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Abstract: A set of five gold complexes with the general formula Au(PR3)(C≡C-C6H4-4-R′) (R = PPh3,
R′ = –CHO (1), R = PCy3, R′ = –CHO (2), R = PPh3, R′ = –N=CH-C6H4-2-OH (3), R = PPh3,
R′ = –N=CH-C6H4-4-OH (4), R = PCy3, R′ = –N=CH-C6H4-2-OH (5)) were synthesized and charac-
terized by elemental analysis, 1H-NMR spectroscopy, 31P-NMR spectroscopy, and mass spectrometry.
The structures of complexes 2 and 5 were determined by X-ray crystallography. The effects of the
structural modifications on the protein binding affinities and anticancer activities of the five gold
complexes were assessed. Fluorescence quenching experiments to assess binding to human serum
albumin (HSA) revealed that the Schiff base complexes (3, 4, and 5) had binding constants that were
superior to their parent aldehyde complexes and highlighted the position of the hydroxy group
because complex 4 (4-hydroxy) had a binding constant 6400 times higher than complex 3 (2-hydroxy).
The anticancer activities of the complexes against the OVCAR-3 (ovarian carcinoma) and HOP-62
(non-small-cell lung) cancer cell lines showed that the Schiff bases (3–5) were more cytotoxic than the
aldehyde-containing complexes (1 and 2). Notably, compound 4 had cytotoxic activity comparable to
that of cisplatin against OVCAR-3, demonstrating the significance of the para position for the hydroxy
group. Molecular docking studies against the enzyme thioredoxin reductase (TrxR) and human
serum albumin were conducted, with docking scores in good agreement with the experimental
data. The current study highlights how small structural modifications can alter physiochemical and
anticancer properties. Moreover, this simple design strategy using the aldehyde group can generate
extensive opportunities to explore new gold(I)-based anticancer drugs via condensation, cyclization,
or nucleophilic addition reactions of the aldehyde.

Keywords: gold(I); phosphine; HSA-binding; molecular docking; anticancer properties

1. Introduction

Chemotherapy was established in the 1940s, and most of the early chemotherapeutic
agents were organic. In 1978, the discovery of the anticancer activities of cisplatin expanded
research into the metal complexes domain [1]. Since then, other platinum complexes analo-
gous to cisplatin have been tested and approved clinically in the treatment of various types
of cancers [2]. Despite the effiaciency of platinum-based chemotherapeutic agents, interest

Pharmaceutics 2021, 13, 461. https://doi.org/10.3390/pharmaceutics13040461 https://www.mdpi.com/journal/pharmaceutics

https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-9364-263X
https://orcid.org/0000-0002-1495-6391
https://orcid.org/0000-0002-8562-4749
https://orcid.org/0000-0002-9231-3850
https://orcid.org/0000-0002-4803-167X
https://doi.org/10.3390/pharmaceutics13040461
https://doi.org/10.3390/pharmaceutics13040461
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pharmaceutics13040461
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics13040461?type=check_update&version=1


Pharmaceutics 2021, 13, 461 2 of 13

in other metal complexes has been growing in order to overcome some of the negative
side effects of the platinum complexes [3]. In this context, gold(I)-based complexes have
emerged as promising anticancer candidates [4–9]. Several gold(I) complexes have been
examined for anti-tumor activity in vitro and in vivo [10–12]. In particular, numerous aura-
nofin analogues with variations in the phosphine and thiolate ligands have been screened
(Figure 1) [13]. The labile nature of the thiolate and their reducing capability has directed
interest toward σ-bonded alkynyl ligands. Studies on complexes with a 4-ethynylanisole
ligand and variant phosphine ligands revealed no strong differences in cytotoxicity (mini-
mum cytotoxic effect of the phosphine ligands). Application of some of these complexes
in vivo in mice was found to be challenging due to the low solubility of the complexes,
which required a formulation strategy. Gold(I) complexes of the type Au(C≡CR)(PR3)
have been reported to exhibit very strong inhibition of the enzyme thioredoxin reduc-
tase (TrxR) and showed high antiproliferative activity in tumor cells [14,15]. TrxR is a
homo-dimeric protein classified as a glutathione reductase-like enzyme. It facilitates the
NADPH-dependent reduction of thioredoxin (Trx) disulfide and many other oxidized cell
constituents. The enzyme is involved in several processes, including protecting cells from
oxidative stress, which is a major cause of DNA damage. The structural flexibilities of the
alkynyl and phosphine ligands have allowed fine-tuning of physiochemical and pharmaco-
logical properties. Thus, different types of gold-based drugs have been reported in order to
identify the appropriate ligand combinations with improved hydrophilic/lipophilic prop-
erties, cytotoxicity, and selectivity [16]. For example, the use of a water-soluble phosphine
ligand (1,3,5-triaza-7-phosphaadamantane) improves the hydrophilic properties of gold
complexes [8]. The strategy of our current work is to expand the structural flexibility of the
alkynyl by employing the 4-ethynylbenzaldehyde with its very reactive aldehyde group.
The aldehyde can undergo a range of condensation and cycloaddition reactions to generate
well-known pharmacological scaffolds. The synthesis of Au(PR3)(C≡C-C6H4-4-CHO) was
achieved, and the aldehyde-containing complexes were refluxed with aminophenols to
generate Schiff bases. The complexes were then tested against two cancer cell lines, and
their protein-binding activities to human serum albumin (HSA) were assessed. Molecular
docking was undertaken to highlight the structural aspects of the complexes with HSA and
thioredoxin reductase (TrxR). Molecular docking is a powerful tool in computer-assisted
drug design with the goal to estimate the major binding modes of the drug with the 3D
structure of the protein. Docking can be used to rationalize experimental findings, suggest
structural–property correlations, and suggest inhabitation sites of the target, which are
important for planning further optimization [17].
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Figure 1. Auranofin is an anti-rheumatic agent with favorable anticancer activity.

2. Materials and Methods
2.1. Materials

All solvents were obtained commercially and dried over molecular sieves (A4) before use.
The term “petrol” refers to a fraction of petroleum ether with a boiling range of 40–60 ◦C. Chro-
matography was carried out on silica gel 60 particle sizes 0.063–0.200 mm (70–mesh ASTM) or
basic ungraded alumina. Potassium tert-butoxide, p-aminophenol, and o-aminophenol were
purchased commercially and used as received. 4-Ethynylbenzaldehyde [18], AuCl(PCy3) [19],
AuCl(PPh3) [20], and Au(C≡C-C6H4-4-CHO)(PPh3) (1) [21] were prepared according to
published procedures.
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2.2. Methods and Instrumentation

All reactions were carried out using standard Schlenk techniques, under a nitrogen
atmosphere, unless otherwise stated. Infrared (IR) spectra were recorded using solid sam-
ples on a Perkin Elmer Spectrum 100 instrument (Shelton, CT, USA); peaks are reported in
cm−1. Steady state emission spectra were recorded using Shimadzu RF 5301 PC spectroflu-
orometer (Columbia, Maryland, USA) using a rectangular quartz cell. High-resolution
electrospray ionization (ESI) mass spectra were recorded using an Agilent Q-TOF 6520
instrument (Santa Clara, CA, USA); all mass spectrometry data are reported as m/z. 1H
NMR (600 MHz) and 31P NMR (242 MHz) spectra were collected in CDCl3 using a Bruker
Avance 600 MHz spectrometer furnished with a BBO probe (BrukerBioSpin, Rheinstetten,
Germany); atom labeling follows the numbering in Figure 2.
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2.3. Synthesis and Characterizations

Synthesis of OHC-4-C6H4-C≡C-Au-PCy3 (2): AuCl(PCy3) (0.357 g, 0.696 mmol)
and ButOK (0.592 g, 5.281 mmol) were added to a solution of 4-ethynylbenzaldehyde
(0.121 g, 0.931 mmol) in 25 mL methanol and 10 mL chloroform under N2 atmosphere,
and the mixture was incubated overnight with stirring. The solvent was reduced under
pressure and aqueous methanol (70%) was added, producing a yellowish precipitation.
The precipitation was collected by filtration, affording 2 as a pale-yellow powder (0.347,
61%). HR ESI MS [C21H38AuP]: Calcd. 518.2377, found 518.2247. Elemental analysis for
C27H44AuOP, Calcd (found): C, 53.47 (53.21) and H, 6.31 (6.07)%. IR (solid): 2108 cm−1 ν

(C≡C), 1691 cm−1 ν (C=O). 1H NMR (CDCl3): δ 10.01 (s, 1H, H3), 7.82 (d, 2H, JHH = 9 Hz
H2), 7.60 (d, 2H, JHH = 9 Hz, H1), 1.7–2.10 (m, 33H, PCy3). 31P NMR: δ 56.3 (s, PCy3).

Synthesis of HO–2–C6H4–N=C–4-C6H4-C≡C–Au-PPh3 (3): O-aminophenol (0.022 g,
0.202 mmol) and MgSO4 (0.279 g, 2.321 mmol) were stirred with a solution of compound
1 (0.099 g, 0.168 mmol) in a mixture of 20 mL methanol and 10 mL chloroform under N2
atmosphere at reflux for 5 h. The reaction mixture was evaporated to dryness, and 20 mL
CHCl3 was added. The mixture was filtered and the filtrate was reduced to about 10 mL.
A 30 mL portion of methanol was added, leading to a precipitation. The precipitation
was collected by filtration and dried, offering 3 as a pale-yellow powder (0.050 g, 43%).
HR ESI MS [C33H26AuNOP]: Calcd. 680.1412, found 680.1415. Elemental analysis for
C33H25AuNOP, Calcd (found): C, 58.33 (57.91); H, 3.71 (3.36) and N, 2.06 (1.76)%. IR (solid):
3375 cm−1 ν (O–H), 2113 cm−1 ν (C≡C), 1621 cm−1 ν (C=N). 1H NMR (CDCl3): δ 8.87 (s,
1H, OH), 8.59 (s, 1H, H3), 7.86 (d, 2H, JHH = 9 Hz, H2), 7.57–7.42 (m, 15H, PPh3), 7.35 (d,
2H, JHH = 9 Hz, H1), 7.12 (d, 1H, JHH = 8 Hz, H7), 6.99 and 6.74 (2 t, 2H, JHH = 8 Hz, H4
and H6), 6.80 (d, 1H, JHH = 8 Hz, H5). 31P NMR: δ 41.6 (s, PPh3).

Synthesis of HO–4–C6H4–N=C–4-C6H4-C≡C–Au-PPh3 (4): P-aminophenol (0.024 g,
0.220 mmol) and MgSO4 (0.182 g, 1.513 mmol) were stirred with a solution of compound
1 (0.126 g, 0.214 mmol) in a mixture of 20 mL methanol and 10 mL chloroform under N2
atmosphere at reflux for 5 h. The reaction mixture was evaporated to dryness and 20 mL
CHCl3 was added. The mixture was filtered and the filtrate was reduced to about 10 mL.
A 30 mL portion of methanol was added, leading to a precipitation. The precipitation
was collected by filtration and dried, offering 4 as a pale-yellow powder (0.140 g, 96%).
HR ESI MS [C33H26AuNOP]: Calcd. 680.1412, found 680.1415. Elemental analysis for
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C33H25AuNOP, Calcd (found): C, 58.33 (58.04); H, 3.71 (3.49) and N, 2.06 (1.82)%. IR (solid):
3360 cm−1 ν (O-H), 2140 cm−1 ν (C≡C), 1620 cm−1 ν (C=N). 1H NMR (CDCl3): δ 8.33 (s,
1H, H3), 7.69 (d, 2H, JHH = 9 Hz, H2), 7.49 (d, 2H, JHH = 9 Hz, H1), 7.44–7.36 (m, 16H, OH
and PPh3), 7.05 (d, 2H, JHH = 9 Hz, H4), 6.60 (d, 2H, JHH =9 Hz, H5). 31P NMR: δ 42.12
(s, PPh3).

Synthesis of HO–2–C6H4–N=C–4-C6H4-C≡C–Au-PCy3 (5): O-aminophenol (0.082 g,
0.752 mmol) and MgSO4 (0.419 g, 3.481 mmol) were stirred with a solution of compound
2 (0.302 g, 0.501 mmol) in a mixture of 20 mL methanol and 10 mL chloroform under N2
atmosphere at reflux for 5 h. The reaction mixture was evaporated to dryness and 20 mL
CHCl3 was added. The mixture was filtered and the filtrate was reduced to about 10 mL.
A 30 mL portion of methanol was added, leading to a precipitation. The precipitation
was collected by filtration and dried, offering 5 as a pale-yellow powder (0.302 g, 57%).
HR ESI MS [C33H44AuNOP]: Calcd. 698.2829, found 698.2822. Elemental analysis for
C33H43AuNOP, Calcd (found): C, 56.81 (56.48); H, 6.21 (5.87) and N, 2.01 (1.64)%. IR (solid):
3411 cm−1 ν (O–H), 2108 cm−1 ν (C≡C), 1622 cm−1 ν (C=N). 1H NMR (CDCl3): δ 8.64 (s,
1H, H3), 7.79 (d, 2H, JHH = 9 Hz, H2), 7.58 (d, 2H, JHH = 9 Hz, H1), 7.29 (1H, JHH = 9 Hz,
H7), 7.17 and 6.89 (2 t, 2H, JHH = 9 Hz, H4 and H6), 6.99 (d, 1H, H5), 1.7–2.10 (m, 33H,
PCy3). 31P NMR: δ 56.30 (s, PCy3).

2.4. Crystal Structure Determination

The sample crystals of 2 and 5 were crystallized in a chloroform–methanol mixture
under slow evaporation. Crystals were mounted on Bruker D8 Quest Diffractometer,
equipped with micro-focused Mo Kα radiation for data collection. Data were collected us-
ing APEX3 software (SAINT and SADBAS, 2016, Bruker AXS Inc., Madison, WI, USA) [22]
at 296 K with Mo Kα radiation. The structure solution was performed using SHELXS–
2014 [23] and refined by full-matrix least-squares methods on F2 using SHELXL–2014 [23].
All non-hydrogen atoms were refined anisotropically by full-matrix least-squares meth-
ods. The figures were generated through APEX3 software [22]. All hydrogen atoms were
positioned geometrically and treated as riding atoms with C–H = 0.93 Å and Uiso(H)
= 1.2 Ueq(C) for all carbon atoms. The crystal data were deposited at the Cambridge
Crystallographic Data Centre with deposition numbers 2063561 and 2063564. Crystal data
can be obtained free of charge from CCDC, 12 Union Road, Cambridge CB21 EZ, UK (Fax:
(+44)-1223-336-033; e-mail: data_request@ccdc.cam.ac.uk).

Crystal data of complex 2: monoclinic; P1 21/c1; unit cell dimensions: a = 12.3170(7)
Å, b = 16.5507(8) Å, c = 12.5410(6) Å, α = 90◦, β = 97.451(2)◦, γ = 90◦; volume = 2535.0(2)
Å3; absorption coefficient: 5.882 mm−1; Theta range for data collection: 2.50 to 25.35◦;
Reflections collected: 53717; Independent reflections: 4629 [R(int) = 0.0760].

Crystal data of complex 5: monoclinic; P1 21/n1; unit cell dimensions: a = 12.8647(11)
Å, b = 16.2774(14) Å, c = 28.952(3) Å, α = 90◦, β = 99.970(3)◦, γ = 90◦; volume = 5971.1(9)
Å3; absorption coefficient: 5.007 mm−1; Theta range for data collection: 2.25 to 25.43◦;
Reflections collected: 157,459; Independent reflections: 11,000 [R(int) = 0.2339].

2.5. HSA Binding Studies

Human serum albumin (HSA) solution (32 µM) was prepared in Tris-HCl/NaCl
aqueous buffer (pH = 7.4). The solution was titrated with different concentrations of
complexes 1–5 in DMSO (the amount of DMSO was maintained at ca. 20% v/v). The
changes in the emission intensity of the protein were followed at around 330 nm upon
excitation at 275 nm after incubating the complexes for 4 min at 295 K. The Stern–Volmer
quenching constants (KSV) were obtained from Equation (1), where Io and I are the emission
intensities of the protein in the absence and the presence of the complexes, respectively.
The [Au complex] was plotted against [Io/I]; the KSV value was defined as the slope of the
line [24]. The Stern–Volmer constant is related to the quenching constant by Equation (2),
where Kq is the quenching rate constant, and τ0 is the average lifetime of the fluorescence
for free HSA (τ0 = 7 ns) [25,26]. The binding constant (Kb, M−1) and the number of binding
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sites (n) were calculated by plotting log[Io − I/I] against Log [Au complex], where the
slope equals n and the intercept is equivalent to Log Kb according to Equation (3) [27].
Gibbs free energy (∆G0) of the binding to HSA protein can be calculated by employing
Equation (4), using the binding constant (Kb, M−1) [27,28].

I0/I = 1 + Ksv [Au complex] (1)

Ksv = Kq × τ0 (2)

Log(I0 − I)/I = Log Kb + n Log [Au complex] (3)

∆G0 = −R × T × Ln × Kb (4)

2.6. Molecular Docking Studies

The structures of the human thioredoxin reductase “hTrxR1” receptor, which is a
prominent anticancer drug target [29], and the human serum albumin “HSA” recep-
tor, which is used as an anticancer drug carrier [30], were obtained from the protein
data bank (PDB: 3QFB and 1H9Z) (http://www.rcsb.org/pdb/home/home.do “10 June
2020”) [31,32]. The gold complexes were drawn in ChemBioOffice ultra version 13. All
docking studies were operated using the MOE program; all water and cofactor molecules
were removed from the downloaded Human hTrxR1 thioredoxin reductase “3QFB” and
HSA ”1H9Z”. After that, all invalid charges and broken bonds were fixed, and all hydrogen
atoms were added after the preparation. The parameters and charges were consigned
with MMFF94x force field. After alpha-site spheres were identified using the site finder
module of MOE, the compounds were docked to the same active site of the co-crystalized
compound using the DOCK module of MOE [33,34]. The docking scores in the MOE
software were collected utilizing the London dG scoring function. The highest ten dock-
ing scores were used to compare between the five organometallic compounds and the
co-crystalline reference compound; optimization of the scoring values were processed by
two independent refinement methods. The docking results were validated following the
reported pose selection method, which involves re-docking the co-crystalized ligand into
the receptor’s active site [35,36], and confirmed the ability of the program to identify the
best pose under a preselected root mean square deviation (RMSD) value from the known
conformation (regularly 1.5 or 2 Å depending on ligand size). In the current study, pose
selection and docking score for flavin-adenine dinucleotide (the co-crystalized compound
with 3QFB) and R-warfarin “(the co-crystalized compound with 1H9Z)” were determined;
the docking result of the same compound reached a 1.09 Å and 1.82 resolution of the
co-crystalline structures.

2.7. Anticancer Studies

The cells were obtained by the Egyptian Holding Company for Biological Products
and Vaccines (VACSERA) and then maintained in the tissue culture unit. Cells were grown
in RPMI-1640 medium, supplemented with 10% heat inactivated FBS, 50 units/mL of
penicillin, and 50 mg/mL of streptomycin, and maintained in a humidified atmosphere
with 5% carbon dioxide [37,38]. The cells were kept as monolayer cultures by serial sub-
culturing, using cell culture reagents from Lonza (Basel, Switzerland). The antitumor
activities of the complexes were assessed against OVCAR-3 (ovarian carcinoma cancer)
and HOP-62 (non-small-cell lung cancer) cell lines.

The sulforhodamine B (SRB) assay method was applied to determine the cytotoxicity,
as described in the literature [39]. Exponentially growing cells were collected using 0.25%
Trypsin-EDTA and seeded in 96-well plates at 1000–2000 cells/well in RBMI-1640 supple-
mented medium. The cells were kept in the medium for 24 h and then incubated for 3 days
with various concentrations of the gold compounds. Following 3 days of treatment, the
cells were fixed with 10% Cl3CCOOH for 60 min at 4 ◦C. Wells were stained for 10 min
at room temperature with 0.4% SRBC dissolved in 1% CH3COOH. The plates were air
dried for 24 h, and the dye was dissolved in Tris-HCl for 5 min with shaking at 1600 rpm.

http://www.rcsb.org/pdb/home/home.do
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The optical density of each well was evaluated spectrophotometrically at 564 nm with an
ELISA microplate reader (ChroMate-4300, Orlando, FL, USA). The half minimal inhibitory
concentration (IC50) values were calculated from a Boltzmann sigmoidal concentration
response curve using nonlinear regression fitting models (Graph Pad, Prism Version 9, San
Diego, CA, USA).

3. Results and Discussion
3.1. Synthesis and Characterization

Phenolic groups possess several properties: the possibility to form highly water-
soluble sodium phenoxide salts, the weak acid nature in pH > 8 that allows the formation
of phenoxide anions in solutions, and the possibility to form hydrogen bonding. These
features are attractive in drug design, and hence phenolic moieties were chosen to be
incorporated into the gold complexes. The route was established by synthesizing complexes
(1) and (2) by reacting 4-ethynylbenzaldehyde with AuCl(PR3) in the presence of an excess
amount of potassium tert-butoxide in a methanol/chloroform mixture [40]. The 31P NMR
spectra of (1) and (2) exhibited one singlet around 40 and 56 ppm, respectively. The
absence of the (≡C–H) band at 3200 cm−1 in the IR spectra indicates that gold-bonded
C≡C units are present. The Schiff bases (3), (4), and (5) were obtained by reaction of
excess amounts of o-aminophenol or p-aminophenol with the gold(I) alkynyl aldehyde
in refluxing chloroform and methanol for 5 h in the presence of anhydrous magnesium
sulfate as a drying agent. The reaction mixture was filtered, and the solvent was removed
to produce the desired product (Figure 3). The 1H NMR spectra of the Schiff bases showed
sharp singlets of the azomethine (–CH=N–) in the range 8.3–8.9 ppm associated with
the disappearance of the aldehyde proton signal around 10.0 ppm (All the NMR data
are provided in the supplementary materials Figures S1–S8). The FTIR spectra of the
gold alkynyl Schiff bases showed intense bands around 1620 cm−1 for the azomethine
bond –CH=N; no bands around the 1700 cm−1 region were observed, confirming that
the aldehyde groups are converted into –CH=N groups. Additionally, bands in the range
3100–3500 cm−1 for stretching OH bond were observed for the complexes 3–5 (Figure 4).
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3.2. Crystallographic Studies

X-ray diffraction studies were completed for complexes 2 and 5. The molecular
structures with the atom-numbering scheme is given in Figure 5. Crystallographic data
are listed in Section 2.4, while important bond lengths are provided in Table 1. The
structural determinations confirm the molecular composition extracted from the spectral
data. The Au1-P1 distances are 2.293(1) Å in complex 2 and 2.293(2) Å [2.293(2)] in complex
5. The P-Au-C angles are 175.81(14)◦ and 174.4(2)◦ (177.9(3)◦) for complexes 2 and 5,
respectively, while Au-C≡C angles are 177.6(5)◦ and 176.1(8)◦ [176.7(8)◦] for complexes
2 and 5, respectively, which show a slight deviation from linearity. In complex 5, the
azomethine bond, N1-C7, is 1.237(12) Å (1.267(12) Å) and is in conformity with a formal
C=N double bond, and the C5-O1 bond distance of 1.379(12) Å (1.368(16) Å) is slightly
shorter than the normal C–O single-bond distance. The bond distance for C6-N1 is 1.419(13)
Å (1.400(14) Å), which is close to the C–N single bond. This compound exits in the imine-ol
form clearly.
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Table 1. Bond lengths (Å) for complexes 2 and 5.

Complex 2 Complex 5

Au1-C8 2.006(4) Au1-C15 2.001(9)–2.007(9)
P1-C22 1.842(4) P1-C22 1.832(9)–1.834(9)
O1-C9 1.175(7) N1=C7 1.237(12)–1.267(12)
Au1-P1 2.2931(10) Au1-P1 2.293(2)

3.3. HSA Binding

The interaction of chemotherapeutic drugs with blood plasma proteins has been un-
der intensive investigation in recent years due to their function in drug transport and
metabolism, principally with serum albumin, which accounts for 55% of the protein in
blood plasma [41,42]. The interaction of the complexes with HSA were assessed by HSA
fluorescence quenching (at 335–340 nm) upon increasing the concentration of the complexes
at 295 K (Figure 6). The characteristic emission originating from the tryptophan units in
HSA diminishes significantly with minute additions of the complexes, confirming the
interaction process between the gold complexes and HSA. The data for the five complexes
are summarized in Table 2. The quenching process can be due to the collisions between the
excited fluorophore (HSA) with the quencher (dynamic quenching) or to the interaction
between the fluorophore and the quencher at the ground state forming a non-fluorescent
complex (static quenching). The quenching constants indicate a static quenching mecha-
nism, as our complexes have rates much higher than 2.00 × 1010 M s−1 (maximum rate for
dynamic quenching) [43]. From Equation (3) (Scatchard equation), the binding constants
were extracted, highlighting the importance of the structural modifications on the bind-
ing to HSA (Table 2). Replacing triphenylphosphine with tricyclohexylphosphine, as in
proceeding from 1 to 2 and 3 to 5, caused a 30- to 170-fold enhancement in the binding
affinity as a result of increasing the hydrophobicity. Introducing the o-phenolic moiety, as
in proceeding from 1 to 3 and 2 to 5, also induced strong increases in the binding affinities
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(40- and 240-fold increases, respectively). HSA is composed of three domains (DI, DII, and
DIII), two of which are hydrophobic regions [42,44,45]. The effect induced by the phenolic
group is believed to be produced by a combination of an increase in the hydrophobicity
as well as the capability of the hydroxy group to establish hydrogen-bonding and dipole
interactions. The role of the hydroxy group can be realized by comparing the effect of an
o-phenolic against a p-phenolic moiety; the latter has binding affinities 6400 times higher
due to the absence of intramolecular hydrogen bonding with the azomethine and the less
steric demanding position for interactions. All the gold complexes exhibited negative
values of ∆G0, demonstrating the spontaneous interaction with HSA protein with a trend
similar to that observed in the binding affinities (Table 2). The average binding site count
for our complexes followed the same trend seen in Kb; however, complex 4 (with the para
hydroxy) is the only one that shows “n” that approaches 2. Indeed, the number of binding
sites is more accurately describing the stoichiometric ratio of the compounds to HSA [46],
and hence complex 4 could be able to interact with HSA at two different sites.
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Table 2. Kinetic and thermodynamic parameters of human serum albumin (HSA)-binding at 295 K.

Compound Ksv (×104) Kq (×1012) Kb n ∆G0 (kJ mole−1)

1 4.7 6.71 5.70 × 103 0.82 −21.2
2 2.8 4.00 1.69 × 105 1.16 −29.9
3 38.9 55.57 2.31 × 105 0.96 −30.29
4 71.5 102.21 1.48 × 109 1.61 −51.8
5 37.1 52.96 4.03 × 107 1.37 −42.95

3.4. Anticancer Studies

The anticancer properties of complexes 1–5 were assessed against ovarian carcinoma
(OVCAR-3) and human lung adenocarcinoma (HOP-62) cell lines (see Table 3). The ob-
tained IC50 values for complexes 1 and 2 (the aldehyde containing complexes) ranged
from 12.45 to 15.86 µM. However, the Schiff base complexes 3–5 exhibited much higher
anticancer activities, with values ranging between 5.27 and 9.40 µM. Indeed, the IC50
values for the Schiff base-containing complexes are within a narrow range, which does
not allow the extraction of conclusive structure–activity relationships; however, complex
4 seems to be more cytotoxic against OVCAR-3 when compared to the other complexes,
indicating a possible preference for the para position for the hydroxy group.
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Table 3. Anticancer activities of the gold compounds and cisplatin in DMSO solutions.

Compound
OVCAR-3 (Ovarian

Carcinoma Cancer Cell Line)
(IC50% in µM)

HOP-62 (Non-Small-Cell
Lung Cancer Cell Line)

(IC50% in µM)

1 13.65 ± 0.53 12.45 ± 0.43
2 15.86 ± 0.53 14.82 ± 0.13
3 09.40 ± 0.17 07.25 ± 0.21
4 05.27 ± 0.11 08.16 ± 0.43
5 09.11 ± 0.12 07.55 ± 0.43

cisplatin 05.89 ± 0.12 03.91 ± 0.20

3.5. Molecular Docking

Auranofin and other gold(I) complexes have been reported to selectively inhibit the
enzyme TrxR, which is regarded as the main target of gold complexes [47]. Overexpression
of TrxR has been observed in numerous cancers and tumor cell lines, and cisplatin is one
of the most effective inhibitors of TrxR [48]. The active sites of TrxR contain the amino
acids selenocysteine (Sec) and cysteine (Cys), which contribute to the mechanism of action
of the enzyme [48]. Gold complexes such as auranofin are believed to interact with the
nucleophilic sulfur and selenium as their inhibitory mode of action. Thus, we selected
this receptor from the PDB for our docking studies, also given recent studies on its role
in cancer [49–51]. Molecular docking studies were conducted for our complexes in the
two active sites of the human TrxR enzyme (Figure 7), using auranofin as a benchmark for
comparison (Table 4). Auranofin has a greater preference for binding to site 1. Complexes
1, 3, 4, and 5 had docking scores similar to auranofin or higher in site 1. However, the
aldehyde-containing complexes (1 and 2) bound more strongly to site 2. Introducing the
Schiff base phenolic moieties altered the binding sites of the gold complexes, directing them
toward site 1, which may be related to their greater cytotoxic effects when compared to their
aldehyde precursors. Apart from van der Waals and hydrophobic interactions, complex 4
is the only complex that forms a hydrogen-donor interaction with cystine (Cys 59) in site
1, rationalizing the greater anticancer activity when compared to the other complexes. It
is worth mentioning that auranofin is the only complex able to form similar interactions
(H-donor with cystine) but in site 2.
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Table 4. Binding scores for Au-complexes as calculated by MOE.

Complexes
Docking Scores against Human Thioredoxin

Reductase (TrxR) (3QFB) Docking Scores
against HSA (1H9Z)

Site 1 Site 2

1 −8.54 −8.69 −7.22
2 −7.79 −9.03 −6.98
3 −8.09 −8.13 −7.99
4 −8.30 −7.92 −8.21
5 −8.43 −7.65 −8.21

auranofin −8.14 −7.65 -

We next undertook an additional molecular docking study to gain further insight into
the binding sites and possible interactions of the complexes to another protein, human
serum albumin (HSA) [52]. HSA was chosen because of its high levels in human serum and
its potential value as a ligand carrier for targeted anticancer drug delivery. The Schiff base
complexes had better binding scores when compared to their parent aldehyde complexes.
The obtained docking scores were in good agreement with the experimental data; hence,
molecular docking can be used to shed some light on the structural aspects of the binding
between the complexes and protein. The data indicated that all the complexes have a strong
preference to bind to the DII domain. The HSA pocket (DII) is surrounded by Asp183,
Glu184, Asp187, Glu188, Lys190, Ala191, Ala194, Arg197, Asn429, Lys432, Val433, Lys436,
Tyr452, Val455, Val456, Asn458, Gln459, and Val462 amino acids; some of these amino
acid residues are involved in the hydrophobic and van der Waals interactions with the
complexes; 3 and 4 in particular are involved in a π–π interaction with Try452 (Figure 8).
Complex 2 is positioned slightly differently in the same pocket.
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4. Conclusions

In the current work, a simple strategy is introduced to structurally alter the an-
ticancer activities of gold complexes with the general formula Au(PR3)(C≡C-Ar). P-
ethynylbenzaldyde was used as a building block due to the reactive nature of the aldehyde
group. We chose to pursue this strategy via reacting the aldehyde containing complexes
with 2-aminophenol and 4-aminophenol, forming Schiff base gold complexes 3–5. The
effect of the structural modifications was assessed by studying the protein binding affini-
ties of the gold complexes as well as their cytotoxic effects on two cancer cell lines. The
HSA-binding study was conducted by fluorescence quenching assay and showed that the
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Schiff base complexes had a much greater binding capacity than their parent aldehyde
complexes; furthermore, the impact of the position of the hydroxy group was pronounced,
as complex 4 (4-hydroxy) displayed a binding constant 6400 times higher than complex
3 (2-hydroxy). The IC50 of the complexes against OVCAR-3 and HOP-62 cell lines high-
lighted the functional significance of the structural modifications; the Schiff bases (3–5)
generally had greater cytotoxic effects than the aldehyde-containing complexes (1 and
2). Moreover, compound 4 had cytotoxic activity comparable to that of cisplatin against
OVCAR-3, suggesting the importance of the relative position of the hydroxy group. The
structural–properties relationships were further explored by molecular docking studies
against the enzyme thioredoxin reductase (TrxR), a well-known target for gold complexes
in cancer cell lines, and human serum albumin. The docking scores were in agreement with
the observed experimental data, highlighting how small structural modifications can alter
physiochemical properties. The current synthetic strategy provides extensive possibilities
for exploring new gold(I)-based anticancer drugs, as the aldehyde group can undergo a
large range of condensation, cyclization, and nucleophilic addition reactions.
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