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Abstract: Neuropathic pain in humans results from an injury or disease of the somatosensory nervous
system at the peripheral or central level. Despite the considerable progress in pain management
methods made to date, peripheral neuropathic pain significantly impacts patients’ quality of life,
as pharmacological and non-pharmacological methods often fail or induce side effects. Topical
treatments are gaining popularity in the management of peripheral neuropathic pain, due to ex-
cellent safety profiles and preferences. Moreover, topical treatments applied locally may target the
underlying mechanisms of peripheral sensitization and pain. Recent studies showed that peripheral
sensitization results from interactions between neuronal and non-neuronal cells, with numerous
signaling molecules and molecular/cellular targets involved. This narrative review discusses the
molecular/cellular mechanisms of drugs available in topical formulations utilized in clinical practice
and their effectiveness in clinical studies in patients with peripheral neuropathic pain. We searched
PubMed for papers published from 1 January 1995 to 30 November 2020. The key search phrases for
identifying potentially relevant articles were “topical AND pain”, “topical AND neuropathic”, “topi-
cal AND treatment”, “topical AND mechanism”, “peripheral neuropathic”, and “mechanism”. The
result of our search was 23 randomized controlled trials (RCT), 9 open-label studies, 16 retrospective
studies, 20 case (series) reports, 8 systematic reviews, 66 narrative reviews, and 140 experimental
studies. The data from preclinical studies revealed that active compounds of topical treatments exert
multiple mechanisms of action, directly or indirectly modulating ion channels, receptors, proteins,
and enzymes expressed by neuronal and non-neuronal cells, and thus contributing to antinociception.
However, which mechanisms and the extent to which the mechanisms contribute to pain relief
observed in humans remain unclear. The evidence from RCTs and reviews supports 5% lidocaine
patches, 8% capsaicin patches, and botulinum toxin A injections as effective treatments in patients
with peripheral neuropathic pain. In turn, single RCTs support evidence of doxepin, funapide,
diclofenac, baclofen, clonidine, loperamide, and cannabidiol in neuropathic pain states. Topical
administration of phenytoin, ambroxol, and prazosin is supported by observational clinical studies.
For topical amitriptyline, menthol, and gabapentin, evidence comes from case reports and case
series. For topical ketamine and baclofen, data supporting their effectiveness are provided by both
single RCTs and case series. The discussed data from clinical studies and observations support the
usefulness of topical treatments in neuropathic pain management. This review may help clinicians
in making decisions regarding whether and which topical treatment may be a beneficial option,
particularly in frail patients not tolerating systemic pharmacotherapy.
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1. Introduction

Neuropathic pain (NP) in humans arises as a consequence of a lesion or disease of
the somatosensory nervous system [1] and affects 7–10% of the world population [2].
Patients suffering from chronic NP are characterized by higher health care utilization,
higher risk of comorbidities such as depression, anxiety, and sleep disturbances, and
lower quality of life compared to patients with chronic non-neuropathic pain [3]. The
negative impact of NP on patients’ functioning and quality of life results, among others,
from an unsatisfactory analgesic effect of neuropathic pain treatments. In clinical practice,
most of the recommended pharmacological agents have moderate efficacy with a high
number needed to treat (NNT) [4]. The NNT is the number of patients that need to be
treated compared to placebo in a clinical trial to achieve, in one patient, at least 50%
pain relief. The recommended oral pharmacotherapy is associated with a high risk of
drug–drug interactions and side effects, potentially interfering with the analgesic effect,
and limiting patients’ satisfaction. Non-pharmacological methods may be either little or
moderately effective, or not available in clinical practice. Therefore, despite recent progress
in developing new treatments of NP, many patients remain refractory to, or intolerant of,
existing pharmacological and non-pharmacological therapies [5,6]. New drugs and/or
routes of administration improving the effectiveness of NP management are constantly
being sought. Nowadays, topical routes of analgesics administration are gaining popularity
in pain medicine since topical treatments have an excellent safety profile and preference
compared to systemic drugs in patients with peripheral NP [5,6]. Thus, in terms of safety,
most vulnerable groups of subjects suffering from NP (e.g., elderly, frail patients) may
particularly benefit from topical, rather than systemic, treatments [7].

This literature review aims to present the evidence from clinical and preclinical stud-
ies on possible molecular/cellular mechanisms of various topical treatments utilized in
patients with peripheral NP, their modes of action in the peripheral neuronal and non-
neuronal cells, and their clinical effectiveness. The current knowledge on topical treatments,
possible molecular mechanisms, and their effectiveness in clinical practice is crucial for
health care professionals dealing with patients suffering from peripheral NP.

We searched PubMed for papers published from 1 January 1995 to 30 November 2020.
The key search phrases for identifying potentially relevant articles were “topical AND
pain”, “topical AND neuropathic”, “topical AND treatment”, “topical AND mechanism”,
“peripheral neuropathic”, and “mechanism”. We extracted all clinical trials, retrospective
studies, case reports, narrative reviews, systematic reviews, and experimental studies
in vivo and in vitro; double reports were left out. The result of our search was 23 random-
ized controlled trials (RCT), 9 open-label studies, 16 retrospective studies, 20 case (series)
reports, 8 systematic reviews, 66 narrative reviews, and 140 experimental studies. Our
review did not include studies indexed in databases other than PubMed.

2. Topical Treatments in Patients with Neuropathic Pain

The somatosensory nervous system may become injured at the peripheral or central
level, which can result in peripheral or central NP, respectively. Common conditions associ-
ated with peripheral NP in humans include postherpetic neuralgia (PHN), painful diabetic
neuropathy (PDN), trigeminal neuralgia, painful radiculopathy, HIV-associated neuropathy
(human immunodeficiency virus), post-amputation pain, chemotherapy-induced periph-
eral neuropathy (CIPN), and peripheral nerve injury pain such as carpal tunnel syndrome
or postsurgical NP. Stroke, spinal cord injury, and multiple sclerosis may, in turn, result in
central NP syndromes [8].
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The peripheral somatosensory nervous system may be damaged at several levels—
peripheral nerve endings, axons, or cell bodies in the dorsal root ganglions (DRG)—in
multiple ways, such as mechanically, thermally, chemically, and through infectious factors.
In humans, the exact mechanisms of NP generation are not fully elucidated. However,
preclinical studies with NP animal models gave some insight into the peripheral mecha-
nisms involved [9]. The injury of peripheral neurons, independently of the cause and level
of the damage, induces complex functional and structural changes not only in neurons
(sensory and motor) and glial cells but also in non-neuronal cells such as keratinocytes
and immunocompetent cells (e.g., macrophages, mast cells, neutrophils). The complex
neuro–immune–cutaneous interactions, their changes observed after peripheral nerve
injury, and their role in generation and maintenance of NP were reviewed in our paper
published recently [10].

Although only a few molecular/cellular mechanisms of NP in humans are directly
elucidated [10], the following preclinical and clinical findings justify the utilization of
topical analgesics in clinical practice.

• Input from hyperexcitable peripheral neurons is crucial for development, modulation,
and maintenance of NP [11].

• Upon physiological nociception, peripheral neurons exert complex interactions with
immunocompetent cells and keratinocytes via neuropeptides, neurotransmitters, cy-
tokines, and other signaling molecules acting on corresponding ion channels or re-
ceptors (Figure 1) [12]. Once pathological conditions (i.e., nerve injury, inflammation)
occur, these interactions result in overactivation and disturbed functioning of neuronal
and non-neuronal cells, finally contributing to neuronal hyperexcitability, peripheral
sensitization, and pain [11].
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gamma-aminobutyric acid receptors B, Kv—voltage-gated potassium channels, OR—opioid 
receptors, CB1, CB2—cannabinoid receptors type 1 or 2, CCL-R—chemokine receptors, IL-R—
interleukin receptors, TrkA—tropomyosin receptor kinase A, HCN—hyperpolarization-activated 
cyclic nucleotide-gated channels, P2X3—P2X purinoceptors 3, GPCR—G protein-coupled receptors, 
TLR—Toll-like receptors. Created with BioRender.com. 
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• Inhibition of peripheral sensitization can diminish and/or abolish the signs and
symptoms of central sensitization in humans with peripheral and central NP [13,14].

A peripheral lesion of the nervous system induces more localized signs and symptoms
of NP (e.g., allodynia, hyperalgesia) compared to a central lesion, which might be targeted
by analgesics applied topically [15]. To improve daily clinical practice and to identify
patients for whom a topical treatment should be considered, the definition of “localized
neuropathic pain” (LNP) has been proposed [16]. LNP is a type of NP that is characterized
by a consistent and circumscribed area(s) of maximum pain, associated with negative
or positive sensory signs and/or spontaneous symptoms characteristic of neuropathic
pain [16] and is felt superficially [15]. The circumscribed area of LNP is not larger than a
letter-size piece of paper and may be diagnosed in 60% of NP patients, and up to more
than 80% of PHN patients [16]. However, epidemiological data are scarce and estimation
of LNP prevalence is broad [2]. Nevertheless, the proposed definition of LNP may help
clinicians to optimally select the patients being best candidates for topical treatments.

Clinical data reviewed by Finnerup et al. [5] and Moisset et al. [6] show relatively
good evidence supporting the use of topical analgesics in patients with LNP, especially
in view of the low risk of side effects associated with this route of administration. Based
on the current literature, the best evidence coming from randomized clinical trials (RCTs)
to treat LNP with topical analgesics is for 5% lidocaine patches, 8% capsaicin patches,
and botulinum toxin A (BTX-A) intradermal injections [5,6]. A recent review and clinical
recommendations on NP management determined 5% lidocaine patches (local anesthetic
drug) as first-line treatment and 8% capsaicin patches (local anesthetic drug) and BTX-A
(peripherally acting muscle relaxant) as second-line treatments in patients with LNP [6].

The recommendation for the use of 5% lidocaine patches in LNP is weak with a
moderate quality of evidence, according to the Grading of Recommendations Assessment,
Development, and Evaluation (GRADE) system. However, topical lidocaine has an ex-
cellent safety profile and is commonly used in patients with several LNP syndromes [6].
Topically applied 8% capsaicin patches and BTX-A injections have a weak recommendation
for use in patients with LNP with a high quality of evidence [6]. The clinical use of 8%
capsaicin patches is limited by the special requirements of the application, i.e., application
in specialized pain clinics by a well-trained team. Similar concerns are related to sub-
cutaneous injections of BTX-A, whose availability is limited to specialized pain centers
only [6].

Despite lacking robust evidence, several other topical treatments are currently used in
clinical practice in patients with LNP, such as anesthetic drugs (capsaicin at low concentra-
tions, ketamine), antiepileptics (gabapentin, phenytoin, cannabidiol), muscle relaxants (ba-
clofen), antidepressants (amitriptyline, doxepin), mucolytics (ambroxol), antihypertensives
(clonidine, prazosin), anti-inflammatory and antirheumatic drugs (diclofenac), antipru-
ritics (menthol), antipropulsives (loperamide), and other analgesics (funapide) [17–21].
The scientific evidence for their use is inconclusive and comes mainly from case reports,
case series, observational studies, or single RCTs. However, the low level of evidence
does not exclude the possible effectiveness and beneficial analgesic effect in a given sub-
ject, particularly when other treatments fail, are contraindicated, or induce unacceptable
side effects.

Topical analgesics utilized in clinical practice have undoubted advantages, including
reduction in or absence of systemic side effects and reduced risk of overdose due to low or
no systemic absorption from topical formulations, relatively few drug–drug interactions,
ease of use and dose determination, avoidance of first-pass metabolism, improved patients’
compliance, and direct access to the target site and underlying pain mechanism. The
disadvantages include the need for repeated applications per day for creams or gels, local
side effects such as skin irritation, itch, or reddening, special requirements for 8% capsaicin
patches and BTX-A application, and clinical usefulness limited to patients with LNP
only [17–21]. Nevertheless, looking at molecular mechanisms, topical drugs act locally at
peripheral mechanisms involved in NP generation, which is in line with current principles
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in pain medicine pointing out the need for personalized and mechanism-based approaches
to pain management [22].

Molecules smaller than 500 dalton can easily penetrate the stratum corneum [23].
Nearly all active molecules are smaller than 500 dalton, and thus topically applied active
molecules diffuse across the stratum corneum and influence structures in the epidermis
(e.g., nociceptors, keratinocytes). Some active molecules penetrate deeper layers depending
on the active molecule and the topical formulation. Active molecules of topical formulations
may act on several distinct ion channels, receptors, proteins, or enzymes expressed by either
neuronal or non-neuronal cells (Figure 1). The result of this process is the interruption
of mutually intensifying stimulation loops, reduction in peripheral sensitization, and
peripheral input, resulting in a reduction in NP, e.g., hyperalgesia and allodynia, in patients
with LNP (Figure 2).
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Figure 2. Topical treatments utilized in clinical practice and their molecular/cellular mechanisms in patients suffering from
localized NP (LNP). Active molecules from topically applied drug formulations modulate the corresponding ion channels,
receptors, enzymes, or proteins on neuronal and non-neuronal cells. Abbreviations: Nav—voltage-gated sodium channels,
TRPV1—transient receptor potential vanilloid 1, VGCCs—voltage-gated calcium channels, NMDAR—N-methyl-D-aspartate
receptors, α1-AR—α1 adreno receptors, α2-AR—α2 adreno receptors, GABAR—gamma-aminobutyric acid receptors, CB—
cannabinoid receptors, COX-2—cyclooxygenase 2, SNAP-25—synaptosome associated protein 25, OR—opioid receptors,
TRPM8—transient receptor potential melastatin 8.

Since peripheral hyperexcitable cells of different types may become a target for topi-
cally administered analgesics, it is worth learning which receptors, ion channels, and/or
enzymes involved in peripheral sensitization topical treatments may modulate directly or
indirectly. In the subsequent sections, molecular/cellular mechanisms are presented, with
a short description of the pathological changes occurring upon NP conditions, followed by
preclinical and clinical data on topical treatments modulating a given ion channel, recep-
tor, enzyme, or protein. Topical drugs utilized in subjects with LNP often exert multiple
mechanisms of action, but to what extent each of these contributes to the analgesic effect
observed in humans is not elucidated. This paper focuses mainly on topical treatments
utilized in clinical practice. However, there are numerous preclinical trials pointing at the
antinociceptive effect of substances administered topically in NP animal models, though
they have not yet been introduced in clinical practice and are thus not included in this
review [24,25].
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3. Molecular/Cellular Mechanisms of Topical Treatments in Patients with Localized
Neuropathic Pain
3.1. Treatments Acting on Voltage-Gated Sodium Channels

Voltage-gated sodium channels (Nav) are widely expressed in excitable cells, includ-
ing peripheral and central neurons and cardiac and muscle cells, and are crucial for the
initiation and propagation of action potentials. In sensory neurons, Nav determine the
electrical excitability and play a key role in pain sensation by controlling afferent impulse
discharges. Nav are expressed by non-excitable cells as well (e.g., keratinocytes, cancer
cells), where they are involved in numerous biological processes [26]. The Nav family
includes nine isoforms, 1.1 to 1.9, with different expressions within the peripheral and cen-
tral nervous systems (CNS) and different physiological properties. In adulthood, Nav1.1,
Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed in primary sensory neurons and are
involved in physiological nociception. However, they have different kinetics and distinct
patterns of expression depending on the functional groupings of sensory neurons. Pre-
clinical studies showed that some Nav subtypes with an abnormal function are linked to
NP or other chronic pain states, i.e., Nav1.3, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 [26,27].
Among these channels, subtypes Nav1.7, Nav1.8, and Nav 1.9 are highly expressed at noci-
ceptors and thus may be good targets for topical analgesics. The most studied Nav1.7 and
Nav1.8 differ with respect to their kinetic and voltage-dependent properties. Preclinical
data showed that Nav1.7 serves as a threshold channel in peripheral sensory neurons;
in turn, Nav1.8 contributes to repetitive firing and neuronal excitability. Therefore, the
modulation of the latter could have a considerable impact on hyperexcitable neurons [28].
The role of Nav in nociception in humans has been confirmed in observations of individuals
with loss-of-function mutations in the SCN9A gene coding for Nav1.7 and SCN11A coding
for Nav1.9, exhibiting congenital insensitivity to pain with no other sensory abnormalities,
except anosmia [29]. On the contrary, gain-of-function mutations in SCN9A in humans
are linked to severe neuropathic pain states such as primary erythromelalgia and parox-
ysmal extreme pain disorder. Moreover, a common single-nucleotide polymorphism in
SCN8A, SCN9A, SCN10A, and SCN11A genes coding for Nav1.6, Nav1.7, Nav1.8, and
Nav1.9, respectively, may be linked to increased sensitivity to pain with neuropathic and
non-neuropathic components in humans [29–32].

In models of neuropathic and inflammatory pain, extensive alterations in distribution,
expression, trafficking, and/or biophysical properties of Nav subtypes have been observed.
The expression and function of Nav may be regulated by intracellular signaling protein
kinases (e.g., protein kinase A—PKA, protein kinase C—PKC, mitogen-activated protein
kinase—MAPK), which in turn are subjects of injury-induced changes. The alterations in
intracellular signaling pathways have been linked to sensory neuron hyperexcitability and
pain in preclinical models [33].

In neuronal injury models, Nav1.7 and Nav1.8 were shown to accumulate at nerve
injury sites [34]. However, expression of Nav in peripheral nerves may be up- or down-
regulated depending on the NP animal models [27]. The up-regulation of Nav has been
observed in humans with NP as well [35]. The accumulation and/or displacement of Nav
at the nerve injury site and across the axon lead to membrane remodeling and modifications
in Nav channels’ function, followed by changes in membrane electrical excitability (e.g., fast
channel activation, increased Na+ current leading to hyperexcitation of peripheral nerve
fibers) [28]. In models of inflammatory pain, the function of Nav is modulated by multiple
inflammatory mediators such as prostaglandin E2 (PGE2), nerve growth factor (NGF),
glial derived neurotrophic factor (GDNF), adenosine triphosphate (ATP), bradykinin,
serotonin, adrenaline, and cytokines, e.g., tumor necrosis factor α (TNFα) and interleukin
1β (IL-1β), increasing the Na+ currents and excitability of peripheral nerve fibers in the
injured area [27]. Taken together, the involvement of neuronal Nav in peripheral nerve
hyperexcitability and pain behavior has been confirmed [36,37].

Furthermore, Nav1.1, Nav1.6, and Nav1.8 are expressed on both nerves and ker-
atinocytes. These Nav on keratinocytes could possibly contribute to pain, due to their
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cross-talk with other epidermal structures. In patients with CRPS and PHN, the painful
skin biopsies displayed Nav1.1, Nav1.2, and Nav1.8 immunolabeling, and substantially
increased immunolabeling for Nav1.5, Nav1.6, and Nav1.7. Control skin exhibited im-
munolabeling for Nav1.5, Nav1.6, and Nav1.7 only [38]. Topically applied local anesthetics
(lidocaine), antiepileptics (phenytoin), antidepressants (amitryptyline, doxepin), and other
analgesics (funapide) and drugs (ambroxol) are thought to exert their analgesic effect in
humans mainly via Nav inhibition [39–46].

3.1.1. Lidocaine

Lidocaine, a local anesthetic agent having an aminoamide structure, is commonly
used in regional anesthesia techniques. The main mechanism of action of lidocaine is
through blockade of Nav channels. Lidocaine and other local anesthetics exert a frequency-
dependent block (i.e., block intensity increases at higher action potential firing frequencies),
bind preferably to the open or inactivated state of Nav, and decrease the intracellular influx
of Na+, resulting in inhibition of the electrical impulse initiation and propagation [47,48].
Interestingly, Nav1.8 is about five times more sensitive to lidocaine than Nav1.7 or one
of the other Nav subtypes. The modulation of Nav1.8 could have a significant impact
on the hyperexcitable neurons, as Nav1.8 is responsible for repetitive firing and neuronal
excitability [28,49,50]. In pain medicine, besides regional anesthesia techniques, topical and
intravenous administration of lidocaine is commonly used, providing exposure of periph-
eral neurons to lidocaine at doses far below those that block nerve impulse propagation
after perineural injection. However, even such low concentration of lidocaine is sufficient
to induce an analgesic, but not an anesthetic, effect. The analgesic effect is related to the fact
that the intensity of lidocaine blockade increases at higher action potential firing frequen-
cies, observed in injured neurons expressing pathological Nav (i.e., frequency-dependent
block) [28,47]. Topical application of lidocaine in NP animal models depresses ectopic
activity in Aβ-, Aδ-, and C-fibers dose-dependently [51], and it reduces heat hyperalgesia in
an animal model of HIV neuropathy [52]. In healthy subjects, differential effects of topical
lidocaine on nociceptive Aδ- and C-fibers have been observed [39]. The increase in the
sensory threshold and decrease in the evoked potentials amplitude were more prominent
in C- than in Aδ-fibers [39]. Moreover, C-fibers are suggested to be a key player in chronic
pain [53]. Taken together, preclinical and clinical data support topical administration of
lidocaine in pain states, as it blocks the overactive Nav and suppresses the ongoing activity
of rapidly firing neurons, which are thought to be the main mechanisms of NP [11,26–28].

In numerous preclinical in vitro and in vivo studies, lidocaine administered intra-
venously exhibited other mechanisms of action besides Nav blockade, which might con-
tribute to antinociception and local anesthetic activity. Whether these mechanisms play a
role in pain relief following topical application of lidocaine is still not clear:

• Blockade of muscarinic acetylcholine receptors (mAChR) at concentrations 1000-fold
lower than needed for Nav blockade [54];

• Blockade of N-methyl-D-aspartate receptors (NMDAR) and inhibition of glutamate
release from nerve terminals at clinically relevant plasma concentrations after intra-
venous administration [55–57];

• Inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels at
concentrations which block Nav1.8 [58];

• Inhibition of Toll-like receptor 4 (TLR4) at concentrations which block Nav1.8 [59];
• Blockade of voltage-gated calcium channels (VGCCs), but at doses 100-fold higher

than needed for Nav blockade [60,61];
• Blockade of several types of potassium channels: voltage-gated (Kv), tandem pore

domain (K2P), and inwardly rectifier (Kir), at concentrations several-fold higher than
needed for Nav blockade [62–64];

• Desensitization of transient receptor potential ankyrin 1 (TRPA1) ion channels [65];
however, activation of transient receptor potential vanilloid 1 (TRPV1) and TRPA1 has
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been observed in rodents as well, which may contribute to lidocaine-induced neuro-
toxicity [66,67];

• Inhibition of acid-sensing ion channels (ASIC), but at doses 100-fold higher than
needed for Nav blockade [68];

• Inhibition of P2X purinoceptors receptor 7 (P2X7) subunits, expressed in microglia,
but the exact mechanism of interaction between lidocaine and the purine receptor
remains unclear [69];

• Suppression of NGF/tropomyosin receptor kinase A (TrkA) signaling due to the
structural similarity of Nav and TrkA [70];

• Anti-inflammatory properties—reduction in neuroinflammation, probably via G
protein-coupled receptors (GPCR), inhibition of granulocytes migration and microglial
activation, reduced release of inflammatory cytokines TNFα, IL-6, and IL-1β from
microglia and macrophages, reduced sensitization of peripheral nerve endings; more-
over, prolonged (hours) exposure of cells to lidocaine enhances its effects on GPCR
signaling [71–75];

• Modulation of glycinergic pathways—lidocaine metabolite N-ethyl glycine inhibits
spinal glycine transpor ter (GlyT1) which increases levels of glycine in the serum and
spinal cord, resulting in antinociception in an NP model [76,77].

In clinical practice, several formulations of topical lidocaine producing local anal-
gesia have been used to date such as EMLA patches or cream (eutectic mixture of local
anesthetics—lidocaine 2,5%, prilocaine 2,5%), 2–11% lidocaine gel, cream, or spray, 7%
lidocaine with 7% tetracaine cream, and 5% lidocaine patches. However, only 5% lidocaine
patches are registered and recommended in patients with LNP [5,6,78]. Topical 5% lido-
caine patches were first registered in the USA in 1999 and, since then, have been commonly
used in patients with LNP, such as PHN, PDN, post-traumatic, and post-surgical nerve
injury [78]. In clinical trials conducted in patients with PHN, 5% lidocaine patches were
applied topically over the painful area(s), which reduced the intensity of all neuropathic
pain characteristics measured on the Neuropathic Pain Scale (NPS), and allodynia [79,80].
A clinical study showed that treatment with topical lidocaine decreased activation of
specific regions in the CNS, measured with functional magnetic resonance imaging, im-
plying a close correlation between peripheral input and central pain processing [81]. To
date, the clinical use of 5% lidocaine patches in LNP is supported by several RCTs and
reviews [82–84].

3.1.2. Phenytoin

Phenytoin is a hydantoin derivative, a first-generation anticonvulsant drug, effec-
tive in the treatment of generalized tonic–clonic seizures, complex partial seizures, and
status epilepticus. Phenytoin non-selectively blocks voltage-dependent Nav, leading to a
reduction in the firing of neurons, and resulting in anticonvulsant and anti-neuropathic
properties [40]. It is suggested that phenytoin blocks Nav poorly at slow firing rates but
suppresses the high-frequency repetitive firing [40]. Phenytoin (IC50 = 40 µM) has six times
stronger Nav binding activity than lidocaine (IC50 = 240 µM) [85]. The non-selective Nav
blockade by phenytoin is thought to be of key importance in LNP management. How-
ever, other preclinical studies reveal other mechanisms of action, which might potentially
contribute to its antinociceptive properties:

• Blockade of L-type VGCCs, observed in smooth muscle preparations as the inhibition
of their spontaneous activity [86];

• Potentiation of gamma-aminobutyric acid (GABA)-induced currents through modula-
tion of the gamma-aminobutyric acid A receptor (GABAAR) in cultured rat cortical
neurons [87];

• Anti-inflammatory properties—reduction in tissue edema, decrease in inflammatory
cell infiltration, and increase in epidermal growth factor, vascular endothelial growth
factor, and transforming growth factor-β (TGFβ) in a rat model of wound healing [88];

• Antinociceptive effect in inflammatory pain models [89].
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In pain medicine, systemic phenytoin is recommended and utilized in patients with
trigeminal neuralgia as monotherapy or add-on therapy [90] and in patients with NP
exacerbations [91,92]. To date, various topical formulations containing phenytoin have
been used to treat diabetic wounds and ulcers, and other difficult-to-treat wounds to
enhance their healing [93]. Data from preclinical studies support phenytoin effectiveness
in wound healing [88]. However, the evidence on its efficacy in clinical practice is still
inconsistent [94]. The long history of topical phenytoin utilization in wound healing
without any signs of dermatotoxicity and its possible mechanisms of action lead to the
idea of topical phenytoin application in patients with LNP. To date, observational studies
on the efficacy and safety of topical phenytoin up to 30% have been performed in more
than 100 patients with LNP of several etiologies including hernia pain [95–101]. In an
observational study describing 70 neuropathic pain patients treated with phenytoin 5% and
10% creams, 70% of these patients experienced at least 50% pain relief [95]. In 16 patients,
phenytoin plasma levels were measured. No phenytoin plasma levels were detected, even
after the application of 6.7 g of the phenytoin 10% cream in one case. Since phenytoin
cream can provide pain relief around 15 min after application and polyneuropathic pain
is usually symmetrical in location (both feet and/or lower legs) and intensity, a single-
blind placebo-controlled test (SIBRET) was developed [96]. On one area, placebo cream
consisting of the base (placebo) cream was applied, and on the other area, phenytoin 10%
cream was applied. Responders experienced more pain relief in the phenytoin 10%-applied
area than in the placebo cream-applied area within 30 min after application. In the first
study evaluating SIBRET, of the 21 patients, 15 were classified as responders [96]. The mean
pain reduction after 30 min as measured with the 11-point numerical rating scale in the
phenytoin 10% cream area was 3.3 (SD: 1.3) and in the placebo cream area 1.2 (SD: 1.1). The
pain-relieving effects of phenytoin cream compared with placebo cream were confirmed
by a study examining the double-blind placebo-controlled response test (DOBRET) [98].
Six out of 12 NP patients were classified as responders. All responders had at least 30%
pain reduction, and four out of six had at least 50% pain reduction in the phenytoin 10%
cream-applied area.

Future RCTs, such as a triple cross-over trial evaluating 10% and 20% phenytoin creams
compared with placebo cream, in painful chronic idiopathic axonal polyneuropathy (CIAP)
patients will give more insight into the pain-reducing effect of topical phenytoin [102].
Additionally, the predictive value of DOBRET for the maintenance of pain relief with
topical phenytoin will be explored.

3.1.3. Ambroxol

Ambroxol is a mucolytic drug with several properties including secretolytic and
secretomotor actions. Data from preclinical studies have shown its potent local anesthetic
activity due to Nav1.7 and Nav1.8 inhibition [41] and anti-inflammatory activity due to
reduction in proinflammatory cytokines such as IL-1β, IL-6, IL-17, IL-22, IL-23, TGFβ,
and TNFα [103]. Ambroxol is a very potent Nav blocker, approximately 40 times stronger
than lidocaine [104], and probably preferentially blocks the subtype Nav1.8, which is
responsible for repetitive firing and neuronal excitability [28,41]. Ambroxol has been
studied in patients with different NP syndromes, including trigeminal neuralgia, and has
shown relevant pain relief following topical administration of 20% ambroxol cream [42,105].
In a case series of CRPS patients, topical 20% ambroxol reduced spontaneous pain, edema,
allodynia, hyperalgesia, and skin reddening and improved motor dysfunction and skin
temperature [106]. The evidence for topical ambroxol in NP comes from observational
studies only but might be beneficial in some patients with LNP.

3.1.4. Amitriptyline

Amitriptyline is a tricyclic antidepressant (TCA), recommended and used in oral
formulations as a first-line treatment in patients with peripheral and central NP [5,6].
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The analgesic mechanism of action of TCAs relies on targeting the multiple sites in the
nociceptive system, observed in experimental studies, either in the CNS or in the periphery:

• Inhibition of neuronal reuptake of noradrenaline and serotonin in the spinal cord [44];
• Increase in dopamine concentration in the spinal cord [44];
• Activation of the locus coeruleus in the posterior brainstem and activation of the

descending noradrenergic endogenous antinociceptive system [44];
• Blockade of Nav—most potent for Nav1.7, Nav1.8, and Nav1.9 in use-dependent man-

ner in the range of therapeutic plasma concentrations for the treatment of depression
and NP [43,107,108];

• Blockade of NMDAR in cultured rat brain neurons [109];
• Activation of Kv channels in vivo [110];
• Increase in GABAAR and gamma-aminobutyric acid B receptor (GABABR) activa-

tion [111,112];
• Indirect involvement of opioid system, probably through endogenous opioid re-

lease [113];
• Activation of TRPA1 channels and subsequent probable desensitization contributing

to the analgesic effect [108];
• Down-regulation of α1 adrenergic receptor (α1-AR) in the rat brain [114];
• Blockade of serotonin, histamine, and muscarinic receptors in the peripheral nervous

system [115,116];
• Inhibition of the neuronal uptake of adenosine [117];
• Inhibition of the production of nitric oxide and PGE2 in synovial tissue cultures [118].

The results from preclinical studies suggest that the main antinociceptive mechanism
of action of amitriptyline is related to the potent blockade of Nav1.7, Nav1.8, and Nav1.9,
since peripheral injection of amitriptyline induced local anesthesia lasting longer than
that after bupivacaine injection in rats [119]. The antiallodynic effect of peripherally
administered amitriptyline as a subcutaneous injection has been shown in a rodent model
of streptozotocin (STZ)-induced diabetic neuropathy [120]. Another preclinical study
showed that topical application of amitriptyline was more potent than lidocaine at the
same concentrations in providing cutaneous analgesia in rats [121]. Taken together, the
preclinical evidence shows that topical application of amitriptyline exerts antinociceptive
and antiallodynic effects in NP and acute pain models [108,119–121]. In healthy volunteers,
local amitriptyline injection was evaluated as an ulnar nerve blockade, though it was found
to be less effective than bupivacaine injection [122]. Topical application of amitriptyline
in 50 mmol/L and 100 mmol/L solutions was significantly more effective in providing
cutaneous analgesia than placebo in healthy human volunteers, with some subjects having
a complete analgesia lasting several hours [123]. Topical applications of amitriptyline in
several concentrations have been tested in patients with different LNP syndromes; however,
results were ambiguous. The tendency was that the higher the concentration, the more
pronounced the effect. In most clinical trials, the combination of amitriptyline and ketamine
in a 2:1 ratio was evaluated [124]. Some clinical trials of topical administration of 1–5%
amitriptyline in combination with ketamine and in various NP syndromes (PHN, PDN,
post-traumatic NP, painful peripheral neuropathy) did not show statistical significance in
pain relief [125–127]. On the other hand, a clinical trial following an enrichment design
evaluating topical amitriptyline 4% and ketamine 2% in PHN patients showed a statistical
significance compared with topical placebo [128]. Data from case reports indicate pain-
relieving effects of topical 5–10% amitriptyline applications in patients with PDN, CIAP,
CRPS, and post-traumatic NP [124,129,130]. However, a systematic review assessing the
analgesic effect of topical amitriptyline in patients with LNP, published in 2015, concluded
that data from RCTs evaluating the lower concentrations of amitriptyline (up to 5%) do
not support topical amitriptyline for LNP [131]. Nevertheless, two recently published
clinical trials (one case series, one pilot study) showed some analgesic effectiveness of
10% topical amitriptyline in patients with CIPN, which suggests its possible usefulness in
clinical practice, particularly in patients with refractory LNP [108,132].
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3.1.5. Doxepin

Doxepin is a TCA which may be administered topically in patients with NP. Doxepin
is supposed to share the same analgesic mechanisms of action with amitriptyline. The
analgesic efficacy of topical 3.3% doxepin alone or in combination with 0.025% capsaicin
was shown in an RCT in 200 patients with chronic NP and CRPS [133]. Recently, the
analgesic effect of topical 5% doxepin was described in a case report of a pediatric patient
with lymphoblastic leukemia and severe NP following antifungal treatment [134]. More
evidence on the analgesic efficacy of locally administered doxepin comes from two RCTs in
cancer patients with oral pain due to mucositis, following radiotherapy. The mouthwash
containing 25 mg doxepin in 5 ml water significantly reduced oral mucositis pain during
the first 4 h after administration; however, the effect was minimal [135,136].

Data from preclinical studies suggest that various TCAs may differentially block
Nav. In animal models, amitriptyline, doxepin, and imipramine applied perineurally
were superior to bupivacaine in blocking nerve impulse propagation in a rat sciatic nerve.
Trimipramine and desipramine were less effective than bupivacaine, and nortriptyline,
protriptyline, and maprotiline were inferior; therefore, these probably will not induce
an antinociceptive effect when applied topically. However, it is not clear whether these
differences are associated with different activities at Nav or with different penetrations of
TCAs into the neuronal membrane in animal models [137].

3.1.6. Funapide

Funapide, also coded as TV-45070, is a selective blocker of Nav1.7, applied topically
in a cross-over RCT in patients with PHN. No statistical difference was observed between
treatments for the primary endpoint, i.e., the difference in change in mean daily pain score
from baseline compared with the last week. However, the proportion of patients with 50%
pain reduction at week 3 was greater on topical funapide than on topical placebo (26.8%
vs. 10.7%, p = 0.0039). Moreover, 63% of patients with the R1150W polymorphism of the
Nav1.7 coding gene vs. 35% of wild-type carriers had a 30% reduction in mean pain score
on TV-45070 at week 3 [46].

3.1.7. Other Drugs—Nonsteroidal Anti-Inflammatory Drugs, Opioids, Ketamine, Men-
thol, Cannabidiol

Other drugs which might block Nav, observed at in vitro peripheral nerves, include
nonsteroidal anti-inflammatory drugs (NSAIDs), opioids, α2 adrenergic receptors (α2-AR)
agonists, and plant-derived compounds, recently reviewed by Kumamoto [138]. Whether
and to what extent the Nav blockade of these drugs is responsible for their analgesic effect
observed in humans remain unclear. In vitro opioid studies examining morphine, tramadol,
fentanyl, sufentanil, and buprenorphine showed a decrease in action potential amplitudes
and conduction via direct action on Nav and Kv channels in frog sciatic nerves [138], and on
unmyelinated mouse C-fibers [139]. Moreover, loperamide inhibited Nav1.7 and Nav1.8 as
well in an in vitro study [140].

NSAIDs such as diclofenac, aceclofenac, indomethacin, tolfenamic, and flufenamic
acid reduced action potential amplitudes and inhibited nerve conduction through Nav
inhibition in frog sciatic nerves in a concentration-dependent manner, probably due to
their chemical structure being similar to local anesthetics [138]. A similar inhibitory effect
on the action potential was observed after application of clonidine (α2-AR agonist) on frog
sciatic nerves, which was attributed to Nav blockade [138]. Moreover, ketamine was shown
to directly inhibit Nav in neuroblastoma cells [141], which may account for the analgesic
effect of ketamine as adjuvant to local anesthetic agents. Additionally, menthol selectively
blocks Nav1.8 and Nav1.9, which has been shown in rat DRG neurons [142]. In preclinical
studies, it has been shown that cannabidiol (CBD) may directly interact with Nav and Kv
channels [143]. In an RCT, testing topical CBD oil in 29 patients with peripheral neuropathic
pain compared to placebo, CBD oil showed a more pronounced pain-reducing effect than
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placebo, but the authors did not discuss the possible Nav blockade as the mechanism of
action of CBD applied topically in the painful area [144].

3.2. Treatments Acting on Transient Receptor Potential Channels

The transient receptor potential channels (TRP) family is the largest group of ion
channels. TRP can be classified into six subfamilies, based on their structure: TRPA
(ankyrin), TRPC (canonical), TRPM (melastatin), TRPML (mucolipin), TRPP (polycystin),
and TRPV (vanilloid). TRP are widely distributed across tissues, such that every cell in the
body likely expresses one or more subtypes [145]. Some members of the TRP family deserve
special attention in pain research such as TRPV1-4, TRPM8, and TRPA1. They are expressed
at nociceptors and convey thermal, chemical, and mechanical stimuli, and they are involved
in the development and maintenance of chronic pain [146]. Moreover, the skin expresses
several TRP subtypes (i.e., TRPV1-4, TRPA1, TRPM8), involved in skin biology under
physiological (e.g., sensory function, nociception, epidermal homeostasis, inflammation)
and pathological conditions (e.g., inflammatory and neuropathic pain, dermatitis, itch), as
reviewed by Caterina and Pang [145].

3.2.1. Treatments Acting on Transient Receptor Potential Vanilloid 1

TRPV1 channels are polymodal receptors expressed mainly at C-fiber nociceptors in
the periphery, involved in membrane depolarization and controlling cytoplasmic Ca2+.
TRPV1 can also be found in the central nervous system and in several non-neuronal cells
as well (i.e., keratinocytes, bladder transitional epithelial cells, smooth muscle cells; kid-
ney, lung, testis, uterus, spleen, liver, and pancreas cells; granulocytes, lymphocytes, and
macrophages) [145–147]. TRPV1 may be activated by a wide spectrum of physical and
chemical stimuli such as heat (>43 ◦C), protons (pH < 6.5), endogenous substances such as
endocannabinoids (i.e., anandamide, N-arachidonoyl dopamine) [146,148], exogenous com-
pounds such as capsaicin, phyto-cannabinoids, and some animal toxins [149–151]. TRPV1 is
colocalized with TRPA1 in DRG and trigeminal neurons, and there are direct and/or in-
direct functional interactions between TRPA1 and TRPV1 involved in nociception [152].
Available data suggest that TRPV1 plays an important role in the pathomechanism of neu-
ropathic and inflammatory pain [153–158]. Nerve injury decreases TRPV1 levels in injured
neurons and increases expression of TRPV1 in uninjured or spared neurons, observed
after nerve ligation/transection in animal models. [159,160]. In humans, accumulation of
TRPV1 and TRPV3 in spared peripheral axons in patients with brachial plexus avulsion and
a reduction in TRPV1 levels in nerve fibers in diabetic neuropathy skin were observed [161].

After injury, numerous signaling molecules such as bradykinin, histamine, proin-
flammatory cytokines (TNFα), glutamate, and NGF are released from damaged nerves,
Schwann cells, and immunocompetent cells. These molecules activate and/or sensitize
neuronal TRPV1, contributing to thermal and mechanical hypersensitivity in NP and
inflammatory pain [162–164]. The role of TRPV1 in pathological nociception has been con-
firmed in patients with small fiber neuropathy, in whom a statistically significant increase
in TRPV1 expression on epidermal keratinocytes was reported [158]. In turn, in patients
with PDN, a decrease in TRPV3 in the skin was observed [161].

Capsaicin

Capsaicin is a highly selective agonist of the TRPV1 channels utilized in clinical
settings either in low (<0.1% cream) or in high (8% patches) concentrations in patients with
LNP [165]. Although capsaicin is the potent activator of TRPV1, its long-term analgesic
effect relies on the massive intracellular influx of ions (Ca2+, Cl−) after TRPV1 activation
and subsequent intracellular changes. To specify, capsaicin causes a three-fold increase in
the permeability to Ca2+ of the ion channels coupled with TRPV1. The increased influx
of Ca2+ into the cell and the release of Ca2+ from the endoplasmic reticulum activate
proteases and initiate subsequent damage of the cytoskeleton and mitochondria. This
leads to the de-functionalization of hyperexcitable TRPV1, or a temporary destruction of
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peripheral nerve endings [147]. Clinical evidence supports only 8% capsaicin patches in
patients with LNP [5,6,166–168], whereas the evidence for the low concentration capsaicin
is inconclusive [5,6]. Single application of an 8% capsaicin patch in subjects with LNP
brings significant pain relief within 1–2 weeks, resulting from de-functionalization and
temporary destruction of nerve endings in the area of the patch application. Nerve endings
regenerate after an average of 3 months, which may be associated with pain recurrence,
and in this case, the application of the patch can be repeated [167,168]. The application
of a high-concentration capsaicin patch may induce or aggravate severe burning pain.
The recommendation before using the 8% capsaicin patch is to apply a local anesthetic
such as EMLA cream at the corresponding area of LNP to diminish the risk of severe
burning pain. During the treatment procedure, blood pressure monitoring should be
performed, and nitrile gloves, a face mask, and protective glasses must be worn in a well-
ventilated treatment area. Thus, the 8% capsaicin patch application can only be performed
in specialized pain clinics. Nevertheless, clinical data support the effectiveness of 8%
capsaicin patches in patients with several LNP syndromes, such as PHN, HIV-associated
neuropathy, CIPN, and PDN [166].

Other Drugs—NSAIDs, Cannabinoids

Other drugs acting via TRPV1 include NSAIDs such as diclofenac, ketorolac, and xe-
focam. These molecules applied topically in rats inhibited pain behavior, most probably by
inhibition of TRPV1 and TRPA1 channels [169]. Endocannabinoids and phyto-cannabinoids
may exert their antinociceptive effect via TRPV1 activation, as was shown in preclinical
studies. Their mechanisms of analgesic action may be similar to capsaicin, i.e., initial
activation of TRPV1, followed by its desensitization [148,150,151].

3.2.2. Treatments Acting on Transient Receptor Potential Melastatin 8

TRPM8 is expressed in the skin at nociceptors and keratinocytes and is responsible
for detection of mild cold stimuli. TRPM8 is activated by temperatures below 28 ◦C,
and by menthol and other cooling agents. The relationship of TRPM8 to pain is more
complex. TRPM8 co-expression with TRPV1 in nociceptive neurons may contribute to
hypersensitivity to cold stimuli in inflammatory and neuropathic pain models. In contrast,
TRPM8 stimulation may attenuate pain sensitivity as well [170].

Menthol

Menthol is the cooling natural molecule of peppermint, commonly used in medicinal
preparations for the relief of acute and inflammatory pain in sports injuries, arthritis, and
other painful conditions in humans. Menthol’s main mechanism of analgesic action is
attributed to TRPM8 activation [171]. However, other analgesic mechanisms of action are
suggested, as shown in preclinical studies:

• Inhibition of human TRPA1 channels in vitro [172];
• Inhibition of VGCCs in human neuroblastoma cells [173];
• Activation of human recombinant GABAAR expressed in Xenopus oocytes [174];
• Selective blockade of Nav1.8 and Nav1.9 in rat DRG neurons [142];
• Inhibition of human recombinant nAChR [175].

In animal pain models, L-menthol (predominant isomer in menthol formulations)
effectively reduced pain behavior induced by chemical stimuli such as capsaicin, noxious
heat, and inflammation. Moreover, in animal models, the role of TRPM8 as the main
mediator of menthol-induced analgesia of acute, neuropathic, and inflammatory pain
has been confirmed [171]. Clinical studies are sparse. In eight LNP patients, topical
application of menthol attenuated cold allodynia [176]. One case report also showed a
beneficial analgesic effect of topically applied peppermint oil in a patient with PHN [177].
Historically, the first description of peppermint oil for NP comes from a letter to the editor
of The Lancet in 1870 in which Dr. A. Wright reported on peppermint oil being used to
treat “facial neuralgia” in China and in his own clinical practice [178].
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On the other hand, a relatively high concentration of menthol (>30%) applied topically
induces cold pain and hyperalgesia in healthy volunteers [179]. Therefore, in clinical
practice, lower concentrations of menthol are used.

3.3. Treatments Acting on Voltage-Gated Calcium Channels

VGCCs can be classified as L, N, P/Q, R, and T and are distinguished by their different
sensitivities for pharmacological agents and their channel conductance kinetics based on
their voltage activation properties. Different VGCC isoforms show distinct cellular and
subcellular distributions to play specific functional roles. VGCCs are widely distributed
in neuronal and non-neuronal cells. Studies confirmed expression of L-type VGCCs
in excitable cells [180] and in epidermal keratinocytes, where they play a role in skin
barrier homeostasis [181]. In nociceptive neurons, neurotransmitters such as glutamate,
substance P (SP), and calcitonin gene related peptide (CGRP) are released after activation
of VGCCs, mainly the L, N, and P/Q types [182]. In turn, T-type VGCC is associated
with the regulation of neuronal excitability and the activity of the T type is increased in
the central terminal of nociceptors in NP states, such as traumatic nerve injury, PDN, or
CIPN [183,184]. A recent preclinical in vivo study showed the expression of functional
N-type VGCCs (Cav2.2) in skin nociceptors, being responsible for release of inflammatory
signals and being involved in neurogenic thermal hyperalgesia [185]. Due to the crucial
role of VGCCs in pain processing and their distribution in keratinocytes and neuronal cells,
VGCCs may be targeted not only by systemic treatments but also by topical treatments.

3.3.1. Gabapentin

Gabapentin is an antiepileptic and anxiolytic agent recommended for oral intake as
the first-line treatment in patients with NP [5,6]. Gabapentin is an analogue of GABA;
however, it does not influence GABAR or GABA synthesis and uptake. The main mech-
anism contributing to gabapentin’s analgesic effect in NP states is related to interactions
with α2δ-1 subunits of VGCCs, and the subsequent reduction in Ca2+ influx and trans-
mitter release [186]. In preclinical studies, other mechanisms of action contributing to the
antinociceptive properties of gabapentin are suggested:

• Blockade of human recombinant NMDA in a concentration-dependent manner
in vitro [187];

• Attenuated cytokines production, COX-2 expression, and PGE2 levels in animal model
of ocular inflammation by topical gabapentin [188];

• Activation of human Kv channels in vitro [189].

Preclinical studies showed the antinociceptive effect of topically administered gabapentin
in animal models of peripheral nerve injury (10% gel) [190], CIPN (10% gel) [191], and
formalin-induced pain (1–10% cream) [192]. In clinical settings, cream containing gabapentin
showed a beneficial analgesic effect in patients with several NP states [193] and in patients
with local or generalized vulvodynia [194]. In patients with LNP, 6% topical gabapentin has
been utilized in combination with other compounds providing pain relief [195,196]. The
evidence for the effectiveness of topical gabapentin in patients with NP is limited to single
observational studies and case reports; moreover, the exact mechanism of analgesic action
is not clear. Theoretically, gabapentin may influence VGCCs, NMDA, Kv, and inflammatory
mediators, leading to reduced neuronal hyperexcitability and antinociception, but it needs
thorough evaluation in preclinical and clinical studies.

3.3.2. Other Drugs

Whether lidocaine, phenytoin, and menthol exert their analgesic mechanism of ac-
tion via VGCC blockade upon topical application in animal models and in humans is
unclear; however, in preclinical studies, these drugs influenced the VGCCs, as discussed
earlier [60,61,86,173].
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3.4. Treatments Acting on N-methyl-D-Aspartic Acid Receptors

NMDAR is a receptor for the excitatory neurotransmitter glutamate, which is re-
leased upon activation of nociceptive afferents, especially of the unmyelinated C-fibers.
It is well known that NMDAR activation plays a key role in the central sensitization of
spinal nociceptive neurons, resulting in allodynia, hyperalgesia, and NP [197]. There is
considerable evidence as well for the modulatory role of glutamate of the NMDAR and
non-NMDA glutamate receptors in peripheral nociception, as these receptors are present
in the peripheral terminals of C-fibers [198]. Upon stimulation, peripheral C-fibers release
glutamate, SP, and CGRP [199], which cause neurogenic inflammation and, in a paracrine
manner, modulate neuronal excitability via receptors expressed at nearby nociceptors [200]
and contribute to tactile hypersensitivity in animal models [201]. The role of peripheral
NMDAR has been confirmed in human studies as well in which the local inhibition of
peripheral NMDAR prevented the development of secondary hyperalgesia by a peripheral
mechanism of action [202].

3.4.1. Ketamine

Ketamine is an anesthetic and analgesic agent, usually administered intravenously.
Topical application of ketamine for LNP relies mainly on blockade of the peripheral NM-
DAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), and
metabotropic glutamate receptor (mGluR) in a non-competitive fashion and inhibition of
the release of glutamate [203].

Furthermore, in preclinical studies, ketamine shows influence in a direct or indirect
manner on several ion channels and receptors, which may be involved in peripheral
nociception by influence of:

• Blockade of Nav in neuroblastoma cells [141];
• Re-sensitization of opioid receptors (OR)—µ opioid receptors (MOR) and δ opioid

receptors (DOR) [204,205];
• Activation of GABAA receptor in an anesthetic model in mice [206];
• Inhibition of L-type VGCCs in smooth muscle cells [207];
• Blockade of HCN1 channels [208];
• Inhibition of nAChR in human neurons [209] and mAChR in mice [210];
• Reduced expression of TLR4 and proinflammatory cytokines release from immune

cells [211].

In clinical trials, topical ketamine is commonly used in combination with other drugs,
showing a beneficial analgesic effect in patients with PHN, CIPN, PDN, and CRPS:

• Ketamine (2%), amitriptyline (4%) [128,212–214];
• Ketamine (1.5%), baclofen (0.8%), amitriptyline (3%) [215];
• Ketamine (10%), baclofen (2%), gabapentin (6%), amitriptyline (4%), bupivacaine (2%),

nifedipine (2%), clonidine (0.2%) [195];
• Ketamine, pentoxifylline, clonidine, dimethyl sulfoxide [216];
• Ketamine (5%), clonidine (0.5%), gabapentin (6%) [196].

Only a few studies have described clinical results after topical application of ketamine
alone. The topical application of ketamine in different concentrations (0.5–5%) showed
no beneficial analgesic effect in RCTs in patients with PHN, PDN, and post-traumatic
NP [125,126,217,218]. However, other clinical studies showed good results in patients with
PHN treated with low-concentration topical 0.5% ketamine [219] and in a case series including
patients with CRPS, lumbar radiculopathy, and PHN [220]. Topical ketamine 10% reduced
allodynia and hyperalgesia in patients with CRPS in one RCT [221] and had a beneficial effect
reported in several case series, case reports, and retrospective studies [222–225].

3.4.2. Other Drugs

Other drugs acting via NMDAR blockade in preclinical studies include:
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• Antidepressants (e.g., amitriptyline), though this effect has been observed in cultured
rat brain neurons only [109];

• Diclofenac, providing an antinociceptive effect after topical administration in rats [226];
• Lidocaine at clinically relevant plasma concentrations [55–57].

It is still unclear to what extent topically applied amitriptyline, diclofenac, and lido-
caine induce analgesia via NMDAR blockade in humans.

3.5. Treatments Acting on Cyclooxygenase-2

Peripheral nerve injury induces Schwann cells and macrophages to produce and
release cytokines and arachidonic acid and its derivates, mainly prostaglandins (PGs),
via COX-2 induction. After an injury, PGs may be synthetized not only in the invaded
immune cells but also in neuronal and glial cells. PGs play an important role in regulating
the function of peripheral sensory nerves in paracrine and autocrine manners elucidated
in NP models [227]. Preclinical studies reveal that PGE2, via its EP receptor expressed
on the neuronal membrane, can modulate the excitability of peripheral nerve endings.
PGE2 sensitizes several ion channels and receptors (TRPV1, Nav1.7, Nav1.8, Nav1.9,
VGCCs, P2X3) and down-regulates Kv, which results in enhanced Na+ currents and Ca2+

influx and reduced K+ currents, resulting in peripheral hyperexcitability [155].

Nonsteroidal Anti-Inflammatory Drugs—Diclofenac

Topically administered NSAIDs may interfere with the nociceptive pathway by their
ability to decrease the synthesis of proinflammatory PGs through inhibition of cyclooxy-
genase COX-2. Preclinical studies showed that locally administered diclofenac may also
act on several ion channels (Nav, TRPV1, TRPA1, TRPM3, K+, NMDAR) at peripheral
neurons, resulting in antinociception [138,169,226,228,229]. Peripheral antinociception
induced by diclofenac may rely on release of noradrenaline and interaction with α1, α2C,
and β-adrenoreceptors [230]. Additionally, the opioid system may be involved as well by
indirect activation of the κ opioid receptors (KOR), probably by release of endogenous
opioids such as dynorphins [231]. Diclofenac also blocks L-type VGCCs, but this effect was
observed in neonatal rat ventricular myocytes and whether this mechanism is involved in
antinociception is unknown [232]. In a cross-over placebo-controlled RCT with 28 PHN
and CRPS patients, gel containing 1.5% diclofenac gave more pain relief than placebo
cream [233]. Case reports describe a positive analgesic effect of topically administered
ibuprofen and ketoprofen in combination with other agents in patients with LNP [234].
However, topical NSAIDs are not widely used in patients with LNP and are rather rec-
ommended and commonly used in patients suffering from pain with a predominant
inflammatory component [83].

3.6. Treatments Acting on Gamma-Aminobutyric Acid Receptors

GABA is the major inhibitory neurotransmitter in the adult mammalian nervous
system and exerts inhibitory action via specific receptors named GABAAR and GABABR.
GABAAR are GABA-gated chloride channels located in post-synaptic membranes, whereas
GABABR are G protein-coupled receptors located both in pre- and post-synaptic mem-
branes [235]. GABA receptors (GABAR) are expressed on neuronal cells, either centrally or
peripherally, and on CNS glial cells and myelin-producing Schwann cells [236]. In periph-
eral neurons, GABAR activation by agonists results in inhibition of signal transmission,
due to an intracellular increase in K+ and a decrease in Ca2+ ions [237,238]. In the periphery,
the GABABR are found in cutaneous layers on nerve endings [238]. In preclinical studies,
it has been revealed that immune cells (macrophages, neutrophils, and lymphocytes) may
express components of the GABAergic system as well [239]. GABA signaling is involved
in the modulation of the immune response through reduction in proinflammatory cytokine
production by down-regulation of signaling pathways (e.g., MAPK) [239]. Skin cells such
as keratinocytes and fibroblasts express GABABR as well, which are involved in skin
barrier homeostasis [240] and inflammatory diseases [241].
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3.6.1. Baclofen

Baclofen is a selective agonist of GABABR, traditionally used as a systemic treatment
for spasticity. Topical application of baclofen in patients with LNP may potentially reduce
pain due to GABABR activation, subsequent inhibition of neural transmission, and probably
attenuation of local inflammation [239]. In preclinical studies, single subcutaneous injection
of baclofen 0.01% reduced thermal hyperalgesia in mice with mixed nociceptive and
neuropathic pain [242]. In humans, topical baclofen 5% successfully relieved NP due to
acromegaly [243] and spinal cord injury [244,245]. In clinical practice, baclofen was more
commonly used in combination with other topical agents:

• Baclofen (0.8%), amitriptyline (3%), ketamine (1.5%) [209];
• Baclofen (2%), ketamine (10%), gabapentin (6%), amitriptyline (4%), bupivacaine (2%),

nifedipine (2%), clonidine (0.2%) [195];
• Baclofen (5%), palmitoylethanolamide (1%) [246];
• Baclofen, diclofenac, ibuprofen, cyclobenzaprine, bupivacaine, gabapentin, pentoxi-

fylline [234].

In the aforementioned clinical studies, topical baclofen as monotherapy or add-on
therapy was shown to be effective in pain relief; however, evidence is limited to case reports
or single RCTs.

3.6.2. Other Drugs

Other drugs acting on GABAR in preclinical studies include:

• Antidepressants (amitriptyline, fluoxetine)—their antinociceptive effect has been
observed after intraperitoneal administration in rats [111];

• Ketamine, acting as an agonist at GABAAR, revealed in an anesthetic mouse model [206];
• Phenytoin, potentiating GABA-induced currents in cultured rat cortical neurons

through modulation of GABAAR [87];
• Menthol, increasing GABA-induced currents by activation of human recombinant

GABAAR expressed in Xenopus oocytes [174].

It is still unrevealed whether antidepressants, ketamine, phenytoin, and menthol
induce analgesia via GABAR upon topical application in subjects with LNP.

3.7. Treatments Acting on α Adrenergic Receptors

Preclinical models of peripheral nerve injury showed that proinflammatory cytokines
and growth factors can increase the expression of α1-AR on nociceptive afferent fibers and
DRG that survive the nerve damage, and on immune cells and keratinocytes [247,248]. In
turn, activation of α1-AR on immune cells and keratinocytes by noradrenaline may trigger
further release of growth factors and inflammatory mediators, perpetuating the cycle and
contributing to inflammation and pain [247,248]. Evidence of the aberrant adrenergic
influence on nociception in NP comes from clinical observations as well. In some CRPS
patients, α1-AR were up-regulated in the epidermis and on dermal nerve fibers [249,250].
In these patients, intradermal injection of α1-AR agonist phenylephrine evoked prolonged
pain and more pronounced pinprick hyperalgesia in comparison to CRPS patients with less
expressed α1-AR [249,250]. On the other hand, α2-AR are inhibitory G protein-coupled
receptors [251,252]. α2-AR are expressed in the brain, spinal cord, and DRG and on
nociceptors in the epidermis. Activation of these receptors likely decreases levels of
adenylate cyclase and cyclic adenosine monophosphate (cAMP), resulting in decreased
neurotransmitter release and reduced excitability of nociceptors, expressed in reduced
tactile allodynia [253,254]. The increase in peripheral neuron sensitivity induced by tissue
damage may be potentially attenuated by agents acting on α1-AR or α2-AR.

3.7.1. Clonidine

Clonidine, an α2-AR agonist, is an extremely potent antinociceptive agent, utilized
systemically for chronic and acute pain treatment. Topical administration of clonidine
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elicits an antinociceptive effect, either in preclinical studies [255] or in clinical studies in
patients with PDN [256–258]. According to Cochrane analysis of two RCTs, the efficacy
of 0.1% topical clonidine has a medium level of evidence. However, topical clonidine
has an excellent safety profile without central side effects observed following systemic
administration [259]. Topical clonidine may provide some benefit in patients with PDN,
and NNT for an additional beneficial outcome (NNTB) is 8.33, 95% CI 4.3 to 50 [259].

Clonidine is also an imidazoline receptor agonist and acts on these receptors located
on peripheral nerve endings. The activation of imidazoline 2 receptors may possibly
contribute to additional analgesic mechanisms of topically applied clonidine [260]. In
preclinical studies, topical application of clonidine exerts a potent anti-inflammatory effect,
which may be partially mediated by α2-AR and PGE inhibition. The anti-inflammatory
properties may probably partially contribute to the analgesic effect of topical clonidine
observed in LNP [261].

3.7.2. Prazosin

Prazosin is an antagonist of α1-AR. Topically administered prazosin has been studied
in healthy volunteers and patients with CRPS to date [262]. Prazosin 1% cream inhibited
dynamic allodynia and punctate hyperalgesia in CRPS patients and adrenergic axon reflex
vasodilatation in healthy volunteers. The potential target of prazosin may be the up-
regulated α1-AR present on epidermal neurons, keratinocytes, and immune cells under
neuropathic conditions [247,248].

3.7.3. Other Drugs

Other drugs with a possible antinociceptive effect related to α1-AR blockade are
antidepressants such as nortriptyline, imipramine, maprotiline, and milnacipran. Their
antinociceptive effect via AR blockade has been observed after systemic administration
in an animal formalin pain model [263]. Amitriptyline down-regulates the cortical and
cerebellar α1-AR in the rat brain upon chronic treatment, but there are no data on peripheral
regulation of α1-AR induced by systemic or topical amitriptyline in animal models and in
humans [114].

3.8. Treatments Acting on SNAP-25 and 23

SNAP-25 is a component of the SNARE protein complex, which upon synaptic trans-
mission is responsible for exocytotic neurotransmitter release. Through the assembly
with syntaxin-1 and synaptobrevin, SNAP-25 mediates synaptic vesicle apposition to the
presynaptic membrane, permitting their Ca2+-triggered fusion [264]. SNAP-23 is the ubiq-
uitously expressed homologue of the neuronal SNAP-25, which is involved in synaptic
vesicle fusion. Recently, it was shown that SNAP-23 mediates exocytosis in mast and
epithelial cells and is involved in receptor trafficking [265]. The role of SNAP-25 in noci-
ception in humans is confirmed, as specific gene polymorphisms for SNAP-25 are linked to
chronic pain conditions, including NP and fibromyalgia [266].

Botulinum Toxin A

SNAP-25 and 23 are targeted by local administration of BTX-A. BTX-A is a potent
toxin, which cleaves SNAP-25 and 23 and subsequently inhibits local release of neuropep-
tides and neurotransmitters involved in nociception, including SP [267], CGRP [268], and
glutamate [269]. Moreover, our experimental results showed that BTX-A administered
within the nerve terminals diminished nerve injury-evoked neuroimmune changes, pri-
marily in the DRG and subsequently at the spinal cord level [270]. We observed as well
that in DRG, the protein level of pronociceptive cytokines (IL-1β, IL-18) decreased and
antinociceptive cytokines (IL-10, IL-1RA) increased following BTX-A peripheral application
in an NP model [271]. Additionally, it was shown that an intra-nerve injection of BTX-A can
stimulate the regeneration of an injured peripheral nerve and regrowing myelinated axons
and improve the muscular reinnervation, so it generally speeds up sensorimotor recovery
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by stimulating myelinated axonal regeneration [272]. Animal studies showed that topical
BTX-A administration through subcutaneous injection is followed by retrograde transport
and transcytosis. This mechanism is possibly responsible for modulation of central sen-
sitization and antinociception [273–275]. Several RCTs in humans showed effectiveness
of BTX-A injections in patients with PHN, PDN, trigeminal neuralgia, and intractable
neuropathic pain, such as poststroke pain and pain after spinal cord injury [276,277]. In
clinical practice, local injections of BTX-A are recommended as the second-line treatment
in patients with LNP [5,6]. BTX-A deserves special attention because when given topically
through subcutaneous/intradermal injection, it can directly modulate both central and
peripheral sensitizations [273–275].

3.9. Treatments Acting on Peripheral Opioid Receptors

The opioid receptors (OR)—µ (MOR), κ (KOR), δ (DOR), and nociceptin (NOR)—are
GPCR and widely distributed in the CNS, peripheral neurons, and neuroendocrine (pi-
tuitary, adrenal), immune, and ectodermal cells. OR expressed on peripheral neurons
and immune cells play a critical role in nociception and inflammation [278]. In preclinical
studies, inflammation has been shown to increase mRNA transcription of OR in DRG,
followed by enhanced axonal transport of de novo synthesized OR and increase in OR
density in the peripheral nerve endings. Moreover, the lower pH of inflamed tissue may
increase opioid–OR interactions and intracellular signaling, thus enhancing the analgesic
effect of peripherally administered opioids [278]. Additionally, chemokines, cytokines, and
other factors from inflamed tissue stimulate opioid peptide-containing immune cells to
migrate to the site of injury. Immune cells (i.e., lymphocytes, granulocytes, monocytes,
macrophages) in humans, rhesus monkeys, rats, and mice express not only opioid pep-
tides but all types of OR—MOR, DOR, KOR, and NOR. Activation of MOR, DOR, and
KOR on leukocytes stimulates release of opioid peptides, which bind to OR on peripheral
sensory nerves and induce analgesia [278,279]. In an animal model of peripheral nerve
injury, decreased MOR, but not DOR, expression in peripheral nerves and DRG has been
observed. Nerve injury stimulates recruitment of immune cells at the injured site. Pe-
ripherally administered opioids in the case of decreased MOR expression in damaged
neurons can act through the OR on immune cells (e.g., macrophages), leading indirectly to
antinociception [279–281]. Moreover, the studies of human skin confirmed that epidermal
keratinocytes express a functionally active OR. Human keratinocytes can both produce
and bind β-endorphins, which further implies direct communication between peripheral
nerve endings and skin cells, and their role in antinociception [282]. In dermatological
diseases such as psoriasis, atopic dermatitis, or chronic wounds, dysregulation in the skin
of both OR and their corresponding endogenous ligands has been observed. However,
there are no data on dysregulation of skin OR under neuropathic conditions [283]. Data
from preclinical studies suggest that peripheral OR on neurons, keratinocytes, and immune
cells may serve as a target for opioids applied topically. Topical application may therefore
be an alternative route of administration to systemic opioid treatment in patients with LNP
and other localized pain syndromes, with less risk of side effects.

In patients with NP due to pachyonychia congenita, overexpression of NOR on epi-
dermal keratinocytes and epidermal and dermal nerve fibers has been demonstrated [284].
Recently, NOR has been identified on human blood granulocytes as well [285]. Thus, NOR
may be a promising target to manage NP. However, there are no available data on topical
agents targeting NOR and utilized in clinical practice [278].

The main mechanism of opioid-induced analgesia is related to agonism to OR, local-
ized in the presynaptic and postsynaptic neuronal membranes. Presynaptically, opioids
inhibit neurotransmitter release by reducing Ca2+ influx. Postsynaptically, opioids open
K+ channels, which hyperpolarize cell membranes and decrease the synaptic transmis-
sion. Opioids also inhibit adenylate cyclase, the enzyme converting ATP to cAMP [286].
Additionally, opioids such as morphine, tramadol, fentanyl, sufentanil, buprenorphine,
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and loperamide may influence Nav [138–140], inhibiting action potentials, which has been
revealed in frog sciatic nerve models [138], and on unmyelinated mouse C-fibers [139].

3.9.1. Loperamide

Loperamide is an opioid with higher binding affinity to MOR than to DOR or KOR [287].
Loperamide blocks Nav 1.7, Nav1.8, and Nav1.9 as well, and this inhibition may be the
second mechanism of loperamide for pain relief beyond MOR agonism [140]. The bioavail-
ability of loperamide after oral intake is only 0.3% and loperamide is extruded from the CNS
actively; therefore, it does not act meaningfully at the CNS level [288]. The analgesic and
anti-hyperalgesic effect of topically administered loperamide at different concentrations (0.5–
5%) has been confirmed in NP models [289–291] and inflammatory pain models [292,293].
In preclinical studies, synergy between topical loperamide (MOR agonist) and oxymor-
phindole (DOR agonist) in reducing inflammatory hyperalgesia has been observed and
was attributed to indirect inhibition of Nav1.8 [293,294]. In clinical settings, topical 5%
loperamide has shown a beneficial effect in a patient with CIAP [295]. However, data on
topical loperamide in clinical practice are limited to a single case report only.

3.9.2. Morphine

The evidence on the effectiveness of topically administered morphine (agonist of
MOR, DOR, KOR) comes mainly from clinical studies and case reports on cancer-related
pain, i.e., cutaneous or mucosal lesions associated with local inflammation [296]. In one
RCT, topical morphine (0.2% hydrogel or 0.2% ointment) showed a beneficial analgesic
effect in a cancer patient with pain due to mucosal lesions and skin ulcers [297]. Data on
topical use of morphine and other opioids in patients with LNP are lacking.

3.9.3. Other Drugs Modulating Opioid System

The endogenous opioid system may be indirectly modulated by drugs such as antidepres-
sants [113], ketamine [204,205], diclofenac [231], and CBD [298], but whether these mechanisms
contribute to the analgesic effect upon topical application in humans remains unclear.

3.10. Treatments Acting on Peripheral Cannabinoid Receptors

Numerous studies indicate a modulatory effect of the endocannabinoid system in
NP [299]. In the periphery, CB1 receptors are expressed on nociceptive peripheral nerve
endings and DRG, whereas CB2 receptors are located mainly on immune cells and ker-
atinocytes [300,301]. Preclinical data suggest that agents acting on CB1 receptors may evoke
a beneficial effect against NP, and those acting on CB2 may evoke a beneficial effect against
inflammatory pain [300,301]. Either CB1 or CB2 receptors may be targeted by cannabi-
noids administered topically, influencing the activity of both neuronal and non-neuronal
cells. Preclinical studies reveal that activation of CB2 receptors on keratinocytes stimulates
them to release β-endorphins, which in turn act at local neuronal MOR, inhibiting noci-
ception [298]. CB1 receptor agonists attenuate mast cell activation and subsequent local
inflammation in a model of dermatitis [302]. Theoretically, substances acting on peripheral
CB receptors may provide an analgesic effect in patients with LNP, as these target cells
involved in peripheral sensitization.

Cannabidiol

CBD is one of the main phyto-cannabinoids found in Cannabis sativa and indica.
CBD is a lipophilic, multi-target drug, whose central antianxiety/antipsychotic effect is
probably related to interaction with CB1 receptors in the CNS [303]. However, whether the
antinociceptive effect of CBD is attributed to interactions with CB1 is still discussed [303].
An NP mouse model caused by paclitaxel showed that intraperitoneal administration
of CBD reduced allodynia and NP behavior through the influence of serotonin recep-
tors [304]. In preclinical studies, CBD directly interacted with Nav and Kv channels, whose
combined effects are reduction in channel hyperexcitability [143]. Moreover, CBD may di-
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minish neuronal hyperexcitability through other mechanisms of action: inhibition of GPCR
(GPR55) at excitatory synapses, desensitization of TRPV1, and modulation of the adenosine
system [148,150,151,305]. These mechanisms may be responsible for the antiepileptic prop-
erties of CBD and, together with MOR and DOR modulation, are suggested to play a role
in antinociception induced by CBD [303]. Whether and to what extent these mechanisms
are responsible for analgesia upon topical application in humans are unclear.

Clinical observations indicate that topical administration of CBD, mixed with other
anti-inflammatory phyto-derived products, in oil, gel, cream, or spray, may exert beneficial
analgesic, immunosuppressive, and anti-inflammatory effects in humans, as reviewed
recently [306]. In an RCT testing topical CBD cream (250 mg CBD/3 fl. oz, around 8.3%)
in 29 patients with LNP compared to placebo, CBD oil showed a more pronounced pain-
reducing effect than placebo [144]. The preclinical data and clinical observations support
the idea of topical administration of CBD in pain states. However, the data on analgesic
efficacy in LNP conditions are limited to a single RCT [144].

4. Topical Treatments in Patients with Neuropathic Pain—Summary of Possible
Mechanisms of Antinociception and Future Directions

Research conducted during the last decade has identified many potential peripheral
mechanisms for NP, pointing at peripheral sensitization as the target for therapeutic
strategies in patients with NP [11]. Peripheral nerve endings express a variety of excitatory
and inhibitory receptors, ion channels, and proteins, such as Nav, NMDAR, VGCCs, α-AR,
TRPV1, TRPM8, SNAP-25 and 23, GABAR, COX-2, OR, and CB. Some of them are also
expressed by non-neuronal cells (Figure 1). Moreover, peripheral neurons interact closely
via several signaling molecules with immunocompetent cells and keratinocytes and this
interplay under pathological conditions is responsible for neuronal hyperexcitability and
NP generation (Figure 1) [10,11]. These facts enable the development of pharmacotherapies
specifically targeting peripheral mechanisms, e.g., topical analgesics. Preclinical data
discussed in this paper showed that active molecules applied in topical formulations
in humans (lidocaine, capsaicin, BTX-A, clonidine, doxepin, phenytoin, amitriptyline,
ketamine, CBD, funapide, baclofen, ambroxol, gabapentin, prazosin, menthol, diclofenac,
and loperamide) exert multiple mechanisms of action and can directly and/or indirectly
modulate distinct molecular/cellular targets and pathways in the nociceptive system. Thus,
active molecules, released from a topical formulation and targeting the elements of the
nociceptive pathway, may possibly induce an analgesic effect. However, to which extent
each of the mechanisms and molecular/cellular targets contributes to the analgesic effect
observed in humans is not clear. Clinical data suggest that more selective agents, such
as funapide, induce less pronounced analgesia in comparison with non-selective drugs
such as lidocaine [5,6,46]. In preclinical studies, lidocaine at different concentrations and
routes of administration was shown to act on several ion channels and receptors involved
in nociception [48], while funapide acts on Nav1.7 only [46]. However, the effectiveness
of multitargeted topical drugs and/or combinations of drugs of different mechanisms of
action needs further evaluation in “head-to-head” clinical trials. Table 1 summarizes the
preclinical data on possible molecular/cellular mechanisms involved in the antinociceptive
effect of topical treatments utilized in clinical practice.
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Table 1. Possible direct or indirect mechanisms of antinociceptive action of topical agents, cells influenced by a given agent, and
form of drug used in clinical trials and/or daily practice in patients with LNP. Presented references refer to possible mechanisms of
action. Abbreviations: Nav—voltage-gated sodium channels, TRPV1—transient receptor potential vanilloid 1, TRPA1—transient
receptor potential ankyrin 1, TRPM8—transient receptor potential melastatin 8, TRPM3—transient receptor potential melastatin 3,
mAChR—muscarinic acetylcholine receptors, nAChR—nicotinic acetylcholine receptors, VGCCs—voltage-gated calcium channels,
L-VGCCs—L-type voltage-gated calcium channels, NMDAR—N-methyl-D-aspartate receptors, ASIC—acid-sensing ion channels,
P2X7—P2X purinoceptor 7, PGE2—prostaglandin E2, GABAAR —gamma-aminobutyric acid receptors A, GABABR—gamma-
aminobutyric acid receptors B, Kv—voltage-gated potassium channels, K+—potassium, OR—opioid receptors, CB1—cannabinoid
receptor type 1, 5-HT—serotonin, 5-HT-R—serotonin receptors, GPCR—G protein-coupled receptors, TLR4—Toll-like receptor 4,
HCN—hyperpolarization-activated cyclic nucleotide-gated channels, NGF—nerve growth factor, TrkA—tropomyosin receptor
kinase A, Gly—glycine, α1-AR—α1 adreno receptor, α2-AR—α2 adreno receptor, H-R—histamine receptor, DA—dopamine,
NA—noradrenaline, NO—nitrous oxide, COX-2—cyclooxygenase 2, OR—opioid receptors, KOR—κ opioid receptors, SNAP—
synaptosome associated proteins, I2-R—imidazoline receptors, EMLA—eutectic mixture of local anesthetics.

Topical
Agent

Direct or Indirect Mechanism
of Action

Cellular
Targets Reference Form of Drug

Lidocaine

Nav blockade
mAChR blockade

TRPA1 desensitization
NMDAR antagonism

ASIC blockade
HCN blockade
TLR4 inhibition

Kv blockade
VGCC blockade
P2X7 inhibition

NGF/TrkA modulation
Gly system modulation

Anti-inflammatory effect

Neurons
Keratinocytes
Immune cells
Schwann cells

[39,45,54–77]

5% patch
EMLA cream
EMLA patch

2–11% cream, gel
10% spray

7% cream combined
with 7% tetracaine

Phenytoin

Nav blockade
L-VGCC blockade

GABAAR modulation
Anti-inflammatory effect

Neurons
Keratinocytes
Immune cells

[40,85–89] 5–30% cream

Ambroxol Nav blockade
Anti-inflammatory effect

Neurons
Keratinocytes
Immune cells

[41,42,103,104] 20% cream

Antidepressants:
-Amitriptyline

-Doxepin

Nav blockade
VGCC blockade

NMDAR antagonism
Kv activation

α1-AR down-regulation
TRPA1 desensitization
GABABR modulation

5-HT-R blockade
H-R blockade

mAChR blockade
Reduction in NO, PGE2

NA, 5-HT, DA and adenosine
reuptake inhibition

Opioid system modulation

Neurons
Keratinocytes [43,44,107–118,263]

Amitriptyline: 1–10%
cream

Doxepin:
3.3%, 5% cream

Funapide Nav1.7 blockade Neurons
Keratinocytes [46] hydrogel

Capsaicin TRPV1 activation Neurons
Keratinocytes [147] 8% patch

0.025–0.1% cream
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Table 1. Cont.

Topical
Agent

Direct or Indirect Mechanism
of Action

Cellular
Targets Reference Form of Drug

Menthol

TRPM8 activation
GABAAR activation

VGCC blockade
TRPA1 inhibition
nAChR blockade

Neurons
Keratinocytes
Immune cells

[142,171–175]

2.5–16% gel
7.5%, 16% cream

16% solution
16% spray

1.25–16% patch

Gabapentin

VGCC blockade
NMDA blockade

Kv activation
Anti-inflammatory effect

Neurons
Keratinocytes [186–189] 2–6% cream

Ketamine

NMDA antagonism
Nav blockade

OR re-sensitization
L-VGCC inhibition
GABAA activation
mAchR inhibition
nAChR inhibition
TLR4 inhibition
Nav blockade

Neurons
Keratinocytes
Immune cells
Schwann cells

[141,204–211] 0.5–20% cream

Diclofenac

COX-2 inhibition
NMDAR antagonism

TRPV1, TRPA1, TRPM3 ligand
Nav blockade

VGCC inhibition
K+ channels modulation

α1-AR interaction
KOR modulation

Immune cells
Neurons

Keratinocytes
Schwann cells

[138,169,226,228,229,232] 1–1.5% gel
140 mg patch

Baclofen GABABR agonism

Neurons
Keratinocytes
Immune cells
Schwann cells

[239] 2%, 5% cream

Clonidine

α2-AR activation
Nav blockade
I2-R agonism

Anti-inflammatory effect

Neurons
Keratinocytes
Immune cells

[138]
[255,260,261]

0.1%, 0.2% gel
0.1%, 0.2% cream

Prazosin α1-AR blockade
Neurons

Keratinocytes
Immune cells

[262] 1% cream

BTX-A
SNAP-25
SNAP-23

Anti-inflammatory effect

Neurons
Immune cells

Microglia
Astroglia

[267–269,271] Intradermal injections

Loperamide OR agonism
Nav blockade

Neurons
Immune cells
Keratinocytes

[138–140,286] 5% loperamide cream

Cannabidiol

CB1 interaction
Nav and Kv interaction
TRPV1 desensitization

5-HT-R modulation
Adenosine system modulation

Opioid system modulation
Synaptic GPCR interaction
Anti-inflammatory effect

Neurons
Immune cells
Keratinocytes

[143,148,150,151,303–305]

ointment, cream
cream:

250 mg CBD/3 fl.
(around 8.3%)
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Many topical agents are used for the treatment of NP in humans (Table 1), despite
data coming from case reports, observational studies or single RCTs. The ongoing clinical
trials in NP are aimed at comparison between systemic and topical analgesics and, what
is more important, at the effectiveness of topical analgesics in special patient populations
(i.e., cancer patients). The future directions in pain medicine will also focus on the assess-
ment of optimal concentrations of topical formulations. Thus far, nearly no dose-finding
trials for topical analgesics have been conducted in clinical practice. Therefore, the optimal
concentration and concentration-related mechanism of action are unknown for topical
analgesics and these also need further preclinical and clinical assessment. Table 2 summa-
rizes the data on currently ongoing and recruiting clinical trials with topical treatments
in patients with LNP. The data are based on information available on websites: Clinical-
Trials.gov provided by the U.S. National Library of Medicine, and the EU Clinical Trials
Register [307,308]. The search was conducted with the terms “topical neuropathic” and
“peripheral neuropathic”.

Table 2. Clinical trials currently ongoing and recruiting patients with peripheral neuropathic pain syndromes of different
origin. Abbreviations: RCT—randomized controlled trial, vs. – versus, BTX-A—botulinum toxin type A.

Title of the Study Formulations/Drugs Studied Type of Study

The Effects of Topical Treatment with
Clonidine + Pentoxifylline in Patients with

Neuropathic Pain

Solution of clonidine (0.1%) + pentoxifylline (5%)
vs.

Placebo

RCT
Triple blind

Multicentric, Open, Randomized Study
Comparing Topical Treatment by Patch of

Capsaicin to 8% (Qutenza) to Pregabalin Oral
in the Early Treatment of Neuropathic Pain

After Primary Surgery for Breast Cancer

Capsaicin 8% patch
vs.

Oral pregabalin

RCT
Open label

A Phase II RCT of Topical Menthol Gel vs.
Placebo in the Treatment of Chemotherapy

Induced Peripheral Neuropathic Pain

Menthol gel
vs.

Placebo

RCT
Triple blind

Clinical Trial Assessing the Efficacy of
Capsaicin Patch (Qutenza®) in Cancer

Patients with Neuropathic Pain
Capsaicin 8% patch Open-label clinical trial

Intraoral Administration of Onabotulinum
Toxin A for Continuous Neuropathic Pain: a

Single Subject Experimental Design
BTX-A Open-label clinical trial

A Multicentre, Single-Arm, Open-Label
Study of the Repeated Administration of

QUTENZA for the Treatment of Peripheral
Neuropathic Pain

Capsaicin 8% patch Open-label clinical trial

Is there a correlation between the pain relief
and the A-delta- and C-fiber function after

topical application of lidocaine (5%) in
patients with peripheral neuropathic pain?

Lidocaine 5% patch
vs. Placebo

RCT
Double blind

Amitriptyline 10% and ketamine 10% cream
in neuropathic pain: A randomised,

double-blind, placebo-controlled cross-over
pilot study with a three months open

follow-up

Amitriptyline 10% cream
vs.

Ketamine 10% cream
vs.

Placebo

RCT
Double blind

Enrichment randomized double-blind,
placebo-controlled cross-over trial with

PHEnytoin cream in patients with painful
chronic idiopathic axonal polyNEuropathy

phenytoin 10% cream
vs.

Phenytoin 20% cream
vs.

Placebo

RCT
Double blind
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5. Conclusions

Peripheral nerve injury induces functional and structural changes in neuronal and
non-neuronal cells, which release numerous signaling molecules in response to the damage.
In turn, these mediators modulate corresponding receptors on cell membranes, creating
vicious circles of interactions. These maladaptive mechanisms taken together contribute
to the sensitization of peripheral nerve endings and enhanced peripheral input leading
to neuropathic pain. At present, topical lidocaine, capsaicin, BTX-A, clonidine, doxepin,
phenytoin, amitriptyline, ketamine, CBD, funapide, baclofen, ambroxol, gabapentin, pra-
zosin, menthol, diclofenac, and loperamide are being used in a variety of LNP states in
humans, bringing pain relief. To date, the evidence from several RCTs and reviews supports
5% lidocaine patches, 8% capsaicin patches, and BTX-A injections as effective treatments in
patients with LNP. In turn, single RCTs support evidence of doxepin, funapide, diclofenac,
baclofen, clonidine, loperamide, and CBD in LNP. Topical administration of phenytoin,
ambroxol, and prazosin is supported by observational clinical studies only. For topical
amitriptyline, menthol, and gabapentin, evidence comes from case reports and case series.
For topical ketamine and baclofen, data supporting their effectiveness are provided by
both single RCTs and case series. The possible mechanisms of antinociception of topical
treatments are discussed in this paper. However, which mechanism and to what extent
it contributes to pain relief observed in humans are still unclear. In patients suffering
from LNP, multiple mechanisms are involved in pain generation; however, in clinical
practice, simple tools assessing underlying pain mechanisms are still lacking. On the other
hand, directly testing topical analgesics in a single- or double-blind placebo-controlled
manner, in line with personalized medicine, can give a rapid clinical answer concerning
pain reduction in subjects with LNP. This review may help clinicians in making decisions
regarding whether and which topical treatment may be a beneficial treatment option, and
what clinical effect patients suffering from LNP may expect.
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