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Abstract: Supinoxin is a novel anticancer drug candidate targeting the Y593 phospho-p68 RNA heli-
case, by exhibiting antiproliferative activity and/or suppression of tumor growth. This study aimed
to characterize the in vitro and in vivo pharmacokinetics of supinoxin and attempt physiologically
based pharmacokinetic (PBPK) modeling in rats. Supinoxin has good permeability, comparable to
that of metoprolol (high permeability compound) in Caco-2 cells, with negligible net absorptive or
secretory transport observed. After an intravenous injection at a dose range of 0.5–5 mg/kg, the termi-
nal half-life (i.e., 2.54–2.80 h), systemic clearance (i.e., 691–865 mL/h/kg), and steady state volume of
distribution (i.e., 2040–3500 mL/kg) of supinoxin remained unchanged, suggesting dose-independent
(i.e., dose-proportional) pharmacokinetics for the dose ranges studied. After oral administration,
supinoxin showed modest absorption with an absolute oral bioavailability of 56.9–57.4%. The fecal re-
covery following intravenous and oral administration was 16.5% and 46.8%, respectively, whereas the
urinary recoveries in both administration routes were negligible. Supinoxin was mainly eliminated
via NADPH-dependent phase I metabolism (i.e., 58.5% of total clearance), while UDPGA-dependent
phase II metabolism appeared negligible in the rat liver microsome. Supinoxin was most abundantly
distributed in the adipose tissue, gut, and liver among the nine major tissues studied (i.e., the brain,
liver, kidneys, heart, lungs, spleen, gut, muscles, and adipose tissue), and the tissue exposure profiles
of supinoxin were well predicted with physiologically based pharmacokinetics.

Keywords: phosphorylated p68; supinoxin; pharmacokinetics; physiologically based pharmacoki-
netic modeling

1. Introduction

Nuclear p68 RNA helicase is considered a prototypical DEAD box family of RNA
helicases [1]. P68 is aberrantly expressed and dysregulated in various solid tumors, in-
cluding colorectal and lung cancer [2,3], and the phosphorylation of p68 is reported to
promote cell proliferation by activating the transcription of multiple cancer-related genes,
including cyclin D1 and c-myc [4]. Specifically, the tyrosine phosphorylation of p68 at
Y593 promotes β-catenin nuclear translocation and mediates the growth factor-stimulated
epithelial–mesenchymal transition [5]. Therefore, the phosphorylated-p68 RNA helicase is
increasingly recognized to be involved in cancer progression and metastasis [6,7].
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Supinoxin (RX-5902) is a first-in-class, orally bioavailable small molecule inhibitor
targeting the Y593 phosphorylated-p68 RNA helicase, and is being developed by Rexahn
Pharmaceuticals (Rockville, MD, USA) [8,9]. By interacting with p68-RNA helicase and
inhibiting β-catenin dependent ATPase activity [8,10], supinoxin exhibits antiproliferative
activity and suppression of tumor growth against a variety of in vitro and in vivo tumor
models, including triple-negative breast cancer [10–13].

The preliminary results after two cycles of supinoxin therapy in a phase 1b/2a trial
in patients with previously treated advanced triple-negative breast cancer indicated that
in five of the 11 patients treated, the disease was stable, while one subject exhibited early
antitumor activity (a tumor reduction of 18.2%) and the suggested dose appeared to be
safe and well tolerated [14]. However, the pharmacokinetics of the compound have not yet
been fully characterized. Jeong et al. briefly summarized the pharmacokinetic profile of the
drug in rats [15] and a phase I trial reported the safety and tolerability of supinoxin [14,16],
detailed information on the distribution and elimination kinetics of the drug is still lacking.
Pharmacokinetic studies in experimental animals, especially rats, can fill this gap by
providing useful reference data for drug development that are rarely assessed in early
clinical trials. Such studies are thus crucial to understand further, the behavior of the drug
in the human body.

Thus, in this study, we investigated the in vitro and in vivo (after intravenous and
oral administration in rats) pharmacokinetic characteristics of supinoxin and evaluated its
main elimination pathways and distribution to major tissues (i.e., the brain, liver, kidneys,
heart, lungs, spleen, gut, muscles, and adipose tissue). Finally, physiologically based
pharmacokinetic (PBPK) modeling was used to simulate and predict the tissue distribution
of the drug.

2. Materials and Methods
2.1. Chemicals

Supinoxin (Figure S1) and DGG-200064, an internal standard, were obtained from
Dongguk University (Seoul, Korea). Dimethyl sulfoxide (DMSO) was obtained from Sigma-
Aldrich (St. Louis, MO, USA). Polyethylene glycol-400 (PEG 400), and Tween 80 were
obtained from Samchun Chemicals (Pyeongtaek, Korea). HPLC-grade acetonitrile and
methanol were purchased from TEDIA Inc. (Fairfield, OH, USA). All other reagents and
chemicals used were of analytical grade. Rat plasma was anticoagulated with sodium
heparin and was obtained from our laboratory.

2.2. Animals

Male Sprague Dawley (SD) rats, 6–7 weeks old, were purchased from Orient Bio Inc.
(Seongnam-si, Korea) and were used in all in vivo studies. The animals were maintained at
a temperature of 20–26 ◦C with a 12 h light/dark cycle and a relative humidity of 40–60%.
The experimental protocols involving the animals used in this study were reviewed by the
Animal Care and Use Committee of Chungnam National University (CNU-00576, Daejeon,
Korea; approval date: 13 March 2015).

2.3. Transport of Supinoxin in Caco-2 Cells

The Caco-2 intestinal epithelial cell line (ATCC® HTB-37™) purchased from American
Type Culture Collection (ATCC, Manassas, VA, USA) was cultured and maintained in Dul-
becco’s modified Eagle medium (DMEM) containing 10% fetal bovine serum, 100 U/mL
penicillin, and 0.1 mg/mL streptomycin under humidified atmosphere of air containing 5%
CO2 at 37 ◦C. Caco-2 cells were seeded at a density of 6 × 104 cells/cm2 onto polyethylene
membranes of transwell plates (Corning Costar, Cambridge, MA, USA). The medium was
replaced on alternate days after seeding, and cell monolayers were used for the transport
assay after approximately 21 days of culture. Trans-epithelial electrical resistance (TEER)
values of the Caco-2 monolayers were measured with an EVOM epithelial tissue voltmeter
(World Precision Instruments, Sarasota, FL, USA), and cells with TEER greater than 300 Ω
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were used for the experiments. Cell monolayers were first rinsed three times with transport
buffer (Hank’s balanced salt solution supplemented with 10 mM HEPES) and preincubated
for 30 min at 37 ◦C. To measure the bidirectional transport of the compound, a transport
buffer containing 1 µM supinoxin was added to the respective donor compartments (the
apical and basolateral sides for absorptive and secretory transport assays, respectively).
Samples (200 µL) were collected at 30, 60, 90, and 120 min, and an identical volume of
fresh buffer was replenished. The samples were then subjected to LC–MS/MS analysis and
concentrations of the samples were determined. After the final sampling from both com-
partments, we measured the TEER of the monolayers to ensure no possible adverse effects
induced by the experimental procedures and then estimated the apparent permeability
coefficient of supinoxin from the compound’s time-dependent accumulation (dQ/dt) in
the receiver compartments using the following equation:

Papp = dQ/dt × 1/(A × C0) (1)

where dQ/dt is the rate of transport, A is the surface area of the filter, and C0 is the initial
concentration in the donor chamber.

2.4. In Vivo Pharmacokinetic Study
2.4.1. Intravenous or Oral Administration of Supinoxin to Rats

Supinoxin was dissolved in a vehicle (10% DMSO, 10% Tween 80, 40% PEG 400, and
40% saline). In single doses, the administration routes involved an intravenous bolus via
the tail vein (n = 4–5) and an oral gavage dose (n = 4–5). The dosing volume was 2 mL per
kg body weight, and the dosing range was 0.5, 1, and 5 mg/kg. Blood samples (200 µL)
were collected from the jugular vein at 0.083 (intravenous only), 0.25, 0.5, 1, 3, 7, 10, and
24 h after dosing, using a heparinized syringe to ensure anticoagulation. During blood
sampling, rats were placed in a restrainer (Nagai-CFS-1S; NMS, Tokyo, Japan). For the
separation of plasma fractions, all blood samples were centrifuged at 17,600× g for 5 min.
The samples were stored at −20 ◦C until analysis. When obtaining tissue concentrations to
calculate the tissue-to-plasma partition ratio was necessary, samples of nine tissues (i.e.,
adipose, heart, muscle, kidney, brain, liver, spleen, gut, and lung) were collected at 0.33, 1,
3, 7, and 24 h after 5 mg/kg intravenous administration of supinoxin (n = 3).

2.4.2. Determination of Urinary and Fecal Excretion

Supinoxin was administered to male SD rats (n = 3–4) at a dose of 5 mg/kg either
intravenously (through the tail vein) or by oral gavage, following which rats were kept
in metabolic cages and urine and feces samples were collected over the following time
intervals: 0–2, 2–4, 4–6, 6–10, 10–24, 24–36, and 36–48 h for urine; 0–10, 10–24, 24–36, and
36–48 h for feces.

The metabolic cages were rinsed with distilled water, and residues were added to
the urine samples at 48 h. To extract the supinoxin present in the feces, samples were
homogenized with a blender mixer and shaken vigorously for 4 h with 50% methanol.

The amount of drug excreted in urine or feces (Ae) and the dose fractions excreted
unchanged in urine or feces (fe) were calculated as:

Ae = Cobs, urine or feces × Vurine or feces (2)

fe = Ae/Dose (3)

The urinary and fecal clearances of supinoxin were calculated as:

CLurine or feces = Ae, urine or feces/AUC (4)

2.5. Pharmacokinetic Analysis

The peak concentration (Cmax) and the time to reach Cmax (Tmax) were obtained
directly from individual plasma concentration–time profiles. Linear trapezoidal rule was
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used to calculate the areas under the plasma concentration–time curve (AUC) and the
first moment curve (AUMC), while the terminal half-life (T1/2) was calculated using
0.693/λ, where λ represents the slope of the log-transformed concentration–time profiles
of the terminal phase. The systemic clearance (CL), mean residence time (MRT), and the
volume of the distribution at the steady state (Vss) were calculated as follows: dose/AUC,
AUMC/AUC, and MRT·CL, respectively. To calculate the absolute oral bioavailability (F)
we divided the AUC obtained following oral administration by that obtained following
intravenous administration of the respective dose.

The tissue-to-plasma partition coefficient (Kp) for supinoxin was calculated by di-
viding the mean AUCtissue by the mean AUCplasma after administration. To obtain the
aforementioned pharmacokinetic parameters, all plasma and tissue concentration–time
profiles were analyzed using a noncompartmental analysis using the WinNonlin software
(ver. 5.3; Pharsight, St. Louis, MO, USA).

2.6. Estimation of the Unbound Fraction of Supinoxin in the Plasma and Microsomes

To determine the unbound fraction of supinoxin in the plasma, a protein binding
study was carried out using the Rapid Equilibrium Dialysis (RED) method. Following
the manufacturer’s protocol (Thermo Fisher Scientific, San Jose, CA, USA), supinoxin was
added to a plasma aliquot to produce a final concentration of 1 µg/mL. A plasma aliquot
containing supinoxin (200 µL) and buffer (350 µL) was added to the sample chamber and
the buffer chamber, respectively. When necessary, supinoxin was added to the microsomal
incubation mixture (0.5 mg of protein per mL in potassium phosphate buffer) to produce
final concentrations of 1 µM. The plate was covered and agitated on an orbital shaker at
approximately 250 rpm at 37 ◦C. Aliquots (25 µL) of the plasma and buffer were collected
at 4, 8, 18, and 24 h, and the samples were subjected to LC–MS/MS analysis. The fraction
of supinoxin bound to plasma protein was estimated as follows [17]:

Percent bound (%) = [1 − (concentration in buffer/concentration in plasma)] × 100% (5)

2.7. Metabolic Stability of Supinoxin

In these experiments, the metabolic stability of supinoxin in rat liver microsomes
(BD Biosciences, San Jose, CA, USA) was determined. The microsomal reaction mixture
comprised the follows: liver microsomal protein (final concentration of 0.5 mg protein per
mL reaction mixture) and an NADPH regenerating solution (1.3 mM NADP+, 3.3 mM
glucose-6-phosphate, 0.4 U/mL glucose-6-phosphate dehydrogenase, and 3.3 mM MgCl2)
in a 100 mM potassium phosphate buffer with a pH of 7.4. After 5 min preincubation of
the reaction mixture in a water bath at 37 ◦C, the reaction was initiated by the addition
of a supinoxin solution to obtain a final concentration of 1 µM. Aliquots (50 µL) of the
mixture were sampled at 5, 15, 30, and 60 min after the initiation of the reaction. The
reaction was terminated by adding a stop solution (200 µL of ice-chilled acetonitrile) to
the sample immediately after collection. After mixing by vortexing and centrifugation of
the mixtures at 15,000× g for 5 min, an aliquot (150 µL) of the supernatant was analyzed
by LC–MS/MS assay. In addition, the metabolic stability of supinoxin was determined in
the presence of UDP glucuronic acid under similar reaction conditions, except that uridine
5′-diphosphoglucuronic acid was added instead of the NADPH regenerating solution.
Finally, metabolic stability of supinoxin was tested in concentration range of 0.1–10 µM
to confirm that the concentration used in the study (1 µM) was below the Km for the
metabolic reaction. The amount of sample remaining was plotted against the reaction
time to determine the metabolic rate constant of the reaction. Assuming that the substrate
concentration was below the Km for the metabolic reaction, the intrinsic clearance was
calculated as follows:

CLint =
Aprotein × ke

fu,mic·Cprotein
(6)
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where Aprotein is the total amount of liver microsomal protein, ke is the metabolic rate
constant of the reaction, fu,mic is the unbound fraction of the drug in the reaction mixture,
and Cprotein is the microsomal protein concentration (mg/mL) in the reaction mixture. In
this calculation, an Aprotein of 1790 mg of protein per kg for rats was used [18].

When necessary, the hepatic clearance of the compound was calculated using a well-
stirred model as follows:

CLh =
Q·CLint·fu,p

Q + CLint·fu,p/R
(7)

where Q is the hepatic blood flow, fu,p is the unbound fraction of the drug in the plasma,
and R is the blood-to-plasma partition ratio. In this calculation, a hepatic blood flow of
14.5 mL/min for 250 g rat [19] was used, and the blood-to-plasma partition ratio was
assumed to be 1.

2.8. CYP Inhibition by Supinoxin

CYP inhibition by supinoxin was studied using Vivid® CYP450 screening kits (Thermo
Fisher Scientific, San Jose, CA, USA) following the manufacturer’s instructions. Briefly,
Vivid® substrates were dissolved in acetonitrile yielding a stock solution of 2 mM. Fluores-
cent assays were conducted at room temperature using Costar 96-well black plates (#3915;
Corning Costar, Acton, MA, USA). Supinoxin stock solution was diluted in reaction buffer
to yield a 2.5X concentration solution (final concentration of 10 µM); aliquots (40 µL) of
the solution were added to the wells. Subsequently, aliquots (50 µL) of reaction mixture
consisting of P450 Baculosomes® Reagent and the NADPH regeneration system were also
added to the wells and preincubated for 10 min, at room temperature, after which 10 µL of
1 mM NADP+ and Vivid® substrate mixture were added.

After a 30-min incubation, fluorescence was detected in end-point mode using a
Varioscan™ Flash multimode reader (Thermo Fisher Scientific, San Jose, CA, USA). Back-
ground fluorescence was obtained from wells not containing CYP isozymes and was with-
drawn before further reaction. The excitation and emission wavelengths of 485 nm/530 nm
for Vivid® Green substrates, and 409 nm/460 nm for Vivid® Blue substrates were used.
The inhibition percentage of the compound was determined in comparison to the vehicle
(i.e., DMSO)-treated control wells. For isozymes with > 50% inhibition at 10 µM, we de-
termined the concentration-dependent inhibition of supinoxin to obtain the IC50 value at
concentrations ranging from 0.59 to 10 µM.

2.9. PBPK Modeling and Simulation

Whole-body PBPK modeling and simulation of supinoxin pharmacokinetics were
performed using Simcyp Animal (ver. 17; SimCYP Ltd. Sheffield, UK). The supinoxin
model was built using the physicochemical properties and predicted in silico data (Med-
Chem Designer; ver 5.5, Simulations Plus, Inc. Lancaster, CA, USA; MarvinSketch; ver
21.3, ChemAxon Ltd. Budapest, Hungary) of supinoxin as well as in vitro and in vivo data
obtained from this study (Table 1). In modeling the absorption process, the Advanced
Dissolution, Absorption, and Metabolism (ADAM) model was employed with an effec-
tive permeability (Peff,man) of 1.317 × 10−4 cm/s, which was predicted by the Caco-2
permeability obtained from this study. In modeling the distribution process, a full PBPK
model was selected, and the tissue-to-plasma partitioning coefficients (Kp) obtained via
in vivo experiments in this study (i.e., from adipose tissue, heart, muscle, kidney, brain,
liver, spleen, gut, and lung samples) were used. The partitioning coefficients for tissues
not addressed in this study (i.e., bones and skin) were predicted using the Rodgers and
Rowland method [20]. In elimination modeling, we used the in vivo clearance obtained
from the intravenous administration study.
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Table 1. Pharmacokinetic parameters of supinoxin after intravenous administration a.

Parameter
Dose

0.5 mg/kg 1 mg/kg b 5 mg/kg

AUClast (µg·h/mL) 0.715 ± 0.180 1.75 ± 0.32 6.09 ± 1.76
AUCinf (µg·h/mL) 0.727 ± 0.177 1.78 ± 0.30 6.13 ± 1.75

T1/2 (h) 2.54 ± 0.83 2.64 ± 0.39 2.80 ± 0.71
CL (mL/h/kg) 717 ± 152 691 ± 110 865 ± 235

MRT (h) 2.92 ± 0.65 2.99 ± 0.51 4.07 ± 1.37
Vss (mL/kg) 2110 ± 803 2040 ± 316 3500 ± 1450

a The data are represented as mean ± SD (n = 4–5). b This result has been previously reported. Adapted from [15],
Jeong, J.-W. et al., 2017.

2.10. Analytical Procedure for the Determination of Supinoxin Concentrations

To determine supinoxin concentrations in plasma, feces, and urine, we used a pre-
viously reported LC–MS/MS assay using DGG-200064 as an internal standard (IS) [15].
Briefly, an aliquot (50 µL) of IS solution (concentration 100 ng/mL) was added to 50 µL
of plasma, feces, or urine sample, following which 400 µL of acetonitrile containing 0.1%
formic acid was added. After vigorous vortexing for 10 min, the extract was centrifuged at
17,600 rpm for 10 min at 4 ◦C, and the supernatant was placed in an autosampler vial. An
aliquot of 5 µL was then injected into the analytical column for chromatographic separation;
the analytical system consisted of a 1200 series HPLC system (Applied Biosystems, Foster
City, CA, USA) equipped with a turbo-electrospray interface in positive ionization mode.

Compounds were separated using a Zorbax XDB-C18 column (50 × 2.1 mm i.d.,
3.5 µm; Agilent Technologies), and a mixture of 0.1% formic acid in distilled water and
0.1% formic acid in acetonitrile [50:50 (v/v)] at a flow rate of 0.3 mL/min was used as the
mobile phase. Quantification was carried out using multiple reaction monitoring (MRM)
at m/z 442.30→ 223.20 for supinoxin and m/z 430.08→ 223.20 for the IS. The optimized
instrument conditions for the compounds were as follows: source temperature, 500 ◦C;
curtain gas, 20 psi; nebulizing (GS1), 40 psi; heating (GS2), 40 psi; collision energy (CE),
23 V; entrance potential (EP), 10 V; collision energies (CEs), 23 V; collision cell exit potential
(CXP), 14 V. In this study, the lower limit of quantitation (LLOQ) was defined as 0.5 ng/mL
and intra-/interday precision (i.e., less than 13.7%) and accuracy (i.e., less than 11.6%) were
found to be within the acceptance criteria for US Food and Drug Administration’s assay
validation guidelines [21], indicating that the assay was valid within the concentration
range studied.

2.11. Statistical Analysis

All data are presented as means ± SD. To compare the mean values between or
among groups, the unpaired t-test or one-way analysis of variance (ANOVA) with Tukey’s
post-hoc test were used. p values < 0.05 were considered statistically significant.

3. Results
3.1. Transport of Supinoxin in Caco-2 Cells

In this study, the permeability of supinoxin was estimated in Caco-2 cell monolayers.
The apical to basolateral and basolateral to apical apparent permeability coefficients of
supinoxin were estimated to be 18.5 ± 2.4 and 22.6 ± 1.8 × 10−6 cm/s, respectively.
Comparably, the apparent permeability coefficient of metoprolol (i.e., high permeability
control) was 15.5 ± 0.8 and 15.7 ± 0.8 × 10−6 cm/s for the apical to basolateral and
basolateral to apical directions, respectively. The contribution of absorptive or secretory
active transport was considered marginal, as the efflux ratio of supinoxin was calculated to
be 1.24.



Pharmaceutics 2021, 13, 373 7 of 14

3.2. In Vivo Pharmacokinetic Study

The plasma concentration–time profiles and pharmacokinetic parameters of supinoxin
were examined after the intravenous (Figure 1, Table 1, and Table S1,) and oral (Figure 2,
Table 2, and Table S2) administration of doses ranging from 0.5 to 5 mg/kg in rats. Over-
all, pharmacokinetic parameters including the absolute oral bioavailability, Vss, CL, and
the dose normalized Cmax and AUC were not statistically different between doses. The
cumulative amounts of supinoxin in urine and feces investigated after the intravenous and
oral administration of a dose of 5 mg/kg in rats are shown in Table 3. The total urinary
and fecal recovery of unchanged supinoxin after intravenous administration were 0.03%
and 16.5%, respectively. After oral administration, the urinary and fecal recoveries were
0.01% and 46.8%, respectively. The lowest and highest mean AUC24h for supinoxin in the
tissues (i.e., brain, liver, kidneys, testes, heart, lungs, spleen, gut, muscles, and adipose
tissue) were detected in the spleen (3.31 h·µg/mL) and adipose tissues (111 h·µg/mL),
respectively, after the oral administration of a dose of 5 mg/kg in rats (Table 4). The tissue
to plasma AUC ratio (Kp) ranged from 0.65 (spleen) to 21.7 (adipose) in rats.

Figure 1. Pharmacokinetic profile of supinoxin following the intravenous administration of 0.5, 1, and 5 mg/kg to rats.
Each point represents the mean ± standard deviation (n = 4–5).
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Figure 2. Pharmacokinetic profile of supinoxin following the oral administration of 0.5, 1, and 5 mg/kg in rats. Each point
represents the mean ± standard deviation (n = 4–5).

Table 2. Pharmacokinetic parameters of supinoxin after oral administration a.

Parameter
Dose

0.5 mg/kg 1 mg/kg b 5 mg/kg

AUClast (h·µg/mL) 0.402 ± 0.130 0.984 ± 0.407 3.48 ± 1.45
AUCinf (h·µg/mL) 0.418 ± 0.133 1.01 ± 0.42 3.51 ± 1.42

T1/2 (h) 2.00 ± 0.50 2.11 ± 0.91 2.02 ± 0.33
Tmax (h) 0.800 ± 0.274 0.650 ± 0.337 0.750 ± 0.289

Cmax (µg/mL) 0.108 ± 0.036 0.250 ± 0.093 0.823 ± 0.340
MRT (h) 2.99 ± 0.71 3.15 ± 1.26 3.17 ± 0.36

F (%) 57.4 ± 18.3 56.9 ± 23.7 57.2 ± 23.1
a The data are represented as mean ± SD (n = 4–5). b This result has been previously reported. Adapted from [15],
Jeong, J.-W. et al., 2017.

Table 3. Amount of drug excreted and unchanged fraction of excreted dose after intravenous or oral
administration in rats (5 mg/kg).

IV (n = 4) PO (n = 4)

Amount (µg) Fraction
Excreted (%) Amount (µg) Fraction

Excreted (%)

Urinary
excretion 0.27 ± 0.06 0.03 ± 0.01 0.06 ± 0.04 0.01 ± 0.01

Fecal excretion 142 ± 21.6 16.5 ± 2.82 412 ± 209 46.8 ± 24.5
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Table 4. Distribution of supinoxin after oral administration (5 mg/kg) and tissue volume of rat.

AUC0–24h
a

(µg/mL·h) Kp
Volume b

(mL/kg)
Kp × Volume

(mL/kg)

Plasma 5.108 1.00 31.2 31.2
Brain 4.349 0.85 6.80 5.80
Liver 24.31 4.76 41.0 196

Kidneys 11.13 2.18 9.20 20.0
Testes 5.370 1.05 10.0 10.5
Heart 3.551 0.70 3.20 2.20
Lungs 5.523 1.08 4.00 4.30
Spleen 3.314 0.65 2.40 1.60

Gut 25.31 4.96 40.0 198
Muscles 6.134 1.20 488 586

Adipose tissue 110.6 21.7 40.0 866

Vd (mL/kg) 1921.6
a Mean value. b Data obtained from literature. Adapted from [22,23], Davies, B. et al., 1993 and Peters, S.A. et al., 2012.

3.3. Determination of the Plasma Protein Binding of Supinoxin

In this study, the extent of supinoxin binding to rat plasma protein was examined
using the equilibrium dialysis method. During the 24 h incubation, the unbound fraction
of supinoxin increased steadily up to 18 h, after which the fraction remained constant
(Table S1). After 18 h of incubation, the unbound fraction of supinoxin in rat plasma was
3.63 ± 0.25% at a 1-µg/mL concentration, suggesting that it was extensively bound to rat
plasma protein. Similarly, the unbound fraction of supinoxin was also determined in a
microsomal incubation mixture (0.5 mg of protein per mL). The unbound fraction was
62.3 ± 1.6% at a 1-µM concentration after 18 h of incubation (Table S3).

3.4. Metabolic Stability

For the evaluation of supinoxin metabolism, NADPH-dependent metabolic stability
studies were carried out in rat liver microsomes (Figure 3A). The remaining amount at
the end of the 60-min incubation was 12.7 ± 0.1% of the initial, the NADPH-dependent
metabolic half-life of supinoxin was estimated to be 17.1 min, and the intrinsic clear-
ance was 14.0 L/h/kg. Using a well-stirred model, hepatic clearance was estimated to
be 443 mL/h/kg, accounting for 58.5% of the total in vivo clearance (i.e., the average
clearance value for a 0.5–5 mg/kg intravenous administration was used for comparison).
Supinoxin appeared to be stable for UDPGA-dependent metabolism, as the remaining
amount was 92.2 ± 0.1% in the UDPGA-dependent metabolic stability study (Figure 3B).
In addition, the addition of UDPGA in the NADPH-containing incubation mixture did not
lead to significant metabolic profile differences from the mixture containing only NADPH
(Figure 3A,C), indicating the negligible contribution of UDPGA-dependent metabolism in
the microsomal clearance of supinoxin. Furthermore, the half-life of supinoxin remained
constant in concentration ranges of 0.1–1 µM (Figure 3D), supporting the assumption that
the concentration used in this study (1 µM) was below the Km for the metabolic reaction.

3.5. CYP Inhibition Potency of Supinoxin

In the inhibition study, human recombinant CYP enzymes were used for the prediction
of the drug–drug interaction potential in humans. Respective fluorescent substrates for CYP
isozymes were used. Supinoxin caused little to no inhibition of CYP1A2, 2C9, 2C19, and
2D6 with 5.90%, 16.2%, 35.7%, and <0.01% inhibition, respectively, compared to the vehicle
control, at a final concentration of 10 µM. As the inhibition was less than 50% at the highest
concentration (i.e., 10 µM), the IC50 values for these isozymes could not be determined
in the concentration range used, thus were inferred to be greater than 10 µM. In contrast,
the inhibition of CYP3A4 was >50% at 10 µM of supinoxin. Therefore, a concentration-
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dependent inhibition study of supinoxin on CYP3A4 was conducted, resulting in an IC50
value of 4.66 µM (Figure S2).

Figure 3. Metabolic stability of supinoxin in rat liver microsomes. Rat liver microsomes were
incubated with 1 µM supinoxin for 60 min in the presence and absence of (A) NADPH, (B) UDP-
glucuronic acid (UDPGA), or (C) both NADPH and UDPGA as a cofactor. In addition, (D) metabolic
stability of supinoxin in concentration ranges of 0.1–10 µM was tested. Data are expressed as the
mean ± standard deviation of triplicate runs.

3.6. Whole-Body PBPK

Whole-body PBPK modeling and simulation of supinoxin pharmacokinetics were
performed using the pharmacokinetic parameters obtained from this study and the pre-
dicted in silico data (Table 5). Model parameters were refined, resulting in reasonable
predictions for the concentration-profiles of supinoxin in the plasma and tissues (i.e., the
brain, liver, kidneys, heart, lungs, spleen, gut, muscles, and adipose tissue) (Figure 4). The
predicted-to-observed ratios of all the pharmacokinetic parameters, including Tmax, Cmax,
AUC, and CL met the acceptance criterion of ranging between 0.5 and 2.

Table 5. Summary of input parameters for supinoxin in the PBPK model.

Parameters Supinoxin Source

Physicochemical properties
Molecular weight (MW, g/mol) 441.465

Log PO:W 2.7 MedChem Designer
Compound type Monoprotic acid

pKa 1.5 MarvinSketch
Blood to plasma partition ratio (B/P) 1 Assumed

Fraction unbound in plasma (fu) 0.0363 Determined

Absorption
Absorption type ADAM model

Caco-2 permeability (10−6 cm/s) 18.47 Determined

Distribution
Distribution model Full PBPK model

Vss (L/kg) 2.448 Predicted (Method2)
Tissue: Plasma partition coefficients 0.649–21.7 Determined

Elimination
In vivo clearance (CLiv, mL/min) 3.16 Determined
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Figure 4. Observed and simulated plasma and tissue concentration–time profiles of supinoxin in different tissues after
the oral administration of 5 mg/kg to rats. Closed squares and dotted lines represent the observed and simulated values,
respectively (n = 3).

4. Discussion

Supinoxin was developed as an orally available inhibitor of phosphorylated P68.
Although Jeong et al. recently provided a brief summary of the pharmacokinetic profile of
the drug and a phase I trial reported the safety and tolerability of supinoxin [16], detailed
analysis on the distribution and elimination kinetics of the drug is currently unavailable.
In this study, the in vitro and in vivo pharmacokinetics of supinoxin were characterized in
rats, using physiologically based pharmacokinetic analysis to predict the tissue distribution
of the drug.

After the intravenous administration of supinoxin (0.5–5 mg/kg), the CL and Vss
values were consistent throughout the different doses, suggesting dose-independent (i.e.,
dose-proportional) pharmacokinetics of supinoxin. The compound was also shown to
exhibit modest oral absorption with an oral bioavailability of 56.9–57.4%. Likewise, no
statistically significant difference in oral bioavailability was observed between the different
doses (0.5–5 mg/kg).

Caco-2 cell transport studies demonstrated that supinoxin is highly permeable with
no apparent contribution from efflux transporters. The apparent permeability coefficient
estimated in Caco-2 cells well correlated with human intestinal absorption [24], thereby
suggesting an efficient absorption of supinoxin in the human intestine.

The distribution of supinoxin following oral administration was most abundant in the
adipose tissue, followed by the gut and liver. Using the estimated Kp value and real tissue
volumes from literature [22,23], the steady state volume of distribution was calculated
as 1921.6 mL, which is reasonably close to the volume of distribution estimated in the
noncompartmental analysis of the systemic administration study (2110 ± 803, 2040 ± 316,
and 3500 ± 1450 mL/kg following the intravenous administration of 0.5, 1, and 5 mg/kg,
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respectively), suggesting that supinoxin is primarily distributed to the tissues examined
in this study. In addition, we used PBPK modeling to understand the distribution charac-
teristics of supinoxin in rats after oral dosing. For the PBPK model, we applied various
pharmacokinetic parameters obtained in this study, in addition to the physicochemical
properties of supinoxin. The simulated concentration profiles of supinoxin in the plasma
and tissues were reasonably well matched with the observed values (Figure 4). The
PBPK models used in this study appeared useful in predicting the plasma and tissue
concentrations of supinoxin in rats. A similar PBPK strategy may also be used to predict
pharmacokinetics in humans, such as predicting the optimal dose for clinical trials, the
application when the modulation of the dose regimen or target population is necessary, or
the concentration of the drug accumulated in a specific tissue.

To characterize the elimination kinetics of supinoxin, the urinary and fecal clearance of
the compound were determined. As the systemic pharmacokinetics of supinoxin suggested
no evidence of a saturable (i.e., nonlinear) process involved, the urinary and fecal excretions
of the compound were determined by a representative single dose (5 mg/kg). The total uri-
nary recovery of unchanged supinoxin following both intravenous and oral administration
was less than 0.1% of the given dose, indicating that urinary excretion was negligible. The
fecal recovery of supinoxin following intravenous and oral administration was 16.5% and
46.8%, respectively, the discrepancy possibly reflecting the amount of drug left unabsorbed
through the GI tract. The fecal clearance of supinoxin was estimated to be 135 mL/h/kg. In
contrast, the hepatic clearance of supinoxin, estimated by rat liver microsomal incubation,
was 443 mL/h/kg, accounting for 58.5% of the total in vivo clearance. Thus, supinoxin
may be primarily eliminated through hepatic metabolism with a minor contribution from
fecal elimination in rats.

Finally, when an inhibition study of supinoxin was carried out in human recombinant
enzymes to predict drug–drug interactions, supinoxin was unlikely to be a significant
inhibitor of human CYP1A2, 2C9, 2C19, and 2D6 (i.e., IC50 > 10 µM). In contrast, significant
in vitro inhibition was observed for CYP3A4, with an IC50 value of 4.66 µM. However,
according to the preliminary data from phase I dose-escalating clinical trials of supinoxin,
Cmax was observed to be 99.1–707 µg/L (0.22–1.60 µM) in the dose range of 25–775 mg [16].
The US Food and Drug Administration recommends that for inhibitor drugs with an
[Imax,u] value (the maximal unbound concentration in plasma) divided by the Ki value
greater than 0.02 or an [Igut] value (the maximal concentration in gastrointestinal tract; dose
divided by 250 mL) divided by the Ki value greater than 10, should be further evaluated for
possibility of clinical drug–drug interactions [25]. Based on data from the dose-escalating
studies and assuming the unbound fraction of the drug in human plasma is comparable to
that in rats (i.e., unbound fraction 0.0363), the [Imax,u] or [Igut] divided by Ki is less than
0.02 or 10 (0.012 and 2.51, respectively). Therefore, the possibility of significant drug–drug
interactions by major CYP enzymes, including CYP1A2, 2C9, 2C19, and 2D6 are considered
unlikely, while CYP3A4-mediated interactions should be closely monitored with regard to
clinical plasma concentrations at high doses in humans.

5. Conclusions

The pharmacokinetics of supinoxin in rats were characterized after the intravenous
and oral administration of doses in the 0.5–5 mg/kg range. Supinoxin exhibited dose-
independent pharmacokinetics in the dose ranges tested, appeared to be highly permeable,
and showed modest bioavailability. Additionally, supinoxin appeared to be primarily elimi-
nated by hepatic metabolism, with minor amounts eliminated by the fecal route. Supinoxin
was distributed primarily in the adipose tissue, gut, and liver, and the distribution kinetics
were well correlated with the PBPK simulation results developed in this study. Based on
inhibition studies, the possibility of CYP1A2, 2C9, 2C19, and 2D6-mediated drug–drug
interactions was estimated to be low for humans, while CYP3A4-mediated interactions
should be closely monitored with regard to clinical plasma concentrations. The results of
this study provide insights into the development and understanding of the compound.
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oral administration of 0.5, 1 and 5 mg/kg in fasted male SD rats, Table S3. Unbound fractions of
supinoxin in rat plasma and liver microsomes, Figure S1. Chemical structure of supinoxin, Figure S2.
Inhibitory effects of supinoxin on the CYP3A4 activity in human recombinant enzymes. Each point
represents the mean ± standard deviation (n = 3), Figure S3. Relationship between observed and
predicted concentration.
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