plasma/tissue drug exposure-effect relationship. With the
complex drug disposition processes, the cell level’s drug exposure usually differs from
plasma/tissue drug exposure, inducing inconsistent potency between in vitro and in vivo
conditions [16]. For instance, the tumour static concentration is 27-fold higher in vivo than
in vitro studies, according to the in vitro to in vivo correlation analysis of 19 antibody drug
conjugates [79]. In this perspective, the cell culture–derived PD model is impossibly directly
translated to predict in vivo efficacy. However, considering that the drug distribution is
mainly by diffusion, the cell level’s drug exposure is always proportional to plasma/tissue
drug exposure and thus the potency. With this consideration, PD models derived from
cell culture studies have been directly translated into clinical for proof-of-concept study or
indirectly translated to predict clinical efficacy using prior information, such as the clinical
efficacy of its same-in-class drugs.

In our previous studies, direct in vitro to in vivo translation was conducted to address
the question of the dosing schedules of chemotherapeutical agents [80]. In clinical practice,
the conventional maximum tolerated doses have recently been challenged by the schedule
of low doses and high dosing frequency. To address this issue, literature that reported cell
culture studies on the antitumour effect of paclitaxel was collected and utilised to develop
an in vitro PD model to understand the drug exposure–efficacy relationship. Maximal
killing rate (Kmax), drug concentrations yielding 50% of Kmax (KC50), and hill index (γ) were
estimated to quantitatively describe the antitumour effect of paclitaxel. The time course
of plasma paclitaxel was simulated with a literature-reported PK model and the related
model parameters in clinic. In this proof-of-concept study, an approximately rather than
exactly clinical response is required to compare the efficacy of paclitaxel under different
dosing schedules. The generated PD parameters were then directly integrated into the
PK model with an empirical proportion to simulate dosing schedule-dependent efficacy.
Kmax_in vivo was set to a fifth of in vitro value considering tumour growth rate in vivo was
comparatively lower than that in vitro system. KC50 and γ were integrated directly. This
PK/PD model based on simulation suggested consistent results in clinical practice that low
doses and high dosing frequency is prior to maximum tolerated doses.



Pharmaceutics 2021, 13, 704 10 of 22

Table 1. In Vitro to In Vivo translational model.

In Silico In Vitro Assay
Examples of In Vitro to In Vivo Translation

Technologies Used in Examples Parameter In Vitro to In Vivo Translation Result Application in Drug Development

PBPK

Absorption Caco-2 [81], MDCK [82], gut MPS [83] MDCK-MDR1 and Caco-2 [84]
Obtaining half maximal inhibitory
concentration (IC50) for P-gp and

integrating it to models

Demonstrating non-interaction
between Axitinib and P-gp substrate

Prediction of drug-drug interaction
and exemption of related clinical trials

Distribution MDCK [85], hiPSC- brain endothelial
cells [86], co-culture [87] MDCK II [88]

Using apparent permeability coefficient
(Papp) to obtain in vitro efflux

transporter-mediated clearance and scaling
it to the whole-brain in vivo efflux

transporter-mediated clearance

Exploring the penetration of AZD1775
across BBB

Prediction of drug distribution and
target concentration

Metabolism

Recombinant enzymes [89],
microsomes [90], primary hepatocytes [91],

HepG2 [92], HepaRG [93], hESC or
hiPSC-hepatocytes [94], liver MPS [95]

Primary hepatocytes [96] Inputting the intrinsic clearance (CLint) to
Simcyp software to establish PBPK model

Predicting the difference of AUC in
patients with different liver damage
after a single oral administration of

sirolimus

Prediction of drug metabolism and
inter-population extrapolations

Excretion
MDCK, CHO, HEK-293, HeLa [97],

primary cultured renal tubule cells [98],
renal MPS [99]

renal MPS [99] Scaling renal clearance (CLR) based on
surface area

Predicting human renal excretion for
cisplatin and nicotine Prediction of excretion

PBPK Integrate ADME MPS [99] MPS [99]

Scaling intestinal permeability (Papp)
based on absorptive surface, liver clearance

(CLint, in vivo) based on the number of
hepatocytes, renal clearance (CLR) based

on surface area

Reproducing the clinical PK profiles
for both nicotine and cisplatin at

different doses and different routes of
administration

Simulation of clinical PK profiles

PK/PD
Disease-related cell [100], 2D [80,101],
3D [102], MPS [103], organoids [104]

Six human epithelial cancer cell
lines [100]

Directly combining maximal killing rate
(Kmax), drug concentrations yielding 50%

of Kmax (KC50) and hill index (γ) into
in vivo model

Demonstrating that low doses and
high dosing frequency for paclitaxel is

prior to maximum tolerated doses
Dose and schedule selection

L540cy cells, Karpas cells [99]
Integrating association and dissociation

rate constants (Kon and Koff) to describe the
interaction between ADC and target

Predicting therapy in clinical trials
employing different dosing regimens Clinical response prediction

primary liver cells, red blood cells
and brain homogenates [101]

Based on the total enzyme content, scaling
metabolic capacity (Vmax) and clearance

(CLint); Correcting bimolecular inhibition
constant (Ki) considering different states of

targets in vitro and in vivo

Evaluating the biotoxicity of carbaryl
and other carbamates with an

anticholinesterase mode of action
Toxicity prediction

MPS [105]

Based on the number of nephrons in
human kidney, scaling maximal injury rate

(Emax) and drug concentrations yielding
50% of Emax (EC50) into in vivo model

Assessing renal proximal tubule injury
caused by three nephrotoxic drugs Toxicity prediction
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Table 1. Cont.

In Silico In Vitro Assay
Examples of In Vitro to In Vivo Translation

Technologies Used in Examples Parameter In Vitro to In Vivo Translation Result Application in Drug Development

QSP (QST)
Disease-related cell [106], 2D [106,107],
3D [107], MPS [108], organoids [109]

Primary hepatocytes [106]

Applying directly the IC50 values for the
bile acid transporters to DILIsym, fitting

the mitochondrial toxicity parameters
(Vmax, Km) in MITOsym, and converting

them to DILIsym

Explaining the liver toxicity
mechanism of PF-04895162 and

expound the differences of species
Characterization of target mechanism

JIMT-1 cells in 2D or 3D and
dynamic cell Culture [107]

Integrating drug inhibition or stimulation
coefficient (S1p, S2p, Kp etc.) to describe
signal pathway molecules perturbation

Optimizing the sequence and
inter-dose interval of the three agents
(paclitaxel, dasatinib, and everolimus)

in the combination

Design of drug administration
protocol and evaluation of

drug combination

effector T cells (Teffs), EL4 and
E.G7-OVA thymoma

cells [110–112]

Integrating rate constants defining the
half-life of engagement or dissociation

between cancer cells and effector T cells
(CancerTEng, CancerTInt) directly into the

QSP model; scaling number of CD28
receptors expressed on each T cell during
priming (CD28_receptors-per-Tcell) by the

number of T cell in vivo

Predicting the checkpoint inhibitors’
therapies administered as mono-,
combo- and sequential therapies

Clinical response prediction

Abbreviations: Caco-2: human colon adenocarcinoma cells; MDCK: Madin–Darby canine kidney epithelial cells; MPS: microphysiological systems; hiPSC: human-induced pluripotent stem cell; PBPK: physiolog-
ically based pharmacokinetic model; PK/PD: pharmacokinetic/pharmacodynamic model; QSP: quantitative systems pharmacology model; QST: quantitative systems toxicology model; hESG: human embryonic
stem cell lines; CHO: Chinese hamster ovary cells; HEK-293: human embryonic kidney cells.
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Although plasma drug concentrations are always used as the drivers to predict the
efficacy, the active drug concentrations at target, especially intracellular target, might be
significantly different from plasma [113]. To address this question, Dhaval K Shah et al.
utilized in vitro study to clarify the disposition of brentuximab-vedotin in cell level and
then developed a cellular PK/PD model to quantify the active drug exposure in L540cy cells
and Karpas cells. The generated model parameters, such as association and dissociation
rate constants (Kon, Koff) between brentuximab-vedotin and CD30, and internalization rate
(Kint) of CD30, were then directly applied to inform the target drug exposure in vivo by
integrating the systemic disposition of brentuximab-vedotin. Finally, this PK model was
integrated into a PK/PD model to investigate the antitumor effect of brentuximab-vedotin
in both tumour-bearing mice and patients [100].

Considering the possibility of inconsistent target formations between in vitro and
in vivo, translation of PD parameters should be conducted. For instance, acetylcholinesterase
(AChE) in the brain and red blood cells usually exists in the form of multimers while it
presents as monomer in vitro. The different forms lead to changes of the inhibition constant
(Ki). In Harvey Clewell et al.’s PK/PD model, they translated the in vitro Ki of carbaryl on
AChE to in vivo by dividing the fold of monomers in the multimers. For instance, KiBrain is
a quarter of Kiin vitro because AChE exist in form of tetramer in brain [101].

In clinical practice, drug efficacy is usually evaluated using biomarkers, such as
biologically derived indicators. However, the change in biomarkers is determined by both
drug effects and pathophysiological processes. In the cell culture system, the growth and
metabolism requirements of cells could be completely satisfied by sufficient nutrition in the
medium, which differs from the in vivo condition [114]. For instance, the doubling time is
around tens of hours for tumour cell culture, and it ranges from tens to thousands of days
in clinical practice [115]. Thus, physiological turnover and homeostasis are also critical
components in in vitro to in vivo translation. With the empirical approach to describing
the physiological turnover and homeostasis in a conventional PK/PD model, in vitro to
in vivo translation of these components is usually incorrect [116]. The development of a
quantitative systems pharmacology model (QSP) has emerged as a promising approach to
solve this problem, which will be introduced later [117].

3.2. PBPK Model

As a promising approach for PK simulation, the PBPK model contains arrays of
equations with both physiological and drug-related parameters to quantify the absorp-
tion, distribution, metabolism, and excretion processes of drug [118]. The physiological
parameters, such as the rate of organ blood flows, organ volumes, and rate of lymphatic
perfusion, have been well established [119,120]. The drug specific parameters, such as
barrier permeability and liver intrinsic clearance, required estimation, and relying on high-
quality in vitro and in vivo studies, where cell culture techniques are also included. For
instance, human colon adenocarcinoma cells (Caco-2) are usually cultured in transwells
to determine intestinal absorption rate [121]. Primary hepatocytes are applied to identify
the involved metabolic enzymes and quantify the metabolic rate [122]. A major advantage
of the PBPK model is that it integrates drug-specific parameters to predict drug PK. C
Emoto et al. obtained the intrinsic clearance (CLint) of sirolimus under different CYP450
enzymes by recombinant enzyme incubation experiments. The results were delivered in
PBPK model to predict and fit the PK curve of sirolimus. The PBPK model successfully
predicted the difference of AUCs in patients with different types of liver damage after a
single oral administration [96]. In the study of Nader Sanal et al., a PBPK model based on
in vitro experiments was established to predict human brain concentration of AZD1775, a
Wee1 tyrosine kinase inhibitor [88]. MDCKII cell monolayers were used to mimic the tight
structure of the blood–brain barrier (BBB) and determine the apparent transcellular passive
permeability. The active efflux and uptake clearance were estimated based on the results of
in vitro interaction experiments, where transfected MDCKII cells and human embryonic
kidney (HEK239) cells were implemented. These parameters were integrated into the PBPK
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model after sensitivity analysis to simulate the PK curve. The prediction of this model has
good consistency with the results of a phase 0 clinical trial, where 20 patients took different
doses orally before the tumour resection [123]. In this study, in vitro-derived parameters
were provided the start point of sensitive analysis and the results suggested a moderate
difference (<3-fold) between in vitro and in vivo. With coculture of multiple cell lines to
mimic the multilayer structure of BBB, the prediction of active efflux and uptake clearance
would be further improved. For instance, Joel W. Blanchard et al. established a 3D cell
model consisting of three human-derived cells to mimic the multilayer structure of BBB,
which might provide more precise prediction of parameters related to BBB transport [124].

With successful in vitro to in vivo translation, the PBPK model has been routinely ap-
plied in drug development, including drug–drug interactions (DDIs), clinical PK prediction
by interspecies scaling, subpopulation PK prediction by interpopulation scaling, and safety
and/or efficacy prediction by target drug exposure prediction [125–130]. The occurrence of
DDIs seriously affects patient’s safety, thus quantitatively and effectively assessing DDIs is
very important [125]. The PBPK model can focus on the main aspects where interactions
occur, such as cytochrome P450 (CYP450) enzymes and transporters. According to the cur-
rent FDA and European Medicines Agency (EMA) guidance documents, the PBPK model
is becoming an alternative to clinical trials. Axitinib is an inhibitor of P-gp, which obtained
IC50 of 3 µM in an in vitro experiment. According to the volume of the gastrointestinal tract,
the concentration calculated empirically is 10 times more than the IC50, which indicates
the risk of potential interaction. However, according to Gastroplus’s ACAT model, drug
concentration was found to be 0.0008 µM in the gastrointestinal tract, which is far less
than IC50. This predicted result provides strong support for the non-interaction between
Axitinib and P-gp substrate and promotes the exemption of related clinical trials [84].

Despite an in silico tool, the development of the PBPK model still relies highly on
animal studies, as drug disposition in tissues are commonly unclear. The progression of
cell culture technologies, such as organoids and MPS, provides new insight into drug dis-
position in human tissues, which might make animal studies unnecessary with successful
in vitro to in vivo translation [131,132]. Herland et al. estimated an outstanding paradigm
in human PK prediction with the PBPK model and MPS [133]. They created a first-pass
model to mimic drug absorption, metabolism, and excretion with human organ-chips.
In this system, human organ chips of the gut, liver, and kidney with endothelium-lined
channels were linked to a microfluidic perfusion system with an arteriovenous reservoir.
The time course of drug concentrations in the apical and basal channels of organ chips was
determined to develop the PBPK model for nicotine. First, model parameters, like liver
intrinsic clearance (CLint) and renal clearance (CLR), were generated by fitting the deter-
mined data in individual organ-chip. To get insight into the complex disposition of nicotine
in the microfluidic system, the involved models for individual chips were then integrated
to validate and optimise the related parameters with experimental results. Finally, physio-
logical parameters in humans were integrated into the model to validate the developed
PBPK model by comparing the predicted PK parameters of nicotine, such as Cmax and
half-life, with the reported values. Such an approach performed superior predictability in
metabolism properties to conventional interspecies scaling, thereby suggesting its potential
to replace animal studies in preclinical PK studies.

Since efficacy and toxicity are driven by drug exposure at the target, the PBPK model
could be integrated with the PD model to predict the efficacy and toxicity of drug candi-
dates. In Singh et al.’s study, a PBPK/PD model was developed to facilitate the in vitro
to in vivo translation of the chimeric antigen receptor (CAR)-T cell response [134]. In cell
culture studies, T cells were cocultured with target cells to determine CAR-T cell expan-
sion with Imax

CAR-T_Growth, IC50
CAR-T_Growth, γCAR-T_Growth, CAR-T cell-induced target cell

depletion with KKill_max, KC50, and cytokine release with KCytokine and KC50
Cytokine [135].

A cell-level PD model was first developed to quantitatively describe these results with
CAR-T-target complexes as driver. For in vivo translation of these in vitro results, a PBPK
model was then developed to describe the PK and distribution of multiple types of CAR-T
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cells in xenograft mice, including untransducted CAR-T cells, anti-EGFR CAR-T cells,
and anti-CD19 CAR-T cells. After validation, the PBPK model was used to predict the
CAR-T-target complexes per tumour cell that acted as a linker between the PBPK and PD
models. The developed PBPK/PD model was then applied to sensitive analysis to identify
the pivotal factor in the antitumour therapy of CAR-T cells.

3.3. QSP Model

Cell cultures are pivotal approaches to investigate the biological mechanisms of disease
and assay drug–biology interactions [136]. The innovative cell culture technologies provide
a more human-relevant platform for drug discovery and development, improving the early
assessment of efficacy and toxicity. However, these in vitro data provide limited value
for decision making in drug development without successful in vivo translation [137].
The QSP model is an approach to quantitatively analyse dynamic drug–biological system
interactions from a systemic perspective to facilitate drug discovery and development [138].
One of the major advantages of the QSP model is the integration of diverse data sources
into a system model to address questions in translational pharmacology. With the QSP
model as a translational tool, more knowledge will be generated from these novel data
types to inform decision making in drug development.

DILIsym®, a successful example of QSP/quantitative systems toxicology (QST) appli-
cation in drug development, was developed to predict drug-induced liver injury [139,140].
It comprises multiple submodels involving the mechanisms of hepatotoxicity, including
bile acid transporter inhibition, mitochondrial function alteration, oxidative stress gener-
ation, and cholestatic injury to bile duct cells [141]. In DILIsym® development, in vitro
toxicity assays are extensively conducted to understand the essential biochemical pathways
and estimate the related physiological parameters. For instance, to establish MITOsym,
a submodel of DILIsym® for quantifying hepatocellular respiration and bioenergetics,
various mitochondrial inhibitors are cocultured with HepG2 cells to generate the model
parameters of biochemical processes in mitochondrial bioenergetic responses [142]. Fi-
nally, MITOsym was established by integrating all these processes and related parameters
with an array of mathematical equations. In practice, the combination of DILIsym® and
in vitro toxicity assays have successfully predicted the hepatocyte injury of PF-04895162
that happens solely in humans rather than in rats [106].

In the study by Tanaya R. Vaidya et al., cell culture and the QSP model were combined
for therapy optimisation in breast cancer with HER2-targeted therapy resistance [107].
Pathways related to the mechanism of HER2 therapy resistance were integrated using a
QSP model. Both a 2D cell culture and a 3D dynamic cell culture of JIMT-1 cells were
conducted to investigate the antitumour effect of individual and sequential combination
treatment of paclitaxel, dasatinib, and everolimus. Different drug inhibition or stimulation
coefficients (e.g., S1p, S2p, Kp etc.) were estimated to describe signal pathway molecules
perturbation. These changes in signal pathways finally inhibit the cell growth. A 3D cell
culture was conducted in a fluid flow system with drug concentrations varied over time.
Different dosing schedules of paclitaxel, dasatinib, and everolimus were tested in these
in vitro cell culture systems, with cellular viability and key signalling proteins as effective
markers. The QSP-PK/PD model was developed with the observed data and then used to
optimise the combined treatment schedule.

In the study of Oleg Milberg et al., a QSP model containing various immune checkpoint
receptors, such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed
death 1 (PD-1), and programmed death ligand 1 (PD-L1) was developed to assess the check-
point inhibitors’ therapies administered as mono-, combo-, and sequential therapies [110].
In vitro tools provided parameters to define cellular and molecular species interactions.
For instance, rate constants defining the half-life of engagement or dissociation between
cancer cells and effector T cells (CancerTEng, CancerTInt) were measured by two-photon
microscopy and image analysis [111]. The number of CD28 receptors expressed on each
T cell during priming (CD28_receptors-per-Tcell) was obtained by quantitative flow cy-
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tometry [112]. CancerTEng and CancerTInt were integrated directly into the QSP model
while CD28_receptors-per-Tcell need to be scaled by the number of T cell in vivo. This QSP
model was successfully used for combination immunotherapy specific to melanoma.

3.4. Virtual Clinical Trials

The combination of innovative cell culture technologies and in silico tools have
emerged as promising approaches to improve the prediction accuracy of clinical drug
effect. However, challenges remain in the successful in vitro to in vivo translation. In
clinical practice, the clinical endpoint rather than biomarker is routinely used to determine
efficacy and/or safety [143]. For instance, overall survival and objective response rates
are commonly used to evaluate the clinical benefit of antitumour treatment, while tumour
growth inhibition is determined in cell culture studies [144–146]. To predict the clinical
response, it is necessary to translate the graded response in preclinical studies into survival
response or frequent response. Additionally, inter-patient variability requires consideration
in clinical response prediction [147]. To address these challenges, virtual patients (VPs)
were generated to conduct virtual clinical trials [148,149]. VPs are typically defined by an
array of pathophysiological parameters, such as gender, age, weight, genotype, phenotype,
and biomarkers [150,151]. The values of these parameters can be either simulated with
a priori distributions of anthropometric parameters and a particular model or directly
resampled from an existing database. To simulate the inter-patient variation, the patho-
physiological parameters can be used as covariations of drug-specific parameters in the
estimated models, such as PK/PD, PBPK, and QSP models [152–154]. With VPs’ estimation,
virtual clinical trials can be conducted to predict the clinical response expressed by survival
response or frequent response.

In Murat Cirit et al.’s study, a translational PK/PD model based on the renal MPS was
established to evaluate drug-induced renal proximal tubule injury [105]. After mimicking
clinical drug exposure in the renal MPS, kidney-injury molecule 1 (KIM-1) was monitored
to assess the progression of injury. The maximal injury rate (Emax) and drug concentrations
yielding 50% of Emax (EC50) were estimated to quantitatively describe drug-induced injury.
Based on the number of nephrons in human kidney, these parameters were scaled into
in vivo PK/PD model. In virtual clinical trials, 100 virtual patients were simulated to
assess renal proximal tubule injury caused by three known nephrotoxic drugs (cisplatin,
rifampicin, and gentamicin).

In the Phase I clinical trial of pembrolizumab, a monoclonal antibody against PD-1,
multiple dosing regimens were identified as safe and effective. To estimate the optimal
dosing schedule, a translational PK/PD model was developed based on animal studies
and then translated to humans, where PK parameters, such as the slope of drug effect on
tumour kill rate (SLtg) and exponent of the power-function of the drug effect (gamma)
were derived from clinical PK studies and PD parameters were directly borrowed from
the PD model of the xenograft mice model [155]. In virtual clinical trials, a Monte Carlo
simulation was conducted with the uncertainty of both PK and PD model parameters and
the scaling of tumour growth/shrinkage. Each virtual individual has its own unique time
course of drug concentrations and tumour sizes. In clinical practice, tumour size change
from baseline was performed as a marker for patient categorisation, including progressive
disease, stable disease, intermediate, partial, and major responses. According to such a
categorisation, the objective response rate can be estimated to predict the clinical response
and dose–response relationship.

4. Conclusions

By far, in vitro trial is one of the most important part of preclinical phase. Many
examples have been published in which cell-based data have been incorporated into
mathematical modelling to accurately and successfully predict in vivo outcomes. However,
the current in vitro tools mainly focus on static 2D cultures rather than the novel tools
mentioned above. Additionally, these novel tools have not yet been extensively used due to
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some limitations, such as a high price and complexity. Commercial promotions may reduce
high costs. Obviously, to obtain efficacy or toxicity data more rapidly and accurately, the
demand for reliable and high-throughput in vitro platforms will continue to increase. It
will inspire researchers to make unremitting explorations.

Currently, drug development depends highly on the in silico model, such as pop-
ulation pharmacokinetic (PopPK), PBPK, PK/PD, and QSP/QST. Regarding drug–drug
interactions, PBPK is considered the most promising tool due to its concern for metabolic
enzymes and transporters. From preclinical phase to Phase III trials, the PK/PD model
maximises therapeutic effects while minimising side effects. Compared with the PK/PD
model, the QSP model can better explain the complex mechanisms and processes of disease.
However, the existing models need further optimisation and improvement to meet the
requirements of in vivo prediction, and the corresponding operation process and specifica-
tion will be developed. We consider that the QSP model, which integrates physiological
models and molecular mechanisms, can better reveal the internal response after admin-
istration. Furthermore, synergising the PBPK and QSP models can better demonstrate
drug–body interactions.

The in silico model has not only established a bridge between in vitro and in vivo but
has also provided an impressive promotion and optimisation for clinical trials. This method
enables the selection and optimisation of first-in-human (FIH) and dose regimens, including
prediction of human efficacious doses, which improve safety and reduce the attrition rate
of clinical trials. Additionally, it can retrospectively analyse the clinical application of the
marketed drugs, aiming for a more reasonable dosing regimen optimisation. Currently,
many researchers are focusing on in vitro to in vivo translation, for which various in vitro
technologies have been developed. Here, we introduced advanced cell culture approaches
and in silico models in translation. We hope our review will help reduce drug development
costs and improve the translated success rate in the clinical phase.
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