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Abstract: Since its emergence in March 2020, the SARS-CoV-2 global pandemic has produced more
than 116 million cases and 2.5 million deaths worldwide. Despite the enormous efforts carried out by
the scientific community, no effective treatments have been developed to date. We applied a novel
computational pipeline aimed to accelerate the process of identifying drug repurposing candidates
which allows us to compare three-dimensional protein structures. Its use in conjunction with two in
silico validation strategies (molecular docking and transcriptomic analyses) allowed us to identify
a set of potential drug repurposing candidates targeting three viral proteins (3CL viral protease,
NSP15 endoribonuclease, and NSP12 RNA-dependent RNA polymerase), which included rutin,
dexamethasone, and vemurafenib. This is the first time that a topological data analysis (TDA)-based
strategy has been used to compare a massive number of protein structures with the final objective of
performing drug repurposing to treat SARS-CoV-2 infection.

Keywords: COVID-19; drug repurposing; topological data analysis; persistent Betti function

1. Introduction

On 11 March 2020, the World Health Organization (WHO) declared the Coronavirus
Disease 2019 (COVID-19) outbreak, produced by the novel SARS-CoV-2 virus, a global
pandemic [1]. To date, three previously approved antiviral drugs and one antimalarial
medication (remdesevir, iopinavir, interferon-1, and hydroxychloroquine) have been tested
for efficacy against SARS-CoV-2 infection by the WHO SOLIDARITY consortium in a large
multicentric study. The results of the trial suggested that these treatments had little or no
effect in a set of clinical outcomes which included overall mortality, time to initiation of
mechanical ventilation, and duration of hospital stay [2].

With the third wave ongoing in many countries, herd immunity a distant prospect,
and new strains challenging the existing vaccines, it is still a pressing need to find adequate
treatments for the disease. De novo drug development and testing, including preclinical re-
search and clinical trials, is a slow process that could take more than 12 years [3,4]. However,
the current sanitary emergency makes it imperative to shorten this time frame. Therefore,
sustained efforts to identify potential candidates for drug repurposing are necessary.

Pharmaceutics 2021, 13, 488. https://doi.org/10.3390/pharmaceutics13040488 https://www.mdpi.com/journal/pharmaceutics

https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-9611-9123
https://orcid.org/0000-0002-9025-4877
https://orcid.org/0000-0002-9335-1920
https://orcid.org/0000-0001-6225-0935
https://orcid.org/0000-0002-8927-6614
https://doi.org/10.3390/pharmaceutics13040488
https://doi.org/10.3390/pharmaceutics13040488
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pharmaceutics13040488
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/1999-4923/13/4/488?type=check_update&version=1


Pharmaceutics 2021, 13, 488 2 of 18

In the context of COVID-19, Kumar and co-workers compiled sets of genes linked
to the disorder and studied their distribution in the human interactome [5]. They first
identified the interactome subnetworks’ hub genes in which the disease-related genes
were placed. Then, they queried the drug–gene interaction database to identify Food and
Drug Administration (FDA)-approved drugs that had the hub genes as their target (i.e.,
chloroquine, lenalidomide, pentoxifylline) [6,7]. Zhou and collaborators compiled a list of
human proteins that physically interact with four previous human coronaviruses (SARS-
CoV, MERS-CoV, HCoV-229E, and HCoV-NL63) and used network proximity measures to
prioritize 16 potential anti-human coronavirus repurposable drugs including melatonin,
mercaptopurine, and sirolimus [8]. Drug repurposing studies using virtual screening
procedures based on molecular docking have also been reported. To cite an example,
Kerestsu et al. used a protease inhibitors database (MEROSP) and the geometric structure
of the 3C-Like virus protease (3CLpro) to identify 15 potential inhibitors using the surflex-
Dock software [9].

Here, we present a general-purpose drug repositioning workflow and its application
to the specific case of COVID-19. Our procedure is based on recent developments in the
field of topological data analysis (TDA) and its use in the study of biological geometric
structures [10]. In particular, our method relies on the idea that drugs that are known to
target a specific protein would likely target other proteins that present high degrees of
topological similarities with the initial protein. Therefore, the accumulated knowledge of
drug–protein interactions available in public repositories such as DrugBank in combination
with the information about protein three-dimensional structures found in the Protein
Data Bank (PDB) can be used to predict new potential drug protein targets based on the
computation of protein–protein topological similarities. Figure 1 contains a brief summary
of the general methodology.
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Dock 4 to analyze the capacity of the drug to bind against viral proteins. Transcriptomics analysis was performed to test 
the capacity of the candidate drugs to revert the transcriptomics effect induced by the COVID-19. 
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Figure 1. Bioinformatic work-flow used. (A) Data preprocessing and acquisition (B) Topological
data analysis phase, Vietoris–Rips complexes at scale ε are computed to generate the barcodes. Each
ε-associated Betti number captures a unique topological feature of the protein. (C) To compare
barcodes of viral proteins against structures with known drugs, it is necessary to transform barcodes
into comparable curves using persistent Betti functions (PBFs). (D) Candidate drugs from proteins
with a mean persistent similarity score above 0.9 were validated by a dual in silico strategy. We
used AutoDock 4 to analyze the capacity of the drug to bind against viral proteins. Transcriptomics
analysis was performed to test the capacity of the candidate drugs to revert the transcriptomics effect
induced by the COVID-19.

2. Results
2.1. Drugs, Protein Targets, and PDB Structures Included in This Study

DrugBank queries yielded 1825 drugs approved by the American Food and Drug
Administration (FDA). The identified drugs had 1821 known unique protein targets, for
which 27,839 three-dimensional structures were available in the protein databank. The first
three persistent Betti functions (PBFs, see Section 4.2) were successfully calculated for 25,800
of the 27,839 structures, whereas computational limitations prevented us from estimating
the remaining 1622 structures’ PBFs. We also retrieved multiple protein structures from
SARS-CoV-2 that were available in PDB, including the Spike protein receptor binding
domain, the RNA-dependent RNA polymerase (NSP12), the endoribonuclease (NSP15),
the ADP ribose phosphatase (NSP3), the RNA binding protein (NSP9), the 3C-like protease,
and the NSP 8 and 7. In total, we calculated the PBFs of 23 viral protein structures. Table 1
shows the complete information regarding the included SARS-CoV-2 protein structures.

2.2. TDA Results, Viral Proteins Showing Mean Persistent Similarities above 0.9 with Structures
Targeted by Known FDA-Approved Drugs

We compared 23 PDB structures derived from SARS-CoV-2 with 25,800 structures
belonging to proteins that are known targets of FDA-approved drugs through the compu-
tation of 593,400 persistent similarity measures. We selected a stringent threshold of 0.9 for
the mean of the persistent similarity measures (see Section 4.2) in order to call two protein
structures similar. Three viral structures, the 3CL protease (6M2Q), the RNA-dependent
RNA polymerase (6M71), and the NSP15 endoribonuclease (6W01), presented a mean of
the persistent similarity measures with values higher than the selected threshold with
proteins known to be targeted by approved drugs. The 3CL protease was found to be
associated with 284 PDB structures (Supplementary Table S1), most of them classified as
Aldo/Keto reductases and protein kinases, which were targeted by 55 different pharma-
cological compounds (Supplementary Table S2). The RNA-dependent RNA polymerase
was found to be significantly associated with 361 PDB structures (Supplementary Table S3),
which in many cases belonged to the protein kinase and flavin-containing oxidoreductase
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families, and that were found to be targeted by 204 unique drugs (Supplementary Table S4).
Finally, the viral NSP15 endoribonuclease presented topological similarity values higher
than 0.9 with 13 PDB structures (Supplementary Table S5), where the most abundant group
was the poly(Adp-RIbose) Polymerase Catalytic Domain. These structures were targeted
by 45 drugs (Supplementary Table S6).

Table 1. Protein Data Bank (PDB) structures of SARS-CoV-2 proteins analyzed in the study. Entry ID (column 1) encodes
the PDB identifyers of the analyzed protein structures, Structure Title (column 2) provides the protein structure description,
Macromolecular Name (column 3) is the protein short name and Chain ID (column 4) are the studied chains.

Entry ID Structure Title Macromolecule Name Chain ID

6LVN 2019-nCoV HR2 Domain Spike protein S2 A, B, C, D

6YI3 The N-terminal RNA-binding domain of the SARS-CoV-2
nucleocapsid phosphoprotein Nucleoprotein A

6M3M SARS-CoV-2 nucleocapsid protein N-terminal RNA binding domain SARS-CoV-2 nucleocapsid protein A, B, C, D

6VYO RNA binding domain of nucleocapsid phosphoprotein from SARS
coronavirus 2 Nucleoprotein A, B, C, D

6WJI C-terminal Dimerization Domain of Nucleocapsid Phosphoprotein
from SARS-CoV-2 SARS-CoV-2 nucleocapsid protein A, B, C, D, E, F

6LXT Structure of post fusion core of 2019-nCoV S2 subunit Spike protein S2 A, B, C, D, E, F

6VSB Prefusion 2019-nCoV spike glycoprotein with a single
receptor-binding domain up SARS-CoV-2 spike glycoprotein A, B, C

6VYB SARS-CoV-2 spike ectodomain structure (open state) Spike glycoprotein A, B, C

6W41
Crystal structure of SARS-CoV-2 receptor binding domain in

complex with human antibody CR3022

CR3022 Fab heavy chain H

CR3022 Fab light chain L

Spike protein S1 C

6YLA
Crystal structure of the SARS-CoV-2 receptor binding domain in

complex with CR3022 Fab

Spike glycoprotein A, E

Heavy Chain B, H

Light chain C, L

6M0J Crystal structure of SARS-CoV-2 spike receptor-binding domain
bound with ACE2

Angiotensin converting enzyme 2 A

Spike receptor binding domain E

6M17 2019-nCoV RBD/ACE2-B0AT1 complex

Sodium-dependent neutral amino acid transporter
B(0)AT1 A, C

Angiotensin converting enzyme 2 B, D

SARS-coV-2 Receptor Binding Domain E, F

6M2Q SARS-CoV-2 3CL protease (3CL pro) apo structure (space group C21) SARS-CoV-2 3CL protease A

6W4B Crystal structure of Nsp9 RNA binding protein of SARS CoV-2 Non-structural protein 9 A, B

6W9Q Peptide-bound SARS-CoV-2 Nsp9 RNA replicase 3C-like proteinase peptide, Nonstructural protein 9
fusion A

6VXS Crystal Structure of ADP ribose phosphatase of NSP3 from SARS
CoV-2 Non-structural protein 3 A, B

6W9C Crystal structure of papain-like protease of SARS CoV-2 Papain-like proteinase A, B, C

6WCF Crystal Structure of ADP ribose phosphatase of NSP3 from
SARS-CoV-2 in complex with MES Non-structural protein 3 A

6WEN Crystal Structure of ADP ribose phosphatase of NSP3 from
SARS-CoV-2 in the apo form Non-structural protein 3 A

6WIQ Crystal structure of the co-factor complex of NSP7 and the
C-terminal domain of NSP8 from SARS CoV-2

SARS-CoV-2 NSP7 A

SARS-CoV-2 NSP8 B

6M71 SARS-Cov-2 RNA-dependent RNA polymerase in complex with
cofactors

SARS-Cov-2 NSP 12 A

SARS-Cov-2 NSP 8 C

SARS-Cov-2 NSP 7 B, D

6W01 1.9 A Crystal Structure of NSP15 Endoribonuclease from SARS
CoV-2 in the Complex with a Citrate Uridylate-specific endoribonuclease A, B

6VWW Crystal Structure of NSP15 Endoribonuclease from SARS CoV-2 Uridylate-specific endoribonuclease A, B

Drugs known to target proteins presenting a mean of the persistent similarity measures
larger than 0.9 with the SARS-CoV-2 structures were subjected to blind docking with
the viral proteins. Blind docking was carried out using the complete viral protein and
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drug structure information preprocessed as detailed in Section 4, which included polar
hydrogen addition. A set of potential repurposable candidates was then selected based
on the topological similarity criteria (a mean of the persistent similarity measures), the
correlations between the transcriptomic profiles observed in patients infected by SARS-
CoV-2 and those generated by treating cell lines with the candidate drugs, and the blind
docking analyses results. Therefore, the selected candidates are known to target proteins
with large topological similarities with a specific viral protein, present high affinities with
the viral structures, and have the capacity to partially revert the transcriptomic effects
induced by the viral infection. Figure 2 provides a schematic overview of the narrowing-
down process followed to identify the final 16 drug candidates. Furthermore, the full
description of the candidates can be consulted in Table 2.

We identified six repurposable candidates to target the 3CL viral protease (6M2Q).
Cholic acid, an amphipathic sterol, presented the strongest binding energies
(BE = −15.06 kcal/mol), and was found to negatively correlate with transcriptomic dataset
2 (DS2 r = −0.11). Rutin (BE = −14.52 kcal/mol, DS2 r = −0.184 DS3 r = −0.1), a flavonoid-
3-o-glycoside with known antioxidant and cytoprotective activity, was also selected [11,12].
Two non-steroidal anti-inflammatory drugs, indomethacin (BE = −13.31 kcal/mol, DS2
r = −0.12) and sulindac (BE = −13.14 kcal/mol, DS2 r = −0.12), were also identified.

Whereas indomethacin presents antipyretic and analgesic properties [13], sulindac is used
to treat conditions that involve chronic inflammation, such as arthritis [14]. Finally, sulfisox-
azole (BE = −11.59 kcal/mol DS2 r = −0.13), a sulfanilamide used as a broad-spectrum
antibiotic, and dasatinib (BE = −10.94 kcal/mol DS2 r = −0.15), a tyrosine kinase inhibitor
indicated for the treatment of chronic myeloid leukaemia [15], were also identified as drugs
with the potential of targeting the viral 3CL protease.

Five compounds were found to be candidates to target the SARS-CoV-2 NSP15 endoribonu-
clease (6W01), which included two corticosteroids, dexamethasone (BE =−11.42 kcal/mol, DS2
r = −0.15) and spironolactone (BE = −10.99 kcal/mol, DS1 r = −0.12 and DS2 r = −0.1),
which are indicated for the treatment of allergies and asthma and resistant hypertension, re-
spectively [14,16,17]; phenolphthalein (BE = −11.15 kcal/mol, DS1 r = −0.13), a compound
historically used as a laxative [18]; mifepristone (BE = −10.04 kcal/mol, DS1 r = −0.13,
DS2 r = −0.14), a synthetic steroid progesterone antagonist drug that is indicated for Cush-
ing’s syndrome and is also used as an emergency contraceptive pill [19,20]; and, finally,
carbamazepine (BE = −9.66 kcal/mol, DS2 r = −0.15), a pharmacologically active molecule
related to the group of tricyclic antidepressants, mainly used as anticonvulsant [14,21].

Lastly, the analysis of the NSP12 RNA-dependent RNA polymerase (6M71) yielded multi-
ple antineoplastic drugs as possible repurposing candidates: vemurafenib (BE = −8.09 kcal/mol
DS2 r =−0.16), a BRAF inhibitor [22,23]; sorafenib (BE =−7.34 kcal/mol DS1 r = −0.11, DS2
r = −0.15), a multitarget protein kinase inhibitor [24]; levonorgestrel (BE = −7,21 kcal/mol,
DS2 r = −0.14), a synthetic progestogen used as a first-line oral emergency contractive
pill [14]; the opioid antagonist naloxone (BE = −7.07 kcal/mol, DS2 r = −0.11); and ralox-
ifene (BE = −7.05 kcal/mol, DS1 r = −0.13 and DS2 r = −0.17), a selective estrogen receptor
modulator mainly used to treat osteoporosis in postmenopausal women and avoid bone
loss [25]. Supplementary File 2 shows the interacting residues between the three viral
proteins and the 16 drugs identified as potential repurposing candidates.

2.3. Transcriptomic Data Analysis Results

Differential gene expression analyses were carried out with the three identified
datasets including samples infected with SARS-CoV-2 and uninfected controls, and were
followed by Gene Set Enrichment Analysis (GSEA) and LINCS L1000 analysis. GSEA
analyses allow the identification of coordinated changes in the expression of genes belong-
ing to specific biological processes and pathways in case samples compared to controls.
GSEA results are reported using the Normalized Enrichment Score (NES) and the p-value
adjusted by multiple comparisons (p-adj). LINCS L1000 analyses aim to find drugs capable
of reverting the transcriptomic effects produced by SARS-CoV-2 infection. Differential
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gene expression analysis of DS1 yielded 451 deregulated genes (DEGs), of which 213 were
found to be upregulated and 238 were downregulated in SARS-CoV-2 infected samples
compared to controls. The top upregulated genes were derived from the virus open read-
ing frames. Gene Set Enrichment Analysis (GSEA) showed that pathways linked to the
immune response were heavily upregulated in SARSCoV-2-infected samples. Instances
of such pathways included immune response mediated by circulating immunoglobulin
(p-adj = 1.8 × 10−25), B-cell mediated immunity, (p-adj = 3.2 × 10−22), and adaptive im-
mune response (p-adj = 2.0 × 10−20). The FDA-approved drugs showing the strongest
negative correlation in LINCS L1000 analysis were niclosamide, bisacodyl, and perhexiline
(r = −0.21, −0.19, −0.18, respectively). GSEA analysis of the transcriptomic signatures
produced by these medications suggested that they induce significant gene expression
changes in pathways linked to interleukin signaling and NF-kB activation. Genes included
in the set of potential 105 therapeutics for SARS were also found to be upregulated in the
bisacodyl signature (NES = 1.61, p-adj = 2.19 × 10−2). The JAK-STAT complex and the
TCF-dependent signaling pathways were found to be downregulated in the perhexiline
and niclosamide signatures, respectively.
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A total of 8380 DEGs were identified in the DS2 analysis. A total of 4606 genes were
found to be upregulated, and 3774 were found to be downregulated in SARS CoV-2 infected
samples compared to uninfected controls. Upregulated genes were enriched in components
of the humoral immune response, epidermis development, keratinization, and B-cell-
mediated immunity (p-adj = 1.1× 10−20, 8.2× 10−20, 1.3× 10−18, 2.5× 10−10, respectively),
among others. The top negatively correlated drugs included instances of several different
compound families, such as anti-inflammatories (phenylbutazone, r = −0.21), antidiabetics
(troglitazone, r = −0.20), antimalarials (chloroquine, r = −0.20), and other compounds
such as nicotine (r = −0.17). Treatment with phenylbutazone was found to upregulate
the gene expression of genes included in the interleukin-12 and 17 signaling pathways.
In contrast, interleukin-4 and 13 signaling-related genes tended to be downregulated
by chloroquine treatment (NES = −1.45, p-adj = 4.30 × 10−2). Genes involved in the
viral mRNA translation and the ISG15 antiviral mechanism were also upregulated in the
gene expression profiles induced by treatment with chloroquine, phenylbutazone, and
troglitazone. In addition, the SARS-CoV infection pathway was found to be upregulated in
samples treated by chloroquine and troglitazone. ADORA2B-mediated anti-inflammatory
cytokine production-related genes were downregulated by the treatment of the three top
negatively correlated drugs.

DS3 presented the lowest yield in terms of differentially expressed genes. A total of
188 genes were found to be upregulated to controls, whereas 31 genes were found to be
downregulated in infected samples compared to controls. Twenty-nine biological processes
were found to be significantly upregulated and were mainly linked to mechanisms aimed to
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fight the viral infection and immune system-related processes including, defense response
to virus (p-adj = 7.2 × 10−13), myeloid leukocyte-mediated immunity (p-adj = 8.8 × 10−15),
regulation of cytokine production (p-adj = 1.5 × 10−8), and response to interferon-gamma
(p-adj = 1.9 × 10−8), among others. Chloroquine was found to be the top negatively
correlated drug (r = −0.11), followed by others such as pazopanib, spectinomycin, and
troglitazone (r = −0.11, −0.11, −0.10, respectively). The correlations observed in this
dataset tended to be weaker than those computed for DS1 and DS2. GSEA analyses of the
drug signatures showed that troglitazone increased the expression of genes classified as
potential therapeutics for SARS (NES = 1.46, p-adj = 4.65 × 10−2), in addition to antiviral
pathways such as the ISG15 and IFN-stimulated antiviral mechanisms. Spectinomycin
was found to reduce the expression of interferon-gamma signaling 135 and interleukin
2, 3, and 5 pathway-related genes, whereas pazopanib was found to upregulate viral-
related pathways such as viral mRNA translation influenza and SARS-CoV-2 infection.
Supplementary File 1 includes the complete differential gene expression and enrichment
analysis results for transcriptomic datasets 1, 2, and 3, whereas Supplementary File 2
contains the full LINCS L1000 analysis information.

Table 2. Drug repurposing candidates based on the topological, trascriptomic, and docking criteria. PC: Pearson correlation.
LE: Lowest energy conformation in the cluster. Candidates with a PC of <−0.1 may revert the transcriptomic effects of
SARS-CoV-2 infection. The maximum number of the AutoDock cluster is 150. Drug ID (colum 2) encodes the DrugBank ID
of the corresponding drug (column 1).

6M2Q (SARS-CoV-2 3CL Protease)

Drug Name Drug ID PC DS1
(GSE150316)

PC DS2
(CRA002390)

PC DS3
(GSE147507)

AutoDock LE
(kcal/mol) AutoDock Cluster

CholicAcid DB02659 −0.09 −0.11 −0.08 −15.06 74
Rutin DB01698 −0.07 −0.18 −0.1 −14.52 149

Indomethacin DB00328 −0.07 −0.12 −0.05 −13.31 146
Sulindac DB00605 −0.07 −0.12 −0.07 −13.14 73

Sulfisoxazole DB00263 −0.05 −0.13 −0.09 −11.59 77
Dasatinib DB01254 −0.04 −0.15 −0.09 −10.94 43

6W01 (NSP15 Endoribonuclease)

Dexamethasone DB01234 −0.07 −0.15 −0.08 −11.42 49
Phenolphthalein DB04824 −0.13 −0.1 −0.04 −11.15 101
Spironolactone DB00421 −0.12 −0.1 −0.09 −10.99 110
Mifepristone DB00834 −0.13 −0.14 −0.06 −10.04 28

Carbamazepine DB00564 −0.08 −0.14 −0.07 −9.66 86

6M71 (NSP12 RNA-dependent RNA polymerase)

Vemurafenib DB08881 −0.09 −0.16 −0.08 −8.09 13
Sorafenib DB00398 −0.11 −0.15 −0.05 −7.34 30

Levonorgestrel DB00367 −0.08 −0.14 −0.08 −7.21 89
Naloxone DB01183 −0.06 −0.12 −0.09 −7.07 69
Raloxifene DB00481 −0.13 −0.17 −0.07 −7.05 6

2.4. GSEA Analysis of the Repurposing Candidates

We determined the transcriptomic impact of the treatment with the selected can-
didates on two sets of biological processes linked to COVID-19, viral infections, and
immune-related pathways by performing Gene Set Enrichment Analysis (GSEA) of their
gene expression signatures derived from LINCS L1000. The transcriptomic profiles gener-
ated by cholic acid, rutin, sulfafurazole, and sulindac treatment (candidates to target the
3CL protease) were found to be enriched in the ISG15 antiviral mechanism. Furthermore,
genes related to interleukin-1 and 12 signaling tended to be upregulated in rutin’s signature,
in addition to genes belonging to the potential therapeutics for SARS gene set (NES = 1.51,
p-adj = 3.85 × 10−2) whereas WNT ligand biogenesis and trafficking (NES) genes were
found to be downregulated by rutin treatment (NES = −1.99, p-adj = 2.12 × 10−3) (Sup-
plementary Table S7). RNA-dependent RNA polymerase drug candidates, levonorgestrel
and raloxifene, were found to be enriched in pathways related to antiviral processes such
as ISG15 antiviral mechanism (levonorgestrel, NES = 2.08, p-adj = 9.95 × 10−4; raloxifene,
NES = 2.06, p-adj = 8.13 × 10−4) and antiviral mechanism by IFN-stimulated genes (lev-
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onorgestrel, NES = 1.95, p-adj = 1.22× 10−3; raloxifene, NES = 1.94, p-adj = 1.12× 10−3). In
addition, interferon alpha/beta signaling was observed to be depleted in raloxifene-treated
cells (NES = −1.52, p-adj = 4.59 × 10−2) (Supplementary Table S8). Finally, in the case
of NSP15 endoribonuclease candidate drugs, dexamethasone produced gene expression
signatures upregulated in pathways associated with viral infection response, such as ISG15
antiviral mechanism (NES = 1.82, p-adj = 3.17 × 10−3) and the antiviral mechanism by
IFN-stimulated genes (NES = 1.59, p-adj = 1.20 × 10−2). This pathway was also found to
be upregulated in the gene expression profiles of carbamazepine and mifepristone. Finally,
interleukin-7 signaling (NES = −1.64, p-adj = 3.47 × 10−2) and interferon alpha/beta
signaling (NES = −1.68, p-adj = 5.48 × 10−3) were downregulated by dexamethasone
treatment (Supplementary Table S9). Figure 3 shows a dot plot representation of the GSEA
analysis results.Pharmaceutics 2021, 13, x 10 of 20 
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Figure 3. Gene Set Enrichment Analysis (GSEA) results for candidate drugs for 6M2Q, 6M71, and
6W01 SARS-CoV-2 structures with the expression signature yields from correlation analyses from
DS2. Reactome pathways related to the immune system and viral infections. Only drugs with at
least one pathway with an adjusted p-value < 0.05 are displayed. The GSEA table with the results is
available in Supplementary Tables S7–S9.
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3. Discussion

On December 31st, 2019, the World Health Organization (WHO) was officially notified
about several cases of pneumonia in Wuhan City, China, caused by COVID-19, a disease
with no effective treatment nor a specific vaccine at that time, which history and quest for a
cure is a daily struggle and is constantly being rewritten. As specific antiviral treatments
are still under development and the vaccination campaign has faced difficulties derived
from unmet forecasts in the process of production and distribution, drug repurposing
strategies suggesting the use of FDA-approved drugs continue to be a valuable option to
find candidate drugs for the effective treatment of COVID-19 in a short timeframe.

Here, we report a novel TDA-based strategy for drug repurposing in combination
with current methodologies of molecular docking, differential expression analysis of SARS-
CoV-2 infected cells, and correlation with FDA-approved drugs transcriptomic profiles.
Our results indicate that the proposed TDA-based formalism is a promising tool to address
biological problems from a dual perspective. First, from a structural biology perspective,
we used the Vietoris–Rips complex to compute the PBF encoding the shape of each protein
structure. Next, to measure the degree of similarity between proteins we introduced the
persistent similarity measure (PSM, see Section 4.2). This allowed us to classify proteins
based solely on the C atomic coordinates. TDA-based methods have been previously pro-
posed as a method to study the topological invariants of the three-dimensional structure of
biomolecules. Several studies have employed this framework to classify protein structures
using only the three-dimensional coordinates of the atoms from crystallographically re-
solved proteins. For instance, Xia and collaborators performed TDA-based methods on
three-dimensional biomolecular structures to study their structural characteristics, flexibil-
ity prediction, and folding properties [10]. Hence, they defined the molecular topological
fingerprints (MFTs) to extract the topological information from protein structures using the
so-called persistent Betti numbers [26]. K. Dey and colleagues proposed another topology-
based method to generate protein signatures to create a fast domain classifier using a
support vector machine [27]. Interestingly, our mean persistence similarity metric was able
to achieve results comparable to those obtained by the state-of-the-art structural alignment
method, DALI [28], and presented a high predictive power clustering protein in terms of
external classifications.

Molecular docking simulation is a rapid screening method to test compound binding
activity. Additionally, transcriptomic data represent a rich alternative resource for infer-
ring non-obvious relationships between drugs and genes. Previous in silico molecular
docking studies have highlighted the potential of repurposed drugs for the treatment of
COVID-19 [29–35]. However, here we used in silico molecular docking combined with
transcriptomic small molecule treatment data from LINCS L1000 to determine which FDA-
approved drugs may reverse the effects of SARS-CoV-2 infection. The gene expression
profiles in response to the identified drugs support the docking results and offer a plausible
perspective for the pathways associated with protein responses to drugs binding to SARS-
CoV-2 proteins. To our knowledge, this is the first time that an application of barcode-based
similarity measures has been used for the analysis of large datasets of PDB structures.

The generation of PBF depends upon the previous construction of Vietoris–Rips
complexes, which have a computational store cost that scales exponentially with the
number of points defining a particular structure. Moreover, in the worst case, the standard
algorithm to compute the barcodes has cubic complexity in the number of simplices.
Although our analyses were carried out in a cluster with 32 cores and up to 500 GB of RAM,
the computational cost of the barcode generation of the excluded 1622 genes exceeded the
available amount of RAM or required an exponential amount of runtime.

Among all of the SARS-Cov-2 proteins analyzed (n = 23, Table 1), only three showed a
persistent similarity score above 0.9 against other protein structures targeted with known
drugs. Interestingly, these proteins are key components in coronavirus replication and
structural assembly: the Viral 3CL protease (6M2Q), a chymotrypsin-like protease that
is essential for the production of non-structural proteins [36]; the nsp12 RNA-dependent
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RNA polymerase (6M71), the main component of coronavirus replication and transcription
machinery, and because of that an excellent target for new therapeutics [37]; and the nsp15
endoribonuclease (6W01), a protein with a poorly defined role in SARS-CoV-2 infection,
but which has been described to be linked to pRB downregulation affecting host cell cycle
division and coronavirus infection in other coronaviruses (SARS-CoV), and with a role
as an antagonist of host dsRNA sensors during coronavirus infection in macrophages to
evade innate immune system defenses [38,39]. Hence, in this study, we selected three
proteins from the SARS-CoV-2 coronavirus as the best candidates to find repurposed drugs
to combat the disease.

Our differential expression analyses revealed that troglitazone, niclosamide, and
chloroquine, among multiple candidates, were the top negatively correlated drugs that may
revert the effects of SARS-CoV-2 infection to the cell transcriptome. Moreover, chloroquine
is already under study in several clinical trials, although recent results reported by the WHO
SOLIDARITY study stated that chloroquine has no significant effect on hospitalized COVID-
19 patients, in terms of the overall mortality level [2]. Niclosamide is also being evaluated
under a Phase 2 clinical trial [40]. In addition, the antiviral activity of the niclosamide has
been demonstrated against SARS-CoV in in vitro studies [41] and recent investigations
against SARS-CoV-2 [42], and also previously against other MERS coronaviruses [43].

To date, no therapeutic agents have been proven to be effective against SARS-CoV-2.
Several treatments have been reported under investigation specifically to treat COVID-19
as the result of drug repurposing strategies [44,45] and, as this draft is being written, up
to 700 research papers have already been published. The number of clinical trials using
repurposed drugs such as hydroxychloroquine, remdesivir, and lopinavir/ritonavir, among
others, alone or in combination, is also exponentially growing, although in most cases
unfortunately the results are not as good as initially expected [46–48]. Recently, a new
treatment, plitidepsin, has been reported as the most potent antiviral drug against the
coronavirus [49].

Our more promising candidates arise from the combination of molecular docking
and transcriptomic results, and the cornerstone of our work, the TDA-based formalism.
Among the 16 compounds related to the three SARS-CoV-2 proteins analyzed, nine have been
described as possible candidates in other repurposing studies and five of these have already
shown antiviral activity or have already been described as possible COVID-19 treatments
(Supplementary Table S10), although preclinical studies will be required to determine their
efficacy. In this direction, 3 of the 16 compounds are being evaluated under different clinical
trials (indomethacin (n = 2), dexamethasone (n = 40), and spironolactone (n = 4)).

Rutin and indomethacin were amongst the notable compounds selected from 3CL
main protease. In addition, they have been proven as good candidates in other studies.
Rutin is a polyphenolic flavonoid that has shown a wide range of pharmacological appli-
cations due to its significant antioxidant properties [50]. Our results from GSEA analyses
revealed that rutin might act in early stages of SARS-CoV-2 infection by activating the
interferon-induced ISG15 pathway. ISG15 is an interferon-induced protein that has been
implicated as a central player in the host antiviral response, and is the key element for
the innate immune response against viral infection [51]. Furthermore, ISG15 modulates
the immune system stimulating the IFN-gamma production by NK cells that lead to the
promotion of early viral response [52]. Although the result of the possible interaction
between rutin and 3CL protease has been reported by other studies using an in silico
approach [53], our results provide a transcriptomic dimension to the possible effect of
rutin during infection with SARS-CoV-2. Moreover, to our knowledge this is the first time
the natural compound rutin has been related with the antiviral activity induced by the
protein ISG15.

Dexamethasone, a corticosteroid used in a wide range of conditions for its anti-
inflammatory and immunosuppressive effects, could be one of the most promising repur-
posed drugs chosen to treat COVID-19 disease, based on some results that prove a decrease
in the incidence of death versus the usual care group among patients receiving invasive
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mechanical ventilation [54]. This compound was chosen because of its immunosuppressant
properties to treat the cytokine storm induced by the immune response to coronavirus
infection in late stages of the disease. Nonetheless, our results indicated that dexametha-
sone could also be a good candidate to target nsp15 endoribonuclease, although some
repurposed works also suggested it as the target of the main protease [55]. These data
could support the idea of administering corticosteroids, not just at the advanced infection
stage, but also at the beginning. However, a recent study tested multiple pharmacological
compounds derived from the steroids in vitro and demonstrated that dexamethasone has
no antiviral activity against SARS-CoV-2 [56]. Nevertheless, we also found other corticos-
teroids that could interact with nsp15 protein, such as mifepristone, which suppressed
viral growth conferring more than 95% of cell survival rate after viral infection and drug
administration in vitro [56].

Lastly, the RNA-dependent RNA polymerase nsp12 of SARS-CoV-2 is a protein that
performs essential functions in the coronavirus life cycle with no host cell homolog. This is
an advantage for antiviral drug development, reducing the risk of affecting any protein
present in human cells, as has been proven by many drug repurposing studies directed
against nsp12 RdRP [57–60]. Vemurafenib, sorafenib, and raloxifene may be potential
candidates against nsp12 RdRP. Vemurafenib can disturb the cellular Raf/MEK/ERK
signaling cascade via binding in the ATP-binding site of BRAF(V600E) kinase and inhibiting
its function [61], whereas sorafenib is another kinase inhibitor that targets VEGFR, PDGFR,
and RAF kinases [62]. Interestingly, SARS-CoV-1 uses Raf/MEK/ERK signaling pathways
to promote its replication via various mechanisms, indicating that this signaling cascade is
a critical therapeutic target for host-directed SARS-CoV-2 antivirals [63–65].

4. Materials and Methods
4.1. Data Acquisition

DrugBank queries were carried out to retrieve the information regarding drugs with
known protein targets [66]. In short, the DrugBank database version 5.1.5 (https://go.
drugbank.com/releases/5-1-5, accessed on 21 March 2020) was downloaded in XML
format, and the dbparser package and custom R scripts were employed to extract the
relevant information [67]. We only selected drugs approved by the American Food and
Drug Administration (FDA) and retrieved the names and UniProt identifiers of their
protein targets. Then, UniProt IDs were mapped to their respective Protein Data Bank
(PDB) structures using the Retrieve/ID mapping tool available at UniProt. All of the PDB
structures targeted by FDA-approved drugs were downloaded in PDB format and stored
for downstream analysis. Protein Data Bank queries were also performed to identify the
three-dimensional structures of SARS-CoV-2 proteins.

4.2. A Topological Data Analysis Based Formalism to Compare, at Quantitative Level, the
Homological Similarities of Pairwise Three-Dimensional Molecules Considered as Surfaces

In this paper, we used an adapted a TDA-based strategy which combines concepts and
results from Algebraic Topology to compare three-dimensional protein structures [68–70].
More precisely, we considered the shape of the protein structure as a surface for which
we only know a sample of points that are given by the coordinates of its Cα. Using this
information, we construct a set of simplicial complexes associated to that protein. This
set is composed by three classes of geometrical objects: isolated points, non-intersecting
segments connecting these points, and non-intersecting triangles composed using non-
intersecting segments. To quantify the above geometrical information, we associate a
non-negative continuous function to each of the three components of a simplicial complex.
The first function, denoted by f0, represents the structure of the position of the individual
points, the second function f1, corresponds to the non-intersecting segments and finally,
the third function f2 correspond to the triangles. These three functions are called the
persistent Betti Functions (PBFs) and allow us to characterize the representation of a
protein’s tertiary structure.

https://go.drugbank.com/releases/5-1-5
https://go.drugbank.com/releases/5-1-5
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Therefore, we computed the persistent Betti functions using PDB structures from
DrugBank. To compare the shape of both structures, one given by the PBF { fi}i=2

i=0 of each

structure from DrugBank, against the PBF of SARS-CoV-2 proteins
{

f SARS−Cov−2
i

}i=2

i=0
we

construct the persistent similarity measure (PSM), which is defined as

PSMi =

∫
min

(
fi(x), f SARS−Cov−2

i (x)
)

dx∫
max

(
fi(x), f SARS−Cov−2

i (x)
)

dx
for i = 0, 1, 2. (1)

Then, we calculate the mean of the persistent similarity measures:

PSM =
1
3
(PSM0 + PSM1 + PSM2) (2)

for each protein comparison. A PSM ≥ 0.9 threshold value was established, considering
those drugs whose target protein had a value of 0.9 or higher for their mean persistent
similarity measure with a SARS-CoV-2 protein as drug repurposing candidates.

4.3. Data Preprocessing and Persistent Similarity Measures Computation

All protein structures in PDB format were loaded into the R environment using the
bio3d package [71]. Then, the coarse-grain representation of each structure was generated
by selecting only the three-dimensional atomic coordinates of the alpha-carbons of the
amino acids [26]. Two main reasons compelled us to work with this reduced representation.
First, the construction of simplicial complexes scales exponentially with the number of
initial points present in the point cloud. Therefore, structures defined by a very large
number of points are not computationally tractable even in state-of-the-art computers.
Second, all-atom models present a high degree of detail that could mask the general
structure of the protein. Barcodes were constructed using the R package of TDAstats [72].
TDAstats makes use internally of the Ripser C++ library [73], an optimized fast software
package for simplicial complexes and barcodes construction.

4.4. Protein–Ligand Binding with AutoDock 4.2

Ligand preparation was carried out as follows: First, the FDA-approved drugs in SDF
format were retrieved from DrugBank. A custom R script and Open Babel v.3.0.0 were used
to transform SDF into the mol2 format [74–77]. Following, the MGLTools v.1.5.7 toolkit
was employed to add the polar hydrogens and protonation at pH 7.4. Then, mol2 drug
structures were converted into PDBQT format, and their stereochemical properties were
computed using AutoDock 4.2 [78]. A virtual screening library was then constructed using
the preprocessed drug structures. Drugs containing atoms different from those included in
the following list (H, C, N, O, F, Mg, P, S, Cl, Ca, Mn, Fe, Zn, Br, I) were discarded from
the subsequent analyses because AutoDock does not include the values of their atomic
force fields and is, therefore, unable to perform molecular docking using them. Polar
hydrogens were also added to the SARS-CoV-2 protein PDB structures which were also
transformed to the PDBQT format. Docking was carried out using AutoDock 4.2 [78], a
molecular docking software package developed by the Scripps Research Institute. A grid
box spanning the whole protein structure was set to perform blind docking. AutoDock
was configured following the manual recommendations [79]. We increased the parameter
ga_runs from 10 to 150 to improve the accuracy of the results.

4.5. Differential Gene Expression Analyses of SARS-CoV-2 Infected Human Samples and Cell
Lines and Uninfected Controls

We carried out searches for transcriptomic datasets of patients and human-derived
cell lines including samples infected with SARS-CoV-2 and uninfected controls. At the time
the searches were carried out, three datasets were identified. Dataset 1 (DS1) was found
in the gene expression omnibus (GEO) under ID GSE150316 [80]. This includes formalin-
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fixed paraffin-embedded samples from multiple tissues (i.e., lung, jejunum, heart) derived
from SARS-CoV-2-infected individuals and uninfected controls obtained in autopsies. We
restricted our analysis to lung samples. Twenty-one samples (16 cases and five controls)
were selected for downstream analysis.

Dataset 2 (DS2) gathers samples derived from bronchoalveolar lavage fluids (BALF) of
SARS-CoV-2 infected patients (four samples derived from two patients with two technical
replicates) and three healthy controls [81]. Samples derived from infected patients were
stored at the National Genomics Data Center under accession number CRA002390, whereas
control samples were downloaded from the NCBI SRA database and were available under
the identifiers SRR10571724, SRR10571730, and SRR10571732. Sequence alignment using
the human reference genome hGR38 and count extraction were carried out using the
Rsubread package [82].

Finally, the third dataset (DS3) was available in GEO under accession ID GSE147507 [83].
It presented a complex design including both primary cell lines derived from the human
lung epithelium and transformed lung alveolar which were either mock treated or infected
with different viruses including the influenza A virus (IAV), the respiratory syncytial virus
(RSV), and SARS-CoV-2, in addition to samples derived from infected ferrets and two tech-
nical replicates of a lung sample derived from a SARS-CoV-2-infected human patient. We
restricted our analysis to the cell lines NHBE, A549, and Calu-3, which were either infected
with SARS-CoV-2 or were mock treated. The infected human lung samples and the healthy
lung biopsies were also included. Overall, 28 samples were analyzed in this dataset.

For each dataset, differential gene expression analysis between SARS-CoV-2 infected
samples and uninfected controls was carried out using the DESeq2 package [84].

4.6. Identification of LINCS 1000 Signatures Negatively Correlated with the SARS-CoV-2
Differential Gene Expression Profiles

LINCS L1000 contains an extensive collection of gene expression profiles generated us-
ing thousands of perturbagens (i.e., small molecules, ligands, micro-environments, CRISPR
gene over-expression, and knockdown perturbations) and different cell lines, doses, and
exposure times [85]. In particular, LINCS L1000 Level 5 data includes differential gene
expression signatures computed by comparing three technical replicates of the same pertur-
bation to appropriate controls. Level 5 LINCS L1000 phases I (GSE92742) and II (GSE70138)
datasets were downloaded from GEO. Signatures involving FDA-approved drugs were
identified with the help of the information contained in file repurposing_drugs_20180907.txt
and repurposing_samples_20180907.txt available at the LINCS L1000 repurposing hub [85]
(see Supplementary Materials). Drugbank and LINCS 1000 data were merged based on
Pubchem compound identifiers. Then, the subset of signatures corresponding to FDA
approved medications with 435 known Pubchem identifiers were selected. Overall, we
obtained 52,144 expression signatures generated using 1313 approved drugs. To identify
drugs with the potential of reverting the differential expression profiles generated by SARS-
CoV-2 infection, we computed Pearson’s correlations between each expression signature
derived from LINCS L1000 and the differential expression profiles from DS1, DS2, and DS3,
and picked those drugs exhibiting the most negative correlations.

4.7. Gene Set Enrichment Analysis (GSEA)

Dysregulated biological processes were identified for each transcriptomic dataset
using the pre-ranked Gene Set Enrichment Analysis (GSEA) implementation of the fgsea
package [86]. The C5 molecular signatures collection, which contains gene sets derived
from the three branches of Gene Ontology (GO), was used as a source of functional in-
formation. GO terms including more than 500 or less than 15 genes were filtered out.
GSEA analyses were also performed for those LINCS L1000 level 5 expression signa-
tures negatively correlated with the differential gene expression profiles generated by
the SARS-CoV-2 infection to determine their effect in specific pathways and biological
processes. Reactome (version 73) was used as a source of pathway information and analy-
ses were carried out using the clusterProfiler R-package (https://www.rdocumentation.

https://www.rdocumentation.org/packages/clusterProfiler/versions/3.0.4
https://www.rdocumentation.org/packages/clusterProfiler/versions/3.0.4
https://www.rdocumentation.org/packages/clusterProfiler/versions/3.0.4
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org/packages/clusterProfiler/versions/3.0.4, accessed on 21 March 2020) [87]. Biological
processes and pathways presenting false discovery rate (FDR) adjusted p-values were
called to be significantly deregulated.

5. Conclusions

In conclusion, our strategy of quantitative homological similarities using TDA-based
formalism would allow researchers and clinicians to select optimal candidates from drug
repurposing to achieve the desired target, not only regarding the SARS-CoV-2 coronavirus,
but also any new viruses that may appear in the future, by choosing the best targets among
all virus proteins. In this specific case, targeting nsp15 endonuclease and nsp12 RNA poly-
merase, in addition to other promising drug targets of the 3CL main protease, could support
the development of a cocktail of anti-coronavirus treatments that could also be potentially
used for the discovery of broad-spectrum antivirals. In particular, we identified 16 po-
tential repurposable drug candidates including cholic acid, rutin, indomethacin, sulindac,
sulfisoxazole, dasatinib, dexamethasone, phenolphthalein, spironolactone, mifepristone,
carbamazepine, vemurafenib, sorafenib, levonorgestrel, naloxone, and raloxifene. Further-
more, by choosing a precision multidrug treatment, we could rescue any specific drug
failure or avoid any future drug resistance due to possible acquired mutations in any of
the proteins as a consequence of continuous virus replication and spreading, because the
virus will be attacked from different fronts. Nevertheless, our results based on multidrug
combinations should be validated in both in vitro and in vivo experiments, not just to
prove the effectiveness of the treatment, but also to select the best combination against
SARS-CoV-2 infection and consequent disease symptoms.
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