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Abstract: Recently, drug delivery using natural biological carriers has emerged as one of the most
widely investigated topics of research. Erythrocytes, or red blood cells, can act as potential carriers
for a wide variety of drugs, including anticancer, antibacterial, antiviral, and anti-inflammatory,
along with various proteins, peptides, enzymes, and other macromolecules. The red blood cell-based
nanocarrier systems, also called nanoerythrosomes, are nanovesicles poised with extraordinary
features such as long blood circulation times, the ability to escape immune system, the ability to
release the drug gradually, the protection of drugs from various endogenous factors, targeted and
specified delivery of drugs, as well as possessing both therapeutic and diagnostic applications in
various fields of biomedical sciences. Their journey over the last two decades is escalating with fast
pace, ranging from in vivo to preclinical and clinical studies by encapsulating a number of drugs into
these carriers. Being biomimetic nanoparticles, they have enhanced the stability profile of drugs and
their excellent site-specific targeting ability makes them potential carrier systems in the diagnosis
and therapy of wide variety of tumors including gliomas, lung cancers, breast cancers, colon cancers,
gastric cancers, and other solid tumors. This review focuses on the most recent advancements in the
field of nanoerythrosomes, as an excellent and promising nanoplatform for the novel drug delivery of
various drugs particularly antineoplastic drugs along with their potential as a promising diagnostic
tool for the identification of different tumors.

Keywords: nanoerythrosome; nanoerythrocyte; nanovesicles; biomimetic; cancer therapy; diagnos-
tics; imaging agents

1. Introduction

Erythrocytes (ER) or the red blood cells (RBC) are the most abundant blood cells re-
sponsible for the transport of gases from lungs to the tissues [1]. Over the past two decades,
they have been exploited to develop various biomimetic cell-based carrier systems, includ-
ing resealed erythrocytes (RE), genetically engineered RBCs, as well as RBC-membrane
coated nanoparticles (NP) (RBC-m-NP) for various biomedical applications. Their transi-
tion from preclinical studies to clinical stage is a proof of being smart and effective enough
to be used as novel drug delivery vehicles. Other than erythrocytes, other blood cells such
as platelets and leukocytes can also be used as carrier system for a variety of drugs [2].
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All these cell-based drug carrier systems are superior and have various advantages over
other drug-delivery systems such as micro- and nano-particles in terms of properties such
as prolonged circulation time, biocompatibility, biodegradability, non-immunogenicity,
ease of preparation, and flexibility in use [3], apart from improved patient compliance by
extending the time of release of drugs from these systems. Escaping the rapid clearance
from body and specificity for the target are other major advantages associated with such
carriers [4]. These extraordinary features helped the carrier erythrocytes (C-ER) to emerge
as potential drug-carrier systems for the therapy of cellular infections, cardiovascular
disorders, cancer therapy, gene therapy, and other ailments [5]. Recently, several other cell-
based drug delivery strategies such as bacterial ghosts, dendritic cells (DC) and genetically
engineered stem cells have also emerged owing to the successful application of C-ERs [6].

Nanoerythrosomes (NER) are the C-ERs which are recognized as modern day, novel,
and smart drug delivery systems associated with increased bioavailability, improved phar-
macokinetics, and low toxicity [7]. As a physiological carrier, NERs can release the drug
in circulation for weeks, have high loading capacity, are easy to be processed and have
good ability to accommodate biologics, antigens, contrasting agents, peptides, proteins,
enzymes, and macromolecules using different chemical and physical based methods [8,9].
Innumerable examples are available in the literature discussing the drug delivery by C-ERs
for applications in drug targeting to the reticuloendotehlial system (RES), enzyme therapy
and improvement in the delivery of oxygen to the tissues [10,11]. One of such example
is the delivery of bovine serum albumin (BSA) as a model antigen, which can be loaded
on the human erythrocytes and delivered to the RES [12]. C-ERs are the unique drug
delivery system that is also known to be capable of modulating the immune responses [13].
Amongst different antineoplastic drugs, methotrexate, etoposide, doxorubicin, and car-
boplatin have been successfully encapsulated in these carriers previously [14]. C-ERs are
shown to protect the carried therapeutics such as antibiotics, antineoplastics, corticos-
teroids, peptides, and enzymes from being inactivated by different endogenous factors.
The three main mechanisms, by which these C-ERs work are prolongation of circulation
half-life, slow drug release, and organ-specific targeting [15]. Regulatory aspects of carrier
erythrocytes and industrial developments are evolving day by day. However, their pro-
duction scalability, process validation and quality control is still challenging enough for
successful industrialization [16].

This review focuses on the NERs which have emerged as a promising and versatile
platform for the successful delivery of a number of drugs in particular the antineoplastic
drugs. Recent advancements in the field of NERs along with the nanoformulations de-
veloped and used in the cancer and non-cancer therapy are covered. The diagnostic and
imaging applications of NERs, as well as the recent patents and clinical trials associated
with these carriers have also been discussed.

2. Fabrication of NERs

Various methods have been successfully utilized for the fabrication of NERs in order to
enhance membrane permeability and cellular targeting of therapeutic agents. These meth-
ods are described below [17–20].

2.1. Dilutional Hemolysis and Resealing Method

Hemolysis and resealing method is commonly used method for drug loading into ery-
throcytes. In this technique, the erythrocytes are exposed to hypotonic solution (0.4% w/v
sodium chloride) until it reaches a critical value of volume or pressure in order to rupture
the cells. Then, resealing is carried out in order to restore osmotic properties [19]. Dilu-
tional hemolysis utilizing hypotonic solution (0.4% w/v sodium hydroxide) at 0 ◦C and
resealing at 37 ◦C has been utilized as cellular carriers for the successful delivery of low
molecular weight drugs like β-glucosidase and β-galactosidase [20]. This technique is the
simplest and fastest technique for the preparation of NERs. The main disadvantages of this
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technique are low drug loading efficiency (1–8%) and considerable loss of hemoglobin and
other cellular components [19,20].

2.2. Preswell Dilutional Hemolysis Method

The preswell dilutional hemolysis technique has been developed for the improvement
of drug loading efficiencies. In this technique, an initial swelling of erythrocytes is achieved
using slightly hypotonic solution, followed by low-speed centrifugation. The drug load-
ing efficiencies of some drugs such as ibuprofen and thyroxin have been significantly
increased using preswell dilutional hemolysis technique compared to dilutional hemolysis
technique [17].

2.3. Hypotonic Dialysis Method

The main problems of dilution techniques is the low drug-loading efficiencies. This prob-
lem of such dilutional techniques can be overcome using hypotonic dialysis technique. In hy-
potonic dialysis technique, the lysis and resealing are carried out within dialysis tube. This
technique offers high drug entrapment efficiency, high drug-loading efficiency, and high
cells recovery compared to dilutional techniques. However, long processing time and special
instruments are required for this technique. This method has been successfully utilized for
the loading of various enzymes (asparginase, galactosidase, and glucoserebrosidase, etc.) and
drugs (gentamicin, adriamycin, and furamycin, etc.) [17,21].

2.4. Use of Red Cell Loader

The instrument like red cell loader is used for the loading of non-diffusible drugs into
erythrocytes. Using this technique, the drugs are loaded into small volume of blood within
2 h at room temperature under blood banking conditions. The drug loading up to 30% and
cell recovery of 30–50% can be achieved using this technique [18].

2.5. Isotonic Osmotic Lysis

It is also known as osmotic pulse technique which can be achieved by chemical or
physical means. The chemical which are used to achieve isotonic hemolysis are urea,
polyethylene glycols, and ammonium chloride. This technique is not immune to the
changes in the composition of membrane structures [17,18].

2.6. Membrane Perturbation Technique

This technique is based on the enhancement in the membrane permeability of ery-
throcytes when the cells are exposed under certain chemicals or drugs. The membrane
permeability of erythrocytes was enhanced under exposure to an antibiotic amphotericin B.
This technique has been applied to load an antitumor drug daunomycin into erythrocytes of
rat and human. However, this technique is irreversible and hence not very popular [17,18].

2.7. Lipid Fusion Technique

This technique is used for the loading of drug-loaded lipid vesicles into erythrocytes.
Drug-loaded lipid vesicles can be directly fused into human erythrocytes, which could
result into exchange with a lipid-entrapped drug. This technique has been successfully
applied for the loading of inositol monophosphate into human erythrocytes for the im-
provement of oxygen carrying capacity of the cells. However, the drug-loading capacity of
this technique is too low (1%) [18,19].

Some other techniques such as extrusion, sonication, and electrical breakdown tech-
niques have also been utilized for the loading of drugs into human erythrocytes [18].

3. NERs as an Efficient Drug Delivery Tool

The compendium of knowledge and several research studies available on the RBC-
based carrier systems led to the development of more advanced RBC-membrane derived
liposomes also called as NERs. It has opened a new vista of its futuristic application in
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the field of nanomedicine with greater potentials. These are NPs often designated with
other names such as functionalized-NPs, hybrid-NPs, biomimetic-NPs, and targeted-NPs
in the literature [22–24]. The NERs, being nanosized derivatives of erythrocytes, exhibit
important properties such as biodegradability, biocompatibility, excellent release profiles,
and organ and site-specific targetability. The prolonged circulation time in blood for
NERs is owing to the higher surface area-to-volume ratio than the parent erythrocytes
(approximately 80 times higher). Extra care is necessary while handling parent erythrocytes
for maximum drug loading. The hemoglobin and cytoplasmic contents of the erythrocytes
are removed using a controlled hypertonic solution mediated hemolysis followed by the
loading of therapeutic agents. This process of removal of cellular contents should be in
such a controlled manner that the plasma membrane should not be disrupted and the
cells are allowed to form seamless nanosized capsule. One erythrocyte can be fragmented
into thousands of NERs depending upon the recovered cell percentage post removal of
its organelles. The NERs are prepared from the hemoglobin (Hb)-free erythrocyte ghosts
using sonication, extrusion, and electrical impulses techniques. Uniform nanosized NERs
are obtained using extrusion technique which is the most efficient technique amongst all.
The nanosizing technique, lysis media, and processing temperature have considerable
impact on the development of stable and viable NERs-based formulations. Owing to the
biomimetic properties of NERs, these can be utilized for the efficient encapsulation of
peptides, enzymes, genetic materials, toxins, and contrasting agents which can be applied
for the treatment of liver, lymph nodes, and spleen disorders, as well as various types
of carcinomas [23–25]. Similar to liposomes, NERs are the nanovesicles prepared by the
extrusion of RBC ghosts, are membrane-covered nanoscale containers, discrete spherical
in shape, with unilamellar membrane of 4.5 µm thickness and having diameter up to
100 nm (Figure 1). However, the disadvantages associated with liposomes and monoclonal
antibodies are not present in NERs and these show excellent colloidal stability in both
buffer and serum at room temperature [25].
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4. Applications of NERs in Cancer Therapy and Diagnosis
4.1. NERs in Cancer Therapy

The important studies on NERs and their formulations for the application in cancer
therapy are summarized in Table 1. NERs are artificial, synthetic, biomimetic, and presently
the most investigated and sought after RBC cell-based carrier systems under this cate-
gory. These RBC cell-based carrier systems have covered a path of progress from conven-
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tional REs (microscale) to the most advanced NERs (nanoscale). These RBC-nanovesicles
(RBC-NV) are fused onto the core NPs through extrusion, sonication, and electropora-
tion techniques. Being biomimetic NPs, NERs attain specific functions including ligand
recognition, tumor-targeting, longer blood circulation time, and ability to escape the im-
mune system. These activities lead to the core-shell interactions, mimicking the source
cells, and improving the therapeutic efficacy of drugs through specific delivery and en-
hanced drug-accumulation inside the tumor [26]. NERs marked the beginning of an
unparalleled approach towards the therapy of a number of diseases including cancer
owing to multiple advantages such as small size, ability to encapsulate antineoplastic
drugs, and organ-specific targeting which further gave them added advantages over their
other carrier counterparts in cancer nanomedicine. The surface of NERs can be modified
using tumor-targeting ligands, which further improve the drug efficacy and optimize drug
pharmacokinetics.

The loading and delivery of antineoplastic drugs using various pharmaceutical and
nanotechnological engineering techniques is one of the most important applications of
NERs. The unique techniques of surface modification and functionalization provide
additional attractive feature to this delivery system and further increase its potential in
cancer therapy (Figure 2).
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Numerous studies have been performed in the field of cancer therapy using NERs over
the last two decades and multitude of its medical applications in other ailments diversify
their applications in the arena of drug delivery as therapeutic, diagnostic, theragnostics,
and imaging tool [27]. The nanomedicines have the ability to deliver the drugs directly to
the individual organs to avoid the adverse or side effects; however, the drug delivery by
conventional nanocarriers is limited by difficulty in delivering to most target organs and
dire need of the affinity moieties [28].

The poor drug loading, low anti-tumor efficacy, and rapid clearance from the blood
circulation are the major challenges faced by the conventional anti-cancer nanocarriers.
The most challenging part is the high uptake of nanocarriers by the liver and spleen
because of RES. The majority of nanocarriers injected intravascularly end up in the liver
causing hepatotoxicity [29]. The NERs, as an innovative drug delivery system, provides
with high drug loading capacity, specificity in targeting tumor cells, and synergistic anti-
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cancer sensitization using human erythrocyte membrane as delivery platform. This novel
technology can be used in treating and preventing cancer metastasis such as breast cancer
metastasis, mainly by blocking the circulation of metastatic cancer cells by inhibiting
angiogenesis and capturing circulating endothelial progenitors that are recruited to the
tumor. They also physically block (infarction) the capillaries of the tumor or the metastasis.
The inhibition of molecular pathways of the metastatic invasion and cancer growth is the
latest therapeutic approach for cancer metastasis. The physical blocking of metastasis and
angiogenesis by incorporating tumor-and angiogenesis-specific ligands such as antibodies,
small molecules and peptides into the plasma membrane of erythrocytes is very novel [30].

Polymeric-NPs as intravascular drug delivery vehicles have been studied extensively
in past but their applications are beset by rapid clearance from the circulation by RES. This
led to the development of NERs as novel cancer drug delivery systems for the optimal
delivery of various anticancer pharmaceutical agents. These anticancer drugs, when admin-
istered intravenously, cannot reach the tumor site efficiently owing to their weal specificity
which results into lower therapeutic potential and serious side effects. One of the major
reasons of multidrug resistance (MDR) and thereby chemotherapy failure is the efflux
of anticancer drugs mediated by P-glycoprotein (P-gp). This problem is overcome to an
extent when these anticancer agents are delivered to the tumors in combination with P-gp
inhibitors and this has proven to be an effective strategy [31]. An organ-specific or site-
specific nano-drug delivery system based on human RBCs is a newer and effective strategy
of the present decade (Figure 3).
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The anticancer drug delivery using NERs was first carried out by a team of researchers
two decades ago in 1994, when they explored the anticancer drug daunorubicin (DAU)
and prepared the DAU-NERs for enhanced antineoplastic potential. DAU was linked
covalently to the NERs using glutaraldehyde as homobifunctional linking arm, and it
was observed that the cytotoxicity of conjugated drug was higher as compared to the
free drug when assessed on P388D1 cancer cell line [32]. Results indicated that these
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DAU-NER conjugates could potentially be utilized as drug carriers in CDF1 leukemia
tumors. The mechanism behind the cellular uptake was neither the diffusion through
cell membrane nor endocytosis but free DAU was found to slowly release by hydrolysis
of glutaraldehyde linking arm, producing a high concentration of free DAU in the cells
vicinity for a long period of time [33], and phagocytosis of DAU-NER complex was not
involved [34]. The biodistribution of 125I-NERs purified by dialysis followed by intra-
venous (IV) and intraperitonial (IP) injections in CD1 mice was investigated in another
study. NERs were rapidly (less than 30 min) removed from the systemic circulation after
IV administration, however, the IP administration showed a higher uptake by liver and
spleen, accumulation in lungs and marked activity was observed in the inguinal lymph
nodes after 2 h of the administration [35].

Earlier, the surface modification of NPs could be achieved using polymers such as
poloxamines, poloxamers and polyethylene glycols, to avoid opsonization, but now, these
NPs could be anchored to the surface of RBCs to escape the clearance by RES as the RBCs
are able to do so. This leads to a novel approach in the intravascular drug delivery system
as RBC-anchored NPs. The RBC-anchored polymeric NPs were prepared using polystyrene
NPs modified with carboxyl groups (110, 220, 450, and 1100 nm in diameter). An improved
in vivo circulation lifetime was achieved using RBC-anchored NPs [36]. In another study by
the same research group, RBC-anchored NPs were eventually get detached from RBCs ow-
ing to the shear forces and subsequently get cleared up in the liver and spleen [37]. The sur-
face modifications of NERs is possible with glutaraldehyde, antibodies, and carbohydrates
(sialic acid), which improve their target specificity and prolong their in vivo circulation
time, helps escape the RES and protects the drug from the inactivation by endogenous
chemicals and enzymes [38,39]. Based on this approach, a top-down biomimetic approach
was reported utilizing particle functionalization. The fluorophore-loaded biomimetic NPs
were prepared using poly (d,l-lactide-co-glycolide) (PLGA) polymer and fused with RBC-
derived vesicles. The prepared RBC-fused biomimetic NPs were injected in mice. Results
revealed superior circulation half-life in cases of biomimetic-NPs as compared to control
group-NPs which were coated with conventional synthetic stealth materials. An increased
particle retention time of 72 h in the blood was observed which proved the approach as very
unique and effective in the NPs functionalization [40]. In another study, RBC-membrane-
cloaked polymeric NPs were prepared by lipid-insertion technique utilizing fluorescein
isothiocyante (FITC)-polyethylene glycol (PEG)-lipid. The FITC-PEG-lipid NPs were func-
tionalized with folate and nucleolin-targeting aptamer AS1411 showed a receptor-specific
targeted delivery when tested against the cancer cell lines models [41]. Another promising
integration of cell-based drug delivery and nanotechnology was seen when RBCs were
linked to iron oxide-NPs pre-coated with chlorine-e6 and a well-known chemotherapeutic
drug, doxorubicin (DOX) was loaded for an imaging-guided combined chemotherapy-
photodynamic therapy of carcinomas. Interestingly, the marked synergism and excellent
therapeutic results were observed in animal tumor model [42]. In another report, the oxy-
gen self-enriched biomimetic RBCs were prepared by cloaking the albumin-NPs containing
indocyanine green (ICG) and perfluorocarbon (PFC) with RBC membranes. The rapid clear-
ance of conventional nanocarriers by RES and low singlet oxygen quantum (0.08) of ICG
often resulted into limited phytotherpaeutic efficacy. The prepared oxygen self-enriched
RBCs had long circulation time, high oxygen carrying capacity, and biomimetic properties
ideal for clinical cancer phototherapy treatment [43]. Another novel NERs-ghost delivery
system was developed to transport sodium transhinone-IIA sulphonate (STS-Nano-RBC)
for IV use in rats. These nanosystems had narrow particle size distribution, good stabil-
ity for 21 days, and better loading efficiency as compared to conventional STS injections
in vivo [44].

BackgroundIt is now evident that the adverse effects associated with the conventional
cancer therapy (chemotherapy, surgery, and radiotherapy) can effectively be addressed by
applying the nanomedicine approach. Nano-engineering makes targets achievable and
with diverse surface functionalization methods, nowadays RBCs are not only targeting
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drug carriers but therapeutic and imaging diagnostic tools as well, what we commonly
term as theranostics [45]. Recently, RBC membrane-loaded with hydrophobic drug camp-
tothecin were prepared which were non-covalently labeled with amphiphilic fluorophore
nanovesicles (NVs). These NVs were overall stable, nonphagocytic and exhibited minor
stimulation of macrophages for cytokine release. Intravenously injected NVs in balb/c
mice exhibited better retention over 48 h and minimal accumulation in vital organs such as
heart, liver, and kidneys [46]. NE-membrane-chaperoned 5-fluorouracil (5-FU) liposomes
were also prepared as biomimetic delivery system to target hepatocellular carcinoma cell
lines. Liposomes of 5-FU were prepared by thin film hydration method using dipalmitoyl
phosphatidylcholine (DPPC) and cholesterol. NE-membrane-chaperoned 5-FU liposomes
were prepared by extrusion technique. The drug-targeting capability of NE-membrane-
chaperoned liposomes was higher than conventional 5-FU solution [47]. The most recent
advances in this field include antigen delivery systems using NERs in which the tumor anti-
gens are loaded onto the NERs using fusion tumor cell membranes. This nanosystem was
shown to markedly inhibit the tumor growth in B16F10 and 4T1 tumor models in vivo [48].
A new NER-tailoring technique evolved recently, wherein, the NERs in the size range
of 200 to 300 nm were produced by addition of phospholipids DPPC to ghost RBCs [49].
In yet other significant research, bio-hybrid microswimmers were developed which had the
integration of motile-microorganisms with artificial cargo carriers to revolutionize targeted-
cargo delivery. In this study, genetically-engineered flagellated Escherichia coli species were
integrated with RBC-derived NERs through conjugation of streptavidin-modified microor-
ganisms with biotin-modified NERs using non-covalent streptavidin-biotin interactions.
The high fabrication efficiency and good motility performance was achieved with these
personalized biohybrid microswimmers, as shown in Figure 4 [50].
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4.2. NERs in Immunotherapy

The main focus of cancer immunotherapy is to manipulate the patient’s own immune
system to recognize and destroy the cancer cells. The NPs-based drug delivery systems
show their therapeutic potential by evading the immune system of hosts and delivering
the drug efficiently and safely to the site of action. In lieu of this, an erythrocyte membrane-
enveloped PLGA NPs (PLGA-NP) based nanovaccine was developed for hgp 10025-33,
an antigenic peptide and monophosphoryl lipid (MPLA), a toll-like receptor-4 agonist.
To target the antigen presenting cells (APC), a mannose-inserted membrane structure
was constructed in the lymphatic organ and the prepared nanovaccine showed increased
retention of protein content in the erythrocytes, improved in vitro cellular uptake, inhibition
of tumor growth, prolonged tumor-occurring time, and reduced tumor metastasis, resulting
in a potential nanoplatform for the delivery of antigens in the immunotherapy of cancer [51].
After the conventional mono-chemotherapy, research was carried out on combination
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chemotherapy approach for cancer treatment by these carrier systems. A programmed
co-delivery of paclitaxel (PAX) and DOX as the hydrophilic-lipophilic chemotherapeutic
drug pair into the magnetic O-carboxymethyl-chitosan NPs further masked using Arg-Gly-
Asp anchored erythrocyte membrane was achieved and compared with the conventionally
prepared PEG coated NPs. Superior circulation time, improved tumor accumulation, and
better tumor uptake was demonstrated using biomimetic-NPs with much lower side effects
as compared to their counterpart [52].

In an attempt to counter the insufficient targeting ability of NERs which beset their
clinical applications [53], several PAX-loaded polymeric NPs were linked to the biomimetic
4T1-breast cancer cell membranes. Polymeric NPs were prepared using poly(caprolactone)
and pluronic copolymer F68. The novel nanoformulation demonstrated superior inter-
actions with the source tumor cells, prolonged circulation time, and higher cell-specific
targeting of the homotypic primary tumors and metastasis [54]. The in-combination advan-
tages of erythrocytes and NPs have so far offered three types of RBC-based nanomedicines:
(i) whole erythrocytes, (ii) cell membrane-coated NPs, and (iii) NERs and together they
offer optimal blend of important features as a multifunctional platform in the cancer im-
munotherapy [55]. Similarly, curcumin-loaded NERs (CUR-NER) were prepared by sonica-
tion method showing nearly uniform spheres with diameter (245.7 ± 1.3 nm), encapsulation
efficiency (50.65% ± 1.36%) and loading efficiency (6.27% ± 0.29%). These CUR-NERs
were efficiently taken up by the cancer cells which displayed good anti-tumor efficacy [56].

The molecular targeting of the RBC membrane glycophorin-A (GPA) receptor can
mediate the membrane attachment of protein based-therapeutics which can open diverse
applications of NERs for preclinical and clinical biocompatibility [57]. A cell membrane-
coated NP platform for the new antitumor drug gambogic acid (GA) was developed in
order to improve its limited clinical applications owing to its poor aqueous solubility.
The biomimetic nanocarrier system was prepared using PLGA polymer. The prepared
PLGA nanocarrier system was found to show improved stability and biocompatibility.
In addition, the GA-loaded RBC-m- PLGA-NPs showed better antitumor efficacy and lesser
toxicity as compared with the free GA in the treatment of colorectal cancer [58]. In another
study, a novel RBC-based artificial APC (aAPC) system was developed which can mimic
the antigen presenting dendritic cells (DC) and activate T-cells. This system had promising
applications in the transfer of adoptive T-cells and even in the activation of circulating
T-cells directly for the immunotherapy of cancer [59].

4.3. NERs in Cancer Imaging and Diagnostics

For the in vivo cancer imaging, RBC-up-conversion NPs (RBC-UCNP) were developed
for cancer targeting and imaging recently. UCNPs were functionalized using 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium
salt) (DSPE-PEG). RBC-UCNPs were obtained using extrusion method and showed supe-
rior chemical and optical features. These RBC-UCNPs were utilized successfully for in vivo
tumor imaging [60]. The biomimetic RBC membrane-coated ferric oxide (Fe3O4) magnetic
NPs (RBC-MNP) prepared using microfluidic electroporation strategy also exhibited better
treatment effect in imaging-guided cancer therapy [61]. Therefore, biomimetic-NPs derived
from erythrocytes, white blood cells, cancer cells, stem cells, platelets, or bacterial ghost
cells are engineered therapeutic carrier system presently garnering lot of attention for their
applications in diagnostics, imaging, drug delivery, vaccines, and immune-modulation,
etc. [62]. The limitations of fluorescence image-guided tumor surgery and photodynamic
therapy including lesser penetration depth, lower signal-to-noise ratio of traditional first
near infra-red (NIR) window (NIR-I) fluorescence, as well as the hypoxic tumor environ-
ment can be overcome by RBCs-based multimodal probe. This probe was able to show
improved tumor targeting and fluorescent probes retention post IV injection, therefore,
the second NIR window (NIR-II) fluorescence bioimaging-guided absolute tumor resection
and highly efficient photodynamic therapy could be achieved [63].



Pharmaceutics 2021, 13, 368 10 of 22

4.4. NERs in Cancer Combination Therapy

In continuation to explore the cancer combination therapy using NERs, a hybrid
biomimetic RBCs-melanoma cells (B16-F10) coating (RBC-B16 hybrid membrane) along
with the loading of camouflaged DOX on the hollow copper sulfide (CuS)-NPs were de-
veloped for the melanoma therapy and compared with the bare CuS-NPs. Interestingly,
the DOX-loaded RBC-B16-coated CuS-NPs exhibited excellent synergistic effects as the
photothermal-chemotherapeutic agent and were 100% effective in inhibiting the melanoma
tumor growth [64]. Small molecular drug co-assemblies of 10-hydroxycampthothecin
(10-HCPT) and ICG were fabricated in RBC membranes as a biomimetic and combinational
therapeutic tool for prolonged circulation time, controlled drug release, and synergistic
chemo-photothermal therapy. The prepared NPs had a diameter of ~150 nm, core-shell
structure, high drug load (~92 wt%), and decreased uptake by RES. Compared to indi-
vidual treatment, the NPs under dual stimuli showed high increased apoptosis in tumor
cells [65]. PAX-loaded biocompatible nanosystems derived from human ER membranes
were constructed to enhance the targeting of the drug for the treatment of gastric cancer.
With a lipid insertion method, a phospholipid derivative, 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-(maleimide[polyethyleneglycol]-3400) (DSPE-PEG-MAL) was
inserted into the ER membrane-derived tumor-targeting molecular vesicles. The spher-
ical and uniformly sized (171.7 ± 4.7 nm) nanosystems were obtained which exhibited
biphasic release pattern of the drug. When subjected to in vivo testing in Balb/c nude
mice, the nanosystems showed accumulation of the drug into the tumor site within 2 h of
the administration reducing the tumor volume to 61% [66]. In a similar study, folic acid
(FA) as a tumor-targeting molecule and magnetic nanoparticles (MNP) were coated on the
RBC-surface using lipophilic interaction and chemical conjugation techniques, respectively.
MNPs were functionalized using DSPE-PEG-FA. Functionalized MNPs were conjugated
with RBC ter 119 antigen. These engineered RBCs quickly adhered to the circulating tumor
cells (CTC) and conjugated to form RBC-CTC conjugates which released the CTCs upon
treatment with RBC-lysis buffer followed by centrifugation [67]. The targeted delivery
of DOX in the treatment of liver cancer was also studied in another report. The surface
modified NERs loaded with DOX were prepared and their surfaces were modified with FA
and PEG for their tumor targeting ability. Compared to the conventional DOX injection,
FA-PEG-DOX-Nano-RBCs were reported to prolong the drug circulation time in vivo and
augmented the concentration and accumulation of drug in liver tumor cells [68].

A novel, targeted, biomimetic nanoplatform for combined cancer chemotherapy and
phototherapy was achieved by embedding the BSA encapsulated with 1,2-diaminocyclohexane-
platinum (II) and ICG for targeting peptide-modified erythrocyte membrane in order to
improve the tumor internalization. The nano-therapeutic system had tumor-specific targeting
ability with efficient removal of tumors, as well as suppression of metastasis in vivo by
combined photothermal therapy and chemotherapy under phototriggering [69]. A nanoworm,
biomimetic NER for siRNA delivery has also been reported in literature wherein, the RBC
membrane cloaking protected siRNA from degradation by RNAse A. The siRNA vector stayed
longer in the blood circulation than that of both negatively charged BSA spheres, as well as
positively charged BSA and showed the ability to escape from late lysosomes and endosomes
in order to achieve efficient transfection for knockdown of genes. These biomimetic worm-
like NERs charge reversible gene vector is a novel method for much effective in vivo siRNA
therapy [70].

The magnitude of research carried out on the delivery of drugs bound to erythrocytes
emphasized more on controlled release, improved pharmacokinetics and pharmacody-
namics profiles of drugs such as anti-neoplastics, anti-inflammatory, anti-thrombotics, and
anti-microbials, etc. [71]. Poised with unique advantages in drug transportation, RBC-
based systems were further developed and in yet another study, an albumin bound NIR
dye and DOX as a chemotherapeutic agent were co-encapsulated inside the RBCs and
their surfaces were modified using target protein to achieve tumor targeting. The RBC
membranes were destroyed using an external NIR laser and light-induced photothermal
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heating which resulted into the release of drugs effectively. This work was novel, smart,
and highly promising in the field of targeted combination therapy of cancer (photothermal
and chemotherapy) [72]. Similarly, the immunocompatible nanocarriers cloaked in RBC
membrane were utilized for drug targeting. DOX-loaded PLGA NPs were prepared using
double emulsification method and RBC membrane vesicles were prepared using a sonica-
tion method. Biomimetic RBC-NPS were prepared by fusing DOX-loaded PLGA NPs into
RBC membrane vesicles. The prepared biomimetic-NPs of DOX shrouded inside the RBC
membranes showing good inhibition of tumor growth as compared to the treatment with
free drug [73]. Recently, dual-functional exosome-based super-paramagnetic NP-clusters
were developed for the cancer therapy and the in vivo studies on murine hepatoma-22
subcutaneous cancer cells demonstrated the suppression of tumor growth by these novel
drug carriers under an external magnetic field [53].

The photothermal therapy (PTT) is a highly efficient method for the induction of tumor
neoantigen release in situ and it has great potential to be used in the cancer immunother-
apy. Nanovesicles of biomimetic black phosphorous quantum dots (BPQD) coated with
ER membranes (RM) nanovesicles [BPQD-RMNV] exhibited longer circulation time and
better tumor accumulation in vivo in breast cancer cells. The BPQD-RMNV mediated PTT
combined with anti-program death-1 (aPD-1) treatment markedly deferred residual and
metastatic cancer growth in vivo. Therefore, the combination of BPQD-RMNV-mediated
PTT with immune checkpoint-blockade antibodies were found to improve the permeation
and efficacy of CD8+ T cells inside the tumor restraining the growth of basal-like breast
cancer cells in vitro [74]. In another study, graphene oxide NPs were prepared by incor-
porating ICG as photosensitizer along with DOX as the chemotherapeutic agent and the
shell was made of RBC-membrane inserted with FA as targeting molecule. These NPs
showed excellent biocompatibility and remarkable ability to evade the RES clearance [75].
Hybrid membranes of various kinds of cells could efficiently be coated onto the surface of
NPs in order to achieve the desired functions [76]. The coating using cell membranes has
emerged as an upcoming strategy for improving the properties of nanomaterials. In lieu
of this, RBC membrane was fused with MCF-7 breast cancer cell membrane and hybrid
membrane-camouflaged melanin NPs were prepared for improving the therapeutic poten-
tial of PTT. Melanin-RBCs showed both prolonged blood circulation time and homotypic
targeting to the MCF-7 breast cancer cells [76].

4.5. NERs in Glioma Therapy

Amongst all cancers, glioma is the most fatal with limited options of treatment and
a very low survival rate. It is extremely challenging for NPs to cross blood brain bar-
rier (BBB) and blood brain tumor barrier (BBTB). Researchers recently designed RBC-
membrane-coated solid-lipid-NPs-based nanocarrier system with T-7 and NGR peptide
to counter these challenges, to evade the BBB and to reach the glioma. The NPs of pep-
tides T-7 and NGR were prepared using DSPE-PEG and fused with RBC membrane.
These biomimetic nanocarriers showed enough potential to deliver the model drug vin-
cristine to the brain [77]. Similarly, RBC-membrane-coated-nanocrystals modified with
the tumor-targeting peptide c(RGDyK) were developed for their potential to treat glioma.
Docetaxel-loaded nanocrystals were prepared using streptavidin-PEG-DSPE and biotin-
DSPE-c(RGDyK) and fused with RBC membrane. These nanocarriers showed improved
tumor accumulation and enhanced therapeutic efficacy in vivo in mice with subcutaneous
tumor and orthotropic glioma. These nanosystems displayed higher drug loading, excellent
biocompatibility, long-term stability, and were found to be suitable for brain delivery [78].
RBC-hitchhiking is another valuable technological tool and a new formulation develop-
ment strategy of complexing NPs with the RBCs for the treatment of aggressive and small
cancers, including lung cancer [79].
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4.6. NERs in Overcoming Drug Resistance

RBC-membrane-derived vesicles (RDV) coated poly (acrylic acid) cystamine hydrochloride-
D-α-tocopherol succinate (PAAssVES) NPs were developed using emulsification method fol-
lowed by solvent-volatilization method and finally was loaded with anticancer drug sorafenib
(SFN). The obtained RDV-coated NPs (RDV-NP) showed excellent stability and particle size of
113.5 nm with −10.7 mV zeta potential. In comparison to the free SFN treatment, RDV-NPs
demonstrated longer circulating time [80]. To overcome MDR in breast cancer treatment, NERs
could be an ideal approach for the co-delivery of anticancer drugs with a p-gp inhibitor. In lieu
of this, FA-modified NER system was developed to simultaneously transport tariquidar and
paclitaxel and evaluated for its in vitro and in vivo properties. The nanocarrier was observed
to be of size 159.8 ± 1.4 nm and zeta potential −10.98 mV, respectively. It showed a sustained
release of paclitaxel within 120 h in both pH 6.5 and 7.4 media. Cytotoxicity studies on MCF-7
cells showed that both paclitaxel and tariquidar were able to inhibit the proliferation of MCF-7
cells and pharmacokinetic studies revealed prolonged drug release for all nanoformulations [81].
For the development of nanomedicine to target gliomas, it is important for them to have the
capability to cross the BBB, as well as the BBTB. In this light, a preparation based on PLGA-NPs
coated with ER-membrane with dual-modified peptide ligands was developed. Euphorbia
factor-L1 was used as model drug, and these NPs were taken up by the cells and showed the
ability to cross both BBB and BBTB, thereby producing cytotoxic effects in vitro. Furthermore,
in vivo studies supported these results and the prepared NPs could enter the brain, targeting
tumor tissues and significantly extending the life span [82]. Subsequently, NERs of 5-FU for
liver cancer treatment were prepared for improved pharmacokinetic and biodistribution of
5-FU. The 5-FU-loaded chitosan coated–poly (lactide-co-glycolic acid)-NPs-NEs chitosomes had
narrow particle size distribution, desirable encapsulation efficiency and sustained release profile
of up to 72 h, which suggested that these nanosystems were able to deliver 5-FU with enhanced
targetability to the liver cells [83]. In another recent study, the surface of NERs was decorated
with two different flourophores: 7-amino-4-methylcumarin and dibenzocyclooctinecyanine with
glutaraldehyde. The NER-derivatives exhibited higher stability in physiological conditions [84].
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Table 1. Anticancer nanoformulations of nanoerythrocytes (NER), their surface modification and specific tumor targeting ability.

Name of The Anticancer Drug/Agents Type of RBC-Based Nanoformulation Type of Surface
Modification/Functionalization/Ligands Reported Applications Ref.

DAU NERs DAU was covalently linked by glutraldehyde
to the NERs CDF1 leukemia tumor [32]

DOX RBC-Iron oxide NPs Pre-coated with chlorine6 For imaging-guided combined photodynamic and
chemotherapy of cancers [42]

ICG and Perfluorocarbon (PFC) RBC membrane cloaked albumin NPs – Ideal for clinical cancer phototherapy treatment [43]

Sodium Transhione II A sulphonate Drug loaded nano-RBCs – Nanosystem was better than conventional injection
in-vivo [44]

Campothecin RBC-membrane loaded nanovesicles Labelled non-covalently with amphiphilic
fluorophore – [46]

5-FU Biomimetic nanoerythrocyte-
membrane–chaperoned liposomes – Hepatocellular carcinoma [47]

Engineered E. coli sp. Biohybrid microswimmers (RBC-NERs)
Conjugation of streptavidin-modified bacteria

with biotin-modified-NERs using
non-covalent streptavidin interaction

Targeted cargo delivery system [50]

Antigenic peptide Hgp 10025-33 Erythrocyte membrane enveloped PLGA-NPs
Mannose-inserted membrane structure was

constructed to actively target antigen
presenting cells in lymphatic organs

Cancer nanovaccine in cancer immunotherapy [51]

Co-delivery of PAX and DOX Magnetic O-Carboxy methyl chitosan NPs Camouflaged with an Arg-Gly-Asp anchored
ER-membrane Better tumor uptake [52]

PAX Biomimetic polymeric NPs – 4T1- breast cancer cell membrane [54]
Curcumin (CUR) NERs – Enhanced antitumor activity [56]

Gambogic acid Biomimetic RBC-membrane coated PLGA
NPs – Colorectal cancer [58]

FA Upconversion NP coated with
RBC-membranes

Surface-modified with ligands for active
targeting of cancer cells For in-vivo cancer imaging [60]

DOX Drug loaded RBC-membrane coated copper
sulphide NPs – 100% melanoma tumor growth inhibition rate [64]

10-Hydroxy Campothecin and ICG Biomimetic RBC membrane nanovesicles – Synergistic chemo-photothermal therapy [65]

PAX Encapsulated in human erythrocyte
membrane

A phospholipid derivative was used for
tumor targeting into ER-membrane derived

nanovesicles
Gastric cancer [66]

FA Magnetic NPs coated on the surface of RBCs
Chemical conjugation and hydrophobic

interactions between RBC-circulating tumor
cells

Enhanced tumor targeting ability [67]

DOX NERs Surface modified by FA and PEG Enhanced tumor targeting ability in vivo in liver cancer [68]
siRNA Nanoworms, biomimetic NERs - Efficient siRNA therapy in vivo [70]

DOX Coencapsulated inside RBCs Albumin bound NIR dye Combinational photothermal and chemotherapy of
cancer [72]

DOX RBC-cloaked membrane – For the treatment of solid tumors [73]

DOX NPs of graphene oxide-DOX-RBC-membrane-
ICG as photosensitizer FA Had excellent ability to evade RES [75]

Vincristine RBC-membrane coated solid lipid NPs T7 and NGR peptide Brain delivery for treatment of gliomas [78]
Codelivery of PAX and Tariquidar Nano-erythrocytes (NEs) FA modified NEs Breast cancer management [81]

Euphorbia factor L1 PLGA-NPs coated with ER-membrane Dual–modified peptide ligands Brain delivery for gliomas [82]

5-FU FU –loaded chitosan-coated-PLGA
–NPs-NE-chitosomes – Liver targeting [83]
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In vitro uptake by macrophages, in vivo biodistribution and pharmacokinetic studies
demonstrated that the RBC-membrane is a better alternative to PEG, which is currently
the gold standard for nanoparticles “stealth”. The combination of natural cell membranes
with synthetic NPs poses a novel and biomimetic strategy for the designing of nanomate-
rials which additionally displays a wide range of biomedical applications, owing to the
properties of functional materials used [85]. The biomimetic-NPs have attracted increasing
attention in pharmaceutical and biomedical applications by imitating the structures and
the functions of biological systems including longer blood circulation time. Nevertheless,
the circulation time of these NPs is still far lesser than that of the native cells, which limits
their applications greatly [86,87]. Accordingly, a camouflage comprising ER-membranes
renders NPs as a platform that has combined advantages of native ER-membrane as well
as of nanomaterials. When, they are injected into the animal models in vivo, the ER-
membrane-coated NPs imitate and behave like RBCs and interact with the surrounding
macromolecules to achieve longer circulation time [88].

5. Applications of NERs in Non-Cancer Therapies

NERs have been extensively investigated for the therapy and diagnosis of various
forms of cancers and that has further encouraged the researchers to test their applications
for non-cancer diseases. The findings are interestingly very promising which has opened a
new vista for the applications of NERs. In one such study, the NERs of antimalarial drug
pyrimethamine (PRY) were developed by sonication method which showed good stability
and controlled in vivo release. Developed NERs improved the treatment of malaria when
combined with artemisinin drug [89]. In another interesting research, artesunate (ART)
conjugated NERs were prepared to increase the stability, decrease the toxicity, cost, and
drug leakage for the treatment of malaria. The optimized ART-NER nanoformulations
were non-aggregated, uniformly sized, with drug loading of 25.20 ± 1.3 µg/mL and
when administered IV, showed higher plasma drug concentration as compared to free drug
in vivo [90]. For the treatment of atherosclerosis, the nanomaterials can be explored and it is
believed that they can serve as a powerful tool in its treatment. In an attempt to achieve this,
biomimetic, well defined core-shell-nanocomplexes of rapamycin (RAP)-loaded PLGA-NPs
cloaked with RBC were created with negative surface charge. The prepared nanosystems
were shown to be safe and effective in the management of atherosclerosis as the biomimetic
behavior of RBCs resulted in decreased macrophage-mediated phagocytosis and increased
aggregation of NPs in the atherosclerotic plagues using targeted delivery [91]. Most of the
applications of NERs were limited to the IV, IP, and sub-cutaneous (SC) routes of admin-
istration. To explore other possible routes of administration, they were also investigated
as inhalational drug carriers in few studies successfully. In one such study, NERs were
conjugated with CARSKNKDC (CAR), a cell permeable peptide and fasudil, a rho-kinase
(ROCK) inhibitor using hypnotic-lysis and extrusion method for prolonged pulmonary
vasodilation. The NPs obtained were of spherical shape with average size 161.3 ± 1.37 nm
and % entrapment efficiency (EE) 48.81 ± 1.96%, which showed stability of around 3 weeks
at 4 ◦C, and the drug fasudil was shown to be released in a controlled release pattern
for more than 48 h. The reduction in the pulmonary arterial pressure upon intratracheal
administration of CAR-fasudil-NERs was approximately 2-fold more specific to the lungs
in comparison to fasudil alone [92]. Few other studies in the literature also suggest that the
NERs can effectively be utilized for inhalational delivery of fasudil drug as cell-derived
carriers [93,94].

6. Biosensing Applications of RBC-Mediated Carriers Systems

The cutting-edge RBC-mediated anti-cancer drug delivery by NERs is well established
along with their applications in some of the non-cancer diseases. Additionally, the in vivo
nanobiosensor-based theragnostic application of RBCs has emerged as a topic of interest in
present days for advanced medical diagnostics, analytical chemistry, and environmental
monitoring [95–97]. Their extraordinary profusion, mobility, and loading capacity makes
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them an attractive tool for sensing the analytes present in the blood. The sensor-loaded
ERs or the dubbed erythrosensors can be re-infused in the blood and can be used for the
measurement of analyte levels in the blood stream [96]. Previously, 3-D focusing of RBCs in
microchannel flows for bio-sensing applications has also been reported [98]. Additionally,
the fluorescent sensors were incorporated inside ERs followed by non-invasive monitoring
to follow changes in plasma analyte concentrations [99]. For the management of diseases
such as diabetes, there exists a need for long-term, minimal-invasive system to monitor
blood glucose as analyte. Currently employed methods suffer from disadvantages of low
patient compliance for the finger stick test and require regular calibrations for continuous
glucose monitoring. The RBCs can act as a biocompatible carrier of sensing assays for
such long-term monitoring procedures. They can serve as long-term (>1 to 2 months),
continuously circulating biosensors in the diagnosis and management of such long term
diseases [100]. Similarly, the fusion of quantum dots (QD) with living cell membranes for
bio-sensing capability in imaging technique is a flexible approach for controlled, hydropho-
bic QDs-based fluorescence analysis of living cellular membranes [101].

7. Recent Patents on NERs for Cancer Therapy

In this section, the important and recent patents related to the use of NERs as bioactive
carriers in cancer therapy are summarized. The description of the invention and its
pharmaceutical advantages are mentioned in Table 2 for the quick understanding of the
readers. The recent patents enlisted here show the viability of this approach for delivering
the antineoplastic drugs to their required targeted site of action. The enhanced potential of
the antineoplastic drugs loaded in NERs carrier system points towards the growth of this
novel drug delivery system in cancer therapy [102–111].
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Table 2. Recent patents available on NERs as carrier system for cancer therapy.

Patent Number Invention Title Description of The Invention Pharmaceutical Advantages Ref.

US5653999 NERs as bioactive carrier

A complex comprising of a bioactive agent
coupled to vesicles derived from ERs.

Prepared ERs had size less than 1 µm and
substantially free of hemoglobin.

DAU–NERs conjugate had a higher
antineoplastic activity than the free bioactive

agent.
[102]

WO1998011919A3 Polyethylene glycol conjugated NERs,
method of making same and use thereof.

Long circulating NERs avoid rapid clearance
by RES. Prolonged circulation time. [103]

US20040180094A1 Activation agents on the surface of
encapsulation vesicles

Target ligands can be synthetic,
semi-synthetic and naturally occurring such

as antibiotics, hormones, lectins,
glycoproteins, peptides, amino acids,

polypeptides, sugars, saccharides,
carbohydrates, cofactors, bioactive agents,

and genetic materials such as nucleotides and
nucleosides, etc.

The present invention addressed drug
resistance problems in vivo by attaching
optimal target ligand to encapsulation

vesicles.

[104]

US8211656 Biological targeting composition and methods
of using the same.

Targeted delivery of imaging agents, drugs,
peptides, proteins, and pharmaceuticals using

modified RBCs is described here.

Modified RBCs can carry a variety of
therapeutic moieties for the treatment of

various ailments including cancer.
[105]

US20130202625
Use of human erythrocytes for prevention
and treatment of cancer dissemination and

growth.

Cancer metastasis specially breast cancer
metastasis can be prevented by blocking the

circulation of metastatic cells and by blocking
angiogenesis such as capturing endothelial

progenitors that are recruited to the tumor, or
by physically blocking of the capillaries of the

tumor or the metastasis.

RBCs have potential for use as therapeutics as
they are easily retrieved from a patient,
non-immunogenic, and are biologically

designed to navigate the microcirculation
including tortuous tumor vasculature.

[106]

US20200138987
Composition for material delivery including
exosome mimetics derived from RBCs, and

use thereof.

Exosome mimetics derived from RBCs are
used for material delivery such as drug,

radioactive material and fluorescent materials,
etc.

Exosomes (small vesicles, 30nm-100nm) have
drawn attention as new drug delivery carrier

system for targeted delivery to a specific
organ and can be used as imaging tools.

[107]

US20200289666
Biomimetic anisotropic polymeric particles
with naturally derived cell membranes for

enhanced drug delivery.

Biomimetic particles can be used in the
treatment of excessive bleeding, thalassemia,

thrombopenia, cancer, infectious diseases, etc.

Particles comprised of polymeric core of
defined shape, size, surface from naturally

derived cell membranes such as RBCs, have
application in drug delivery and cell

engineering.

[108]

US20170367990 Use of NPs coated with RBC membranes to
enable blood transfusion.

An inner core of nanoparticle comprised of
non-cellular compound and an outer surface
comprise of cellular membrane derived from

RBCs.

Suitable in blood transfusion for giving a
blood-source with a mismatched type of
blood, or potentially a mismatched blood

type to a recipient.

[109]

US10596197
Red blood cell membrane derived

microparticles and their use for the treatment
of lung diseases.

Treatment with RBCs-MPs to the lung
through inhalational route promoted the

expression of immune regulatory cytokines
including IL-10 and reduced inflammatory

responses and injury to the lungs.

Have remarkable potential as
immuno-modulating agent for a number of
lung disorders such as chronic-obstructive
pulmonary disorder (COPD), bronchitis,

acute lung injury, pulmonary fibrosis, etc.

[110]

US20170095510
Use of NPs coated with red blood cell

membranes to treat hemolytic diseases and
disorders.

Hemolytic diseases are auto-immune
disorders caused by an attack of said mammal

RBCs by said mammal’s own body or in
between pregnant mammal and fetus RBCs.

Invention will be employed in
nano-engineering, molecular biology, etc. [111]
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8. Recent Clinical Trials on Anticancer Drug-Loaded NERs

The comprehensive and detailed investigations on the RBC-mediated drug delivery
strategy have grown rapidly and, currently, the research and development on these strate-
gies have transformed and advanced to the pre-clinical and clinical phases. None of the anti-
cancer drug loaded-RBC-technology has reached the market till now, however, few clinical
trials on RBC-based technology have been conducted for dexamethasone-21-phosphate in
ataxia telangiectasia, asparaginase in pancreatic cancer, lymphoblastic leukemia, thymidine
phosphorylase in mitochondrial neuro-gastrointestinal encephalomyopathy and RTX-134 in
phenylketonuria, etc., as reported [112]. A phase IIb open-label study on ER-encapsulated
asparaginase (Eryaspase) in combination with chemotherapy in second-line advanced
pancreatic adenocarcinoma [NCT02195180] is being carried out [113]. Eryaspase in com-
bination with chemotherapy (gemcitabine) was associated with improvements in overall
survival (OS) and progression-free survival (PFS), irrespective of asparagine synthetase
(ASNS) expression in second-line advanced pancreatic adenocarcinoma. A Phase III trial
is underway [114]. An open-label, randomized, multicentered, phase-III trial on Eryas-
pase in patients with pancreatic ductal adenocarcinoma and those who failed only one
prior-line of systemic anticancer therapy for advanced stage of pancreatic cancer were
also reported [NCT03665441] [115]. Another clinical trial on Eryaspase was a random-
ized phase II/III investigation by combining carboplatin and gemcitabine chemotherapy
versus chemotherapy-alone as first-line treatment in metastatic or locally recurrent triple-
negative breast cancer [NCT03674242] patients [116]. A clinical trial study on PEGylated-
asparaginase-encapsulated in erythrocytes for patients with acute lymphoblastic leukemia
(ALL) is also underway [NCT03267030] [117] as shown in Table 3.

Table 3. List of clinical trials available for asparaginase encapsulated in erythrocytes (Eryaspase).

Clinicaltrial.gov Identifier NCT03674242 NCT03665441 NCT02195180 NCT03267030

Drug encapsulated in
erythrocyte Asparaginase encapsulated in erythrocytes (Eryaspase)

Eryaspase combined with
other anti-cancer drugs

Eryaspase combined with
gemcitabine or carboplatin

Eryaspase combined with
either gemcitabine plus

abraxane, or irinotecan-based
therapy

Eryaspase combined with
gemcitabine or 5-fluoro-

uracil/oxaliplatin/leucovorin
(FOLFOX)

Eryaspase combined with
GRASPA

Purpose Treatment Treatment Treatment Treatment

Cancer type Triple negative breast cancer Pancreatic adenocarcinoma Progressive metastatic
pancreatic carcinoma

Acute lymphoblastic
leukemia

Recruitment status Recruiting Active, not recruiting Completed Completed
Sponsor ERYtech Pharma ERYtech Pharma ERYtech Pharma Birgitte Klug Albertsen

Study-type Interventional Interventional Interventional Interventional
No of participants 64 500 141 55

Allocation Randomized Randomized Randomized N/A
Intervention model Parallel assignment Parallel assignment Parallel assignment Single group assignment

Masking Open label Open label Open label Open label
Phase Phase 2/3 Phase 3 Phase 2 Phase 2

Start of the study June 2019 September 2018 July 2014 August 2017
Completion of the study October 2020 October 2021 November 2017 October 2020

9. Conclusions

The NERs are the RBC-derived nanocarrier systems having extraordinary features
among which the long blood circulation time, controlled release of drug over a long period
of time, ability of escaping the immune system and targeted delivery of drugs to the site of
action are the main features. These properties led to an extensive investigation on NERs
and the results have shown promising potential for NERs to be developed as a novel,
biomimetic and efficient drug delivery system for the effective and targeted delivery of
drugs including anticancer drugs and others. In addition, NERs have also been studied as
a powerful diagnostic tool for the diagnosis of various tumors. The encouraging findings
of the in vitro and in vivo studies conducted on NERs further lead to the advancement to
clinical trials stage and the efficacy and safety is being tested on human beings. However,
the NERs still suffer from the disadvantages related to scalability and validation which
is one of the limiting factors for its industrialization. Nevertheless, many studies are
underway to utilize the NERs as a multifaceted drug delivery tool and it has shown
substantial capabilities of being developed and applied for human use.
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