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Abstract: Even though the administration of chemotherapeutic agents such as erlotinib is clinically
established for the treatment of breast cancer, its efficiency and the therapy outcome can be greatly
improved using RNA interference (RNAi) mechanisms for a combinational therapy. However,
the cellular uptake of bare small interfering RNA (siRNA) is insufficient and its fast degradation
in the bloodstream leads to a lacking delivery and no suitable accumulation of siRNA inside the
target tissues. To address these problems, non-ionic surfactant vesicles (niosomes) were used as
a nanocarrier platform to encapsulate Lifeguard (LFG)-specific siRNA inside the hydrophilic core.
A preceding entrapment of superparamagnetic iron-oxide nanoparticles (FexOy-NPs) inside the
niosomal bilayer structure was achieved in order to enhance the cellular uptake via an external
magnetic manipulation. After verifying a highly effective entrapment of the siRNA, the resulting
hybrid niosomes were administered to BT-474 cells in a combinational therapy with either erlotinib
or trastuzumab and monitored regarding the induced apoptosis. The obtained results demonstrated
that the nanocarrier successfully caused a downregulation of the LFG gene in BT-474 cells, which led
to an increased efficacy of the chemotherapeutics compared to plainly added siRNA. Especially the
application of an external magnetic field enhanced the internalization of siRNA, therefore increasing
the activation of apoptotic signaling pathways. Considering the improved therapy outcome as well
as the high encapsulation efficiency, the formulated hybrid niosomes meet the requirements for a
cost-effective commercialization and can be considered as a promising candidate for future siRNA
delivery agents.

Keywords: gene delivery; siRNA; magnetic targeting; niosomes; hybrid nanoparticles

1. Introduction

At present, breast cancer is not only the most frequently diagnosed cancer disease
in women worldwide but also responsible for most cancer-related deaths [1]. Depending
on the type and stage of the tumor, different clinically established therapies such as
hormone, radio-, immuno- and chemotherapy or tumor excision as well as a combination
of those methods are practiced to treat the potentially lethal disease [2,3]. Especially for
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hormone receptor- and HER2 (human epidermal growth factor receptor 2)-positive breast
cancer, chemotherapy is a commonly used therapeutic method [4,5]. For this type of
cancer, various studies have shown that HER2 is responsible for increased activation of a
signaling pathway called PI3-K/Akt (phosphoinositide-3-kinase/protein kinase B), which
is considered to play an essential role in disease progression [6–9]. Suppression of the
PI3-K/Akt signaling cascade can be achieved by using pharmacologically active substances
such as trastuzumab (anti-HER2 monoclonal antibody) or erlotinib (epidermal growth
factor inhibitor) and, thus, prevent further tumor cell proliferation [10,11]. Nevertheless,
chemotherapeutic treatments still exhibit limitations—for example, side effects in off-target
tissues, lack of tumor targeting and especially multi-drug resistance [12–14]. Therefore,
newly developed treatments are emerging to either replace chemotherapy or enhance
its efficiency while lowering potential adverse effects. Considerable attention has been
directed to regulate genes responsible for cancer pathology [15–17]. For instance, using
small interfering RNA (siRNA) as an RNA interference (RNAi) mechanism enables both
a mono- and combinational therapy with other therapeutics by silencing specific genes
and inhibiting the expression of the respective protein [18–21]. To date, many studies have
been conducted using synthetic siRNA to inhibit genes of interest by the degradation of
their messenger RNA transcript in the cell cytoplasm, thereby inhibiting the expression
of a specific protein [22–24]. For example, it is assumed that the anti-apoptotic protein
Lifeguard (LFG, a membrane-bound protein) is increasingly expressed via activation of the
Pi3-K/Akt signal cascade and, thus, plays a decisive role in the inhibition of programmed
cell death [25,26]. In this case, Bucan et al. showed that combinational therapy consisting
of chemotherapeutic downregulation of the Pi3-K/Akt pathway together with a preceding
siRNA treatment to minimize the LFG expression level in MCF-7 breast cancer cells led
to a cumulative apoptotic outcome with a significantly suppressed cell proliferation and
survival [18,27–29].

In comparison to anti-cancer drugs, the use of siRNAs in cancer therapy is tremen-
dously beneficial. For instance, siRNA only affects the post-transcriptional phase of gene
expression and does not interfere directly with DNA, thus avoiding mutations and terato-
genicity risks [24]. Furthermore, siRNA therapy has a high efficacy due to large suppression
of gene expression levels with just a few copies [30]. However, safe and effective clinical
application of siRNA remains challenging. Since siRNA is negatively charged, adminis-
tration without a protective layer can lead to non-specific binding with serum proteins
and, thus, failed cell admission due to electrostatic repulsion to the negatively charged cell
membrane [31]. If the target tissue is not reached, the pharmacological properties of the
administered siRNA can potentially cause side effects, for example, by the downregulation
of LFG in brain cells after crossing the blood–brain barrier [32]. Moreover, the vulnerable
nature of siRNA, the nuclease degradation of siRNA in the blood and the possibility of
siRNA removal by renal excretion or macrophages generally impede its delivery to the
tumor cells [1,33,34]. Therefore, it is of crucial importance that siRNA is formulated into a
suitable nanocarrier system to protect it from the aforementioned barriers and to provide
safe and effective delivery into the desired cells and tissues.

So far, a number of nanocarrier systems for therapeutic gene delivery have been
described, such as liposomes, chitosan and different cationic nanoparticles [35–42]. Uti-
lizing the leaking vascular system of solid tumors, nanocarriers are able to pass through
the vascular barrier. It has been shown that nanoparticles of a certain size ranging up to
200 nm can migrate into tumor cells [43]. Ideal nanocarriers should ensure the criteria of
biocompatibility, biodegradability and appropriate physicochemical properties to reach
the target cells and tissues [44]. Recently, the first liposome-based siRNA therapeutic was
approved by the U.S. Food and Drug Administration (FDA), which underlines the great
potential of such RNAi agents [45].

Among nanocarriers, niosomes (non-ionic surfactant vesicles) exhibit great properties
to facilitate siRNA delivery [46]. Niosomes show low toxicity and high biocompatibility
within biological systems. Moreover, their low cost, simple preparation and remarkable
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stability make them a notable candidate for potential commercialization. In order to achieve
specific functionalities, the hydrophilic core and the hydrophobic bilayer structure can
incorporate various low-molecular substances, proteins, DNA/RNA and nanoparticles
with a wide range of solubilities [47,48]. If entities with strong magnetic properties (e.g.,
superparamagnetic iron oxide nanoparticles, referred to as FexOy-NPs) are entrapped, an
external magnetic field can be used to achieve a magnetic targeting functionality of the
resulting hybrid niosomes [49,50]. Thus, the superparamagnetic structures can be guided
to and accumulate at the intended target tissue which consequently lowers concentrations
in off-target sites and, hence, significantly improves the therapeutic outcome [51–54].

Additionally, the niosomal surface can be coated with hydrophilic polymers such as
polyethylene glycol (PEG), which is non-toxic, non-immunogenic, non-antigenic as well
as highly water-soluble and prolongs the blood circulation time by preventing enzymatic
degradation [55]. Due to these favorable properties, niosomes are considered to play a
major role in future drug delivery and bear the potential for use in commercially available
therapeutics.

Herein, we present the synthesis of novel therapeutic nanocarriers by concurrent
encapsulation of FexOy-NPs and LFG gene-silencing siRNA into niosomes (Figure 1).
The FexOy-NPs were fabricated by solvothermal decomposition, entrapped inside the
hydrophobic bilayer of niosomes (referred to as FexOy/NIO) and used for in vitro magnetic
targeting by applying an external magnetic field. Synthetic siRNA, designed to target the
LFG gene, was condensed with protamine to achieve an efficient encapsulation into the
hydrophilic core of the niosomes through the thin film hydration method. After an in-
depth characterization of the resulting hybrid niosomes (referred to as siRNA/FexOy/NIO),
the combinational therapy efficacy of the hybrid niosomes together with the anti-tumor
drugs trastuzumab and erlotinib was investigated using hormone receptor- and HER2-
positive BT-474 breast cancer cells. The increased resulting apoptotic induction caused by
downregulation of the LFG gene with and without external magnetic field exposure was
analyzed using different apoptosis assays.
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2. Materials and Methods
2.1. Chemicals and Reagents

Benzyl ether (98%), cholesterol (≥99%), 1,2-hexadecanediol (90%), insulin solution (hu-
man), iron(III) acetylacetonate (Fe(acac)3, ≥99%), non-essential amino acid solution (100×),
oleic acid (90%), oleylamine (70%), phosphotungstic acid (99.99%), phosphate-buffered
saline (PBS, tablet form), protamine, sodium pyruvate solution, sorbitan monostearate
(Span60), SYBR Green I dye, Tris base-acetic acid-EDTA buffer (TAE) buffer (1×) and trypsin
were obtained from Sigma-Aldrich Chemie GmbH (Taufkirchen, Germany). Addition-
ally, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethyleneglycol)-
2000] (DSPE-PEG (2000) maleimide) was provided by Avanti (Alabaster, AL, USA). The
DNA ladder, loading dye and ethanol (99.5%) were supplied by Thermo Fisher Scientific
GmbH (Schwerte, Germany). Nuclease-free water and siRNA (5′-guugcugaguguacucuaa-
3′, target sequence of LFG gene) were purchased from Qiagen (Hilden, Germany). Agarose
and Roti-Safe Gel Stain were supplied by Roth (Karlsruhe, Germany). Dulbecco’s Minimum
Essential Medium (DMEM, supplement-free) was purchased from Gibco Life Technologies
(Carlsbad, CA, USA). Fetal calf serum (FCS) was ordered from Biochrom GmbH (Berlin,
Germany). BT-474 (isolated from a solid, invasive ductal carcinoma of the breast) cell line
was provided from Cell Lines Service (CLS; Eppelheim, Germany). All chemicals were
used as received. Unless otherwise stated, ultrapure water was used.

2.2. Synthesis of FexOy-NPs

Superparamagnetic FexOy-NPs were synthesized via an adapted solvothermal decom-
position method [56–58]. Initially, 5 mmol of 1,2-hexadecanediol was mixed with 10 mL
benzyl ether and heated to 100 ◦C for 30 min. Subsequently, 3 mmol each of the stabilizers
oleic acid and oleylamine as well as 1 mmol of the molecular precursor Fe(acac)3 were
added. The reaction mixture was refluxed under nitrogen atmosphere, first at 200 ◦C for
30 min, followed by 265 ◦C for 30 min. After cooling down to room temperature, the
NPs were washed with ethanol thrice and dispersed in chloroform. Since this synthesis
generates iron oxide NPs with contents of magnetite Fe3O4 and maghemite γ-Fe2O3, the
general term FexOy-NPs was used.

2.3. Preparation of siRNA/protamine Polyplex-Loaded FexOy-NIOs

The synthesis of PEG-maleimide-functionalized niosomes was based on the thin
film hydration method according to the protocol stated by Ag Seleci et al. [48]. In short,
Span60, cholesterol and DSPE-PEG (2000) maleimide were dispersed in 1 mL chloroform
(4.95:4.95:0.1 mM). To entrap FexOy-NPs inside the niosome bilayer structure, 2.5 µL of
the FexOy-NP suspension (7.0 mg/mL) was added to the lipid mixture. The solvent was
evaporated using a rotary evaporation process for 2 h at 38 ◦C under vacuum (300 mbar),
which resulted in the formation of the thin film. Then, 1 mL of siRNA/protamine polyplex
suspension, which had been previously prepared by mixing the siRNA and protamine
in a 1:3 molar ratio (N/P ratio of 1.5) at room temperature for 30 min, was used to hy-
drate the lipid film. For the synthesis of plain FexOy/NIO, 1 mL of water was used
instead. The resulting mixture was sonicated for 30 min at 65 ◦C. Subsequently, utilizing
a mini extruder set (Avanti Polar Lipids, city, state abbreviation, USA), 15 extrusion cy-
cles were implemented, first using a 0.4-µm and then a 0.1-µm polycarbonate membrane
to obtain siRNA/FexOy/NIOs with a particle size around 130 nm and a molar ratio of
niosomes:FexOy-NPs:polyplexes of 10:9 × 10−7:3.2 × 10−7 mM. To remove free protamine
and siRNA/protamine polyplexes, the hybrid NP suspension was treated with trypsin for
10 min at 37 ◦C [59]. Finally, siRNA and trypsin residues were removed by centrifuging
thrice using a 100-kDa filter.
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2.4. Cell Culture

The BT-474 cell line was cultured in Dulbecco’s Modified Eagle Medium and Ham’s
F12 (DMEM; Ham’s F12, PAA, Cölbe, Germany) supplemented with 10% FCS, containing
0.1 units/mL bovine insulin (5 mg/mL). Cells were maintained at 37 ◦C with 5% carbon
dioxide in a humidified atmosphere. The medium was changed every 2 to 3 days, and cells
were subcultured by treatment with 0.25% Trypsin/0.53 mM ethylenediaminetetraacetic
acid (EDTA) solution.

2.5. Characterization Methods

For the powder X-ray diffraction (XRD) analysis, an Empyrean series 2 from Malvern
Panalytical (Kassel, Germany) with Cu-Kα radiation (wavelength λ of 0.154 nm) was used.
The FexOy-NPs were dried in an oven, put onto a Si sample holder and measured in the
range of 20◦ to 90◦ 2θ with a step size of 0.05◦. The obtained diffractogram was compared
with reference spectra from the Inorganic Crystal Structure Database (ICSD).

The surface chemistry of the FexOy-NPs was analyzed by attenuated total reflectance
Fourier-transform infrared spectroscopy (ATR-FT-IR) using a Vertex 70 device from Bruker
(Billerica, MA, USA) after drying the sample in an oven overnight.

Transmission electron microscopy (TEM) images were recorded with a Tecnai G2 F20
TMP (turbo-molecular pump) from Fei (Hillsboro, OR, USA). Furthermore, 20 µL of FexOy-
NPs and FexOy/NIOs each were mixed with 10 µL of a 2% aqueous phosphotungstic acid
staining solution and dropped onto a carbon film on a 3.05-mm woven copper net with
300 mesh from Plano GmbH (Wetzlar, Germany).

Dynamic light scattering (DLS) and zeta potential measurements of FexOy-NPs and
siRNA/FexOy/NIOs were taken using a Zetasizer Nano ZS and the Zetasizer Nano soft-
ware (v7.12) from Malvern Panalytical (Kassel, Germany). The measurements were pre-
pared at 23 ◦C with a 173◦ backscattering setup. Previous dilution of the samples by
a factor of 104–105 minimized fluorescence. To obtain the hydrodynamic diameter, the
data evaluation was based on the modi of the respective intensity distributions. The zeta
potentials were obtained using a capillary zeta cuvette (DTS1070C, Malvern Panalytical).

The magnetic behavior and saturation magnetization of FexOy-NPs and FexOy/NIOs
was examined via a superconducting quantum interference device (SQUID) using the
MPMS-5S instrument from Quantum Design (Darmstadt, Germany). The samples were
dried analogously to the FT-IR preparation.

Agarose gel electrophoresis was performed to investigate the siRNA encapsulation
efficiency. Free siRNA, siRNA/FexOy/NIOs as well as the washing solution were loaded
to a 1.5% agarose gel prepared in 1 × TAE buffer and stained with 5.0 µL/100 mL Roti-Safe
Gel Stain. A Thermo EC electrophoresis device (Thermo Fisher Scientific, Waltham, MA,
USA) was utilized to run the gel at 100 V for 60 min. Subsequently, an image was taken
via the INTAS UV documentation system (Intas Science Imaging Instruments, Göttingen,
Germany).

The SYBR Green I dye was applied to free siRNA and siRNA/FexOy/NIOs for the
quantification of encapsulated siRNA according to Saxena et al. [60]. The fluorescence
intensities of samples were measured at 650 nm using a NanoDrop 3300 fluorospectrometer
from Thermo Fisher Scientific (Waltham, MA, USA). The concentration of the encapsulated
siRNA, conc. (encapsulated siRNA), can be calculated by putting the values for the
concentration of free siRNA, conc. (free siRNA), the detected relative fluorescence units
(RFU) for encapsulated siRNA and the RFU of free siRNA in the following formula:

conc. (encapsulated siRNA) =
conc. (free siRNA)· RFU (encapsulated siRNA)

RFU (free siRNA)
(1)

Assessment of the metabolic activity of viable cells according to their caspase 3/7
activity as well as the intracellular calcium mobilization was carried out using the Apo-
One Homogeneous Caspase-3/7 assay (Promega, Madison, WI, USA) according to the
manufacturer’s instructions and the Screen Quest™ Calbryte-520 Assay Kit, respectively.
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Briefly, BT-474 breast cancer cells were seeded (104/well) in two different 96-well plates for
24 h and, afterwards, treated with the respective sample (siRNA samples always contained
50 µg/mL siRNA), followed by 48 h of incubation with 5.0% CO2 at 37 ◦C. The impact of an
external magnetic field (neodymium magnet with a magnetic field of 1.3 T) on the nanopar-
ticle uptake and therapeutic effect was investigated by placing a permanent magnet under
one 96-well plate for 15 min before the aforementioned 48-h incubation (samples referred
to as M+). After this pretreatment, cells were incubated with 1 mg/mL of trastuzumab
(Herceptin®, Roche, Basel, Switzerland) or erlotinib (Tarceva®, Roche, Basel, Switzerland)
for 4 h, respectively. The caspase 3/7 activity was investigated by putting 100 µL of caspase
reagent into each well of the 96-well plate for 2 h at room temperature. Caspase 3/7
activation was estimated from sample fluorescence at the excitation wavelength of 492 nm
and the emission wavelength of 521 nm using the fluorescence plate reader Tecan GENios
(Tecan Schweiz AB, Zurich, Switzerland). Screening for free calcium channels of fragile
cells was carried out by adding 100 µL of the Calbryte dye-loading solution to each well of
a 96-well plate and incubating the cells for 60 min. Finally, the samples of both plates were
analyzed using the microplate reader at excitation/emission 492/521 nm. The resulting
values are directly proportional to the amount of apoptosis. To compare the significance of
the results, the values of the samples containing siRNA/FexOy/NIOs + anti-tumor agent
and the values of the respective anti-tumor agent were analyzed using the Student’s t-test.

3. Results
3.1. Preparation of FexOy-NPs

For incorporation into the niosomal bilayer, FexOy-NPs should not exceed a parti-
cle size of 8 nm and their surface must be capped with hydrophobic functional groups.
Therefore, the solvothermal decomposition method in the presence of oleic acid and oley-
lamine, which allows the preparation of hydrophobic and crystalline FexOy-NPs with an
adjustable particle size, was implemented. The synthesized FexOy-NPs revealed a spherical
shape and a particle size ranging between 3 and 8 nm (Figure 2a). DLS measurements
unveiled a hydrodynamic diameter of approx. 6.7 nm in hexane, with the FexOy-NPs being
equally stable in other non-polar solvents such as chloroform. The X-ray diffractogram
displays a crystalline mixed phase of magnetite and maghemite (ICSD 98-015-8714 and
ICSD 98-007-9196), which is a typical result for nanoscale iron oxide particles [61,62].

Since the cubic structure and the lattice parameters of magnetite and maghemite are
quite similar, a more accurate determination of the iron oxide composition is not possible
via XRD. Applying the Debye–Scherrer equation to the highest intensity reflection at 36.6◦

with an FWHM (full width at half maximum) of 1.5◦ and Ks (dimensionless shape factor
for spherical particles) of 0.9 leads to a crystallite size of 5.8 nm, which is in good agreement
with the particle sizes obtained by TEM and DLS. Furthermore, the FT-IR spectrum of the
FexOy-NPs shows alkyl group-based peaks at 2916 and 2842 (symmetric and asymmetric
CH2 stretching modes), 1522 and 1400 cm−1 (NH2 scissoring mode as well as asymmetric
and symmetric COO– stretching) which confirm the presence of hydrophobic stabilizing
agents on the FexOy-NP surface (Figure 2d) [63,64].



Pharmaceutics 2021, 13, 394 7 of 15
Pharmaceutics 2021, 13, x 7 of 15 
 

 

 
 

Figure 2. (a) Representative TEM image, (b) dynamic light scattering (DLS) result, (c) X-ray dif-
fraction (XRD) diffractogram with a reference pattern of maghemite γ-Fe2O3 and magnetite Fe3O4 
and (d) FT-IR spectrum of FexOy-NPs. 

3.2. Synthesis of siRNA- and FexOy-Loaded Niosomes 
After successful synthesis of the FexOy-NPs, the siRNA/FexOy/NIO hybrid nanopar-

ticles were prepared and analyzed by investigating their resulting particle properties. As 
displayed on TEM images, the encapsulation of FexOy-NPs led to the formation of spher-
ical FexOy-NP clusters with a niosome-specific size of approx. 100 nm (Figure 3a). 

DLS measurements demonstrate a niosome-typical hydrodynamic diameter of 
around 145 nm for the prepared FexOy/NIO and a small reduction in the vesicle size to 127 
nm when a concurrent encapsulation of siRNA/protamine polyplexes was carried out 
(Figure 3b). This was similarly reported in another study [65] and is considered to be in 
the optimum range for nanocarriers for in vivo tumor accumulation [43]. The stability of 
siRNA/FexOy/NIOs was tested via DLS analysis and no changes were observed in the size 
and PDI (polydispersity index) values after a two-week storage at 4 °C in the dark (data 
not shown). Moreover, magnetic measurements revealed a superparamagnetic behavior 
for the FexOy-NPs with saturation magnetization of 42.1 Am²/kg (Figure 3c), which is con-
sistent with previous findings [66–68]. 

After incorporation of FexOy-NPs into the niosomes, the measurement of the resulting 
material still did not show a magnetic hysteresis, thereby proving superparamagnetic 
properties with a decreased saturation magnetization of 11.6 Am²/kg due to the organic 
matrix [65,69]. In addition, zeta potential measurements were carried out to evaluate the 
efficacy of the trypsin treatment (+TT) after siRNA encapsulation (Figure 3d). The siRNA 
entrapment procedure resulted in a shift of the zeta potential from −41.1 to −37.9 mV due 
to the attachment of positively charged polyplexes onto the negatively charged niosome 
surface. The decrease in the zeta potential to 43.3 mV after trypsin treatment indicates the 
removal of the polyplexes [59]. 

Figure 2. (a) Representative TEM image, (b) dynamic light scattering (DLS) result, (c) X-ray diffraction
(XRD) diffractogram with a reference pattern of maghemite γ-Fe2O3 and magnetite Fe3O4 and (d)
FT-IR spectrum of FexOy-NPs.

3.2. Synthesis of siRNA- and FexOy-Loaded Niosomes

After successful synthesis of the FexOy-NPs, the siRNA/FexOy/NIO hybrid nanopar-
ticles were prepared and analyzed by investigating their resulting particle properties. As
displayed on TEM images, the encapsulation of FexOy-NPs led to the formation of spherical
FexOy-NP clusters with a niosome-specific size of approx. 100 nm (Figure 3a).

DLS measurements demonstrate a niosome-typical hydrodynamic diameter of around
145 nm for the prepared FexOy/NIO and a small reduction in the vesicle size to 127 nm
when a concurrent encapsulation of siRNA/protamine polyplexes was carried out
(Figure 3b). This was similarly reported in another study [65] and is considered to be
in the optimum range for nanocarriers for in vivo tumor accumulation [43]. The stability of
siRNA/FexOy/NIOs was tested via DLS analysis and no changes were observed in the size
and PDI (polydispersity index) values after a two-week storage at 4 ◦C in the dark (data
not shown). Moreover, magnetic measurements revealed a superparamagnetic behavior
for the FexOy-NPs with saturation magnetization of 42.1 Am2/kg (Figure 3c), which is
consistent with previous findings [66–68].

After incorporation of FexOy-NPs into the niosomes, the measurement of the resulting
material still did not show a magnetic hysteresis, thereby proving superparamagnetic
properties with a decreased saturation magnetization of 11.6 Am2/kg due to the organic
matrix [65,69]. In addition, zeta potential measurements were carried out to evaluate the
efficacy of the trypsin treatment (+TT) after siRNA encapsulation (Figure 3d). The siRNA
entrapment procedure resulted in a shift of the zeta potential from −41.1 to −37.9 mV due
to the attachment of positively charged polyplexes onto the negatively charged niosome
surface. The decrease in the zeta potential to 43.3 mV after trypsin treatment indicates the
removal of the polyplexes [59].
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Figure 3. (a) Representative TEM image of FexOy/NIO (measured at 200 kV), (b) DLS result of
plain FexOy/NIOs and siRNA/FexOy/NIOs, (c) magnetic behavior of the synthesized FexOy-NPs
and FexOy/NIOs at 300 K determined by a superconducting quantum interference device (SQUID)
magnetometer as well as (d) zeta potential measurements of plain FexOy/NIOs, siRNA/FexOy/NIOs
and siRNA/FexOy/NIOs after trypsin treatment (+TT).

To verify the successful encapsulation of siRNA/protamine polyplexes inside the
FexOy/NIOs, agarose gel electrophoresis with RNA-specific dye staining was performed
(Figure 4a). The concentration for the siRNA encapsulation was adjusted according to
the detection limit of the dye. In comparison to the free siRNA in well (2), siRNA in
the siRNA/FexOy/NIO-loaded well (3) did not migrate since it was incorporated inside
the niosome structure and, hence, sterically hindered. No band could be detected in the
pocket containing the wash solution after trypsin treatment, implying the presence of only
a negligible amount of siRNA in the supernatant after purification, thereby signifying a
high siRNA encapsulation efficiency.

To further evaluate the entrapment of siRNA, fluorescence measurements of free
siRNA (conc. (free siRNA) = 5.0 µM), siRNA/FexOy/NIO (initial conc. used for encapsu-
lation = 3.5 µM) and the wash solution were carried out. The detected RFU values were
135.7 (free siRNA), 94.0 (encapsulated siRNA) and 0.0 (wash solution) (Figure 4b). By using
Equation (1), a concentration of 3.46 µM for the encapsulated siRNA was calculated, which
indicates a 99.0% encapsulation efficiency. This finding confirms the gel electrophoresis
results and proves a highly effective entrapment of siRNA/protamine polyplexes into
niosomes.
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3.3. Combinational Therapy and In Vitro Cytotoxicity

Finally, we investigated whether the nanocarrier-assisted siRNA delivery can effec-
tively regulate the expression level of LFG in LFG-overexpressing BT-474 breast cancer
cells, causing a significantly enhanced drug efficacy. An enhanced apoptotic effect af-
ter transfection of anti-LFG siRNA in a combinational therapy with different anti-tumor
drugs compared to a control siRNA was already proven recently [18]. As therapeutic
agents, trastuzumab and erlotinib were selected, which are both directed against tyrosine
kinase receptors and inhibit pathways that control cell proliferation and overall progres-
sion of metastatic breast cancer in women [70,71]. To evaluate the in vitro efficacy of a
combinational therapy consisting of trastuzumab/erlotinib and siRNA/FexOy/NIO, the
apoptosis-inducing activity was investigated by analyzing different cellular factors such as
caspase activity and intracellular Ca2+ concentration levels. Caspase 3/7 cleavage activity
was detected using the Apo-ONE assay, and the Ca2+ concentration levels were evalu-
ated by utilizing the Calbryte-520 Assay Kit, with the detected fluorescent signals being
proportional to the induced apoptosis (Figure 5).

After administration of siRNA/FexOy/NIO and erlotinib, the BT-474 cells showed a
significantly increased amount of caspase 3/7 cleavage activity (1.86 × 104) compared to
administration of the drug with (1.58 × 104) and without (1.34 × 104) a preceding siRNA
addition (Figure 5a, p < 0.05). Since the induced apoptosis of the plain siRNA/FexOy/NIO
is almost negligible (1.46 × 104 compared to free siRNA, 1.51 × 104), the enhanced caspase
3/7 cleavage activity can be attributed to improved siRNA delivery due to the niosomes.
In fact, the addition of erlotinib with prior siRNA incubation (1.58 × 104) does not result
in a significant increase in caspase 3/7 cleavage activity compared to the administration
of plain siRNA (1.51 × 104). In the case of trastuzumab, a preceding administration of
siRNA/FexOy/NIO leads to a similar apoptotic effect (1.94 × 104) as the administration of
plain siRNA + trastuzumab (2.01 × 104), which, likewise, proves the effective nanocarrier
function of the niosomes. Similarly to erlotinib, trastuzumab itself does not result in a
higher fluorescence when administered without siRNA treatment (1.52 × 104, p < 0.05).
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Figure 5. Apoptotic effect determined via (a) caspase 3/7 cleavage activity (without magnetic treatment) and (b) intracellular
Ca2+ concentration of free siRNA, siRNA/FexOy/NIO, free siRNA with anti-tumor agent, siRNA/FexOy/NIO with anti-
tumor agent and free anti-tumor agent with (M+) and without (M-) magnetic treatment (* = the values of the samples
containing siRNA/FexOy/NIO + anti-tumor agent and the value of the respective anti-tumor agent were analyzed using a
t-test, with all data showing p < 0.05 considered significant); (c) representative fluorescent images (using the Calbryte-520
Assay Kit) showing occurring apoptosis (light green) of BT-474 cells after administration of (1) siRNA/FexOy/NIO with
erlotinib, (2) free siRNA with erlotinib, (3) erlotinib and (4) control cells and a subsequent magnetic treatment.
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The same trend can be seen when evaluating the cellular Ca2+ levels (Figure 5b):
application of siRNA/FexOy/NIO in combination with erlotinib results in a higher oc-
currence of apoptosis (2.66 × 104) due to higher intracellular Ca2+ concentration levels
than the administration of the drug with (2.53 × 104) or without (2.41 × 104) a preceding
siRNA addition (p < 0.05). Furthermore, this effect was enhanced by employing an external
magnetic field after administration of siRNA/FexOy/NIO (2.90 × 104), which indicates a
higher cellular internalization and, therefore, a successful magnetic targeting capability.
This result was elucidated by comparing the enhanced signal on fluorescent images of
siRNA/FexOy/NIO with erlotinib in contrast to the other samples (Figure 5c). In addition,
combinational treatment with trastuzumab accentuates the successful nanocarrier proper-
ties of niosomes; even though the siRNA/FexOy/NIOs together with trastuzumab exhibit
a smaller relative fluorescent activity (2.53 × 104), the influence of an external magnetic
field enhances the apoptotic effect (2.86 × 104) almost to the stage of the treatment with
plain siRNA and trastuzumab (2.95 × 104, Figure 5b). These results not only confirm
the successful encapsulation of siRNA and FexOy-NPs into the niosomes but also the
applicability of the resulting therapeutic niosomes in order to achieve downregulation of
the LFG gene and, thereby, an increase in the apoptosis rate after subsequent treatment
with different drugs.

4. Discussion

It has been suggested that the usage of siRNA as a therapeutic can be vastly ad-
vantageous for cancer treatment. However, optimizing the safe delivery of siRNA and
maintaining its activity must be ensured for clinical applications. In this study, for the
first time, superparamagnetic FexOy-NPs and niosomes were used to obtain a successful
and enhanced siRNA delivery into breast cancer cells to downregulate the LFG gene and,
hence, increase the therapeutic efficiency of different drugs.

In the first part of the presented study, superparamagnetic FexOy-NPs were prepared
using a solvothermal decomposition. Since the NPs were in the size range of approximately
3–7 nm, spherically shaped and had a hydrophobic nature, a post-synthetic encapsulation
inside the bilayer structure of niosomes was achieved. Furthermore, a concurrent incor-
poration of siRNA/protamine polyplexes could be realized by using a highly effective
entrapment procedure with an encapsulation efficiency of approx. 99%. The resulting
hybrid niosomes showed a hydrodynamic diameter of approx. 145 nm and superparamag-
netic properties. Subsequent trypsin treatment caused the removal of polyplexes attached
to the niosomal surface, ensuring a zeta potential similar to plain FexOy/NIO. The affirmed
efficacy of the implemented encapsulation together with the generally low-cost synthesis
of niosomes will be of major importance for the commercialization of siRNA-based thera-
peutics, since cost-effective production is a crucial aspect for the establishment of novel
clinical therapies.

Afterwards, a silencing of the LFG gene and, hence, downregulation of the protein
expression was achieved after administration of the siRNA/FexOy/NIOs to BT-474 breast
cancer cells. Subsequent addition of trastuzumab or erlotinib resulted in significantly
higher caspase 3/7 cleavage activity as well as increased intracellular Ca2+ concentration
levels, which undoubtedly indicates the successful activation of the Pi3-K/Akt apoptotic
pathway. These findings suggest that the combinational therapy consisting of chemothera-
peutic agents and LFG-specific siRNA/FexOy/NIOs led to a cumulative apoptotic effect.
By applying an external magnetic field after addition of siRNA/FexOy/NIOs, the magnetic
targeting capability remarkably increased the apoptosis efficiency of the combinational
therapy in contrast to the plain drugs. Besides providing evidence showing that utilizing a
gene-silencing substance in combination with a chemotherapeutic agent for breast cancer
is a more efficient treatment in comparison with conventional chemotherapy, we also pre-
sented an effective nanoparticulate delivery system by protecting siRNA via encapsulation
in a niosomal formulation and enhanced the combinational therapy outcome by use of
magnetic particle manipulation.
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Whilst an apoptotic enhancement was achieved, we expect that the specificity towards
breast cancer cells might be further enhanced by conjugating targeting ligands onto the
siRNA/FexOy/NIO surface, which will be subject to future investigations. Moreover,
in vivo experiments with a special focus on the safe and selective delivery of therapeutic
nanocarriers will be necessary to validate the in vitro results as well as investigate potential
side effects. In essence, the niosomal formulation together with the results reported in this
study have the potential to provide a novel platform for a new generation of commercially
available and highly efficient siRNA-based therapies.
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