<

pharmaceutics

Article

Dual-Targeted Hyaluronic Acid/Albumin Micelle-Like
Nanoparticles for the Vectorization of Doxorubicin

Manuela Curcio 1**

Antonella Leggio !

check for

updates
Citation: Curcio, M.; Diaz-Gomez, L.;
Cirillo, G.; Nicoletta, EP.; Leggio, A.;
Iemma, E. Dual-Targeted Hyaluronic
Acid/Albumin Micelle-Like
Nanoparticles for the Vectorization of
Doxorubicin. Pharmaceutics 2021, 13,
304. https://doi.org/10.3390/
pharmaceutics13030304

Academic Editor: Emanuela

Fabiola Craparo

Received: 29 January 2021
Accepted: 23 February 2021
Published: 26 February 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Luis Diaz-Gomez
and Francesca Iemma

2,t
1

, Giuseppe Cirillo 10, Fiore Pasquale Nicoletta 109,

Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy;
giuseppe.cirillo@unical.it (G.C.); fiore.nicoletta@unical.it (F.P.N.); antonella.leggio@unical.it (A.L.);
francesca.iemma@unical.it (F1.)

Departamento de Farmacologia, Farmacia y Tecnologia Farmacéutica, I+D Farma Group, Facultad de
Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de
Compostela, 15782 Santiago de Compostela, Spain; luis.diaz.gomez@usc.es

*  Correspondence: manuela.curcio@unical.it; Tel.: +39-0984493011

1t These authors contribute equally to this paper.

Abstract: Drug targeting of tumor cells is one of the great challenges in cancer therapy; nanoparticles
based on natural polymers represent valuable tools to achieve this aim. The ability to respond
to environmental signals from the pathological site (e.g., altered redox potential), together with
the specific interaction with membrane receptors overexpressed on cancer cells membrane (e.g.,
CD44 receptors), represent the main features of actively targeted nanoparticles. In this work, redox-
responsive micelle-like nanoparticles were prepared by self-assembling of a hyaluronic acid-human
serum albumin conjugate containing cystamine moieties acting as a functional spacer. The conjugation
procedure consisted of a reductive amination step of hyaluronic acid followed by condensation with
albumin. After self-assembling, nanoparticles with a mean size of 70 nm and able to be destabilized
in reducing media were obtained. Doxorubicin-loaded nanoparticles modulated drug release rate
in response to different redox conditions. Finally, the viability and uptake experiments on healthy
(BALB-3T3) and metastatic cancer (MDA-MB-231) cells proved the potential applicability of the
proposed system as a drug vector in cancer therapy.

Keywords: hyaluronic acid; human serum albumin; polysaccharide-protein conjugate; micelle-like
nanoparticles; redox-responsive; active targeting; cancer therapy

1. Introduction

Non-specific targeting and multi-drug resistance are the main limitations to the suc-
cess of conventional chemotherapy. In the last decades, to overcome these problems,
nanoparticle formulations have been proposed as valuable tools to deliver conventional
drugs to the site of interest, modifying their pharmacokinetics and therapeutic response [1].
The suitability of nanoparticles in cancer treatment is related to some evidence. Nanopar-
ticles can efficiently accumulate in the tumor site by virtue of angiogenesis and the lack
of lymphatic drainage, a condition known as the enhanced permeation and retention
(EPR) effect [2]. In addition, the possibility to modify the physicochemical and surface
properties of nanoparticles allows the amount of drug delivered to the target site to be
remarkably increased. For this purpose, two different approaches can be followed: (i)
conjugation with ligands binding to receptors over-expressed onto the tumor cells [3]; (ii)
functionalization with chemical groups able to respond to signals from tumor microen-
vironments [4,5]. These engineered materials, known as actively-targeted drug delivery
systems, have emerged as “magic bullets” able to hit the site of disease, avoiding the side
effects to other healthy organs [6]. Small molecules [7] or macromolecular compounds [8]
are employed as active targeting ligands, whereas the variation of pH, redox potential,
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temperature or reactive oxygen species concentration are the most exploited environmental
stimuli in a tumor-targeted release [9]. For example, it is well known that the remarkable
differences in glutathione (GSH) concentration in cancer cells (2-10 mM), compared to
the normal extracellular matrix (2-20 uM), generate a high redox potential [10]. Thus,
by inserting in the nanoparticle structure redox-responsive functionalities, i.e., disulfide
linkages [11], materials able to selectively destabilize inside cells and release the payload
can be achieved.

To date, the wide availability of materials and preparation methods allows for a large
number of nanoparticle architectures to be obtained endowed with different targeting lig-
ands and stimuli-responsive chemical groups. Natural polymers, such as polysaccharides
and proteins, have emerged as promising base materials of drug delivery platforms in
cancer therapy due to their unique physicochemical and biological properties such as non-
immunogenicity, biocompatibility, biodegradability, and the presence of several functional
groups available for chemical modification [12]. Protein nanoparticles can be prepared
under mild conditions without the use of toxic chemicals or organic solvents, allowing
to easily control the particle size [13,14]; on the other hand, polysaccharide materials are
safe and may confer “stealth” properties to the final nanoparticle system, decreasing the
uptake by the mononuclear phagocyte system and enhancing the blood circulation time
and the possibility of accumulation in the disease site [15]. These valuable properties have
inspired the preparation of protein-polysaccharide conjugates showing superior features
not attainable using the individual component [16,17].

Human serum albumin (HSA) is the most abundant protein in the blood and one of
the most attractive materials for the development of novel nanomedicines [18,19] due to its
high drug-loading ability, self-assembling properties, and long half-life. These properties,
among others, like its lack of toxicity and immunogenicity and its preferential uptake in
tumor and inflamed tissues, make HSA a promising candidate for drug delivery. Fur-
thermore, the tertiary structure of HSA contains a drug-binding site (subdomain I B) that
has a remarkable affinity for doxorubicin, among other antitumor drugs [20,21]. The in-
creased hydrophobicity of HSA after binding between doxorubicin significantly enhances
the self-assembly properties of the protein [22]. HSA nanoparticles have shown active
tumor targeting via receptor-mediated endocytosis, including GP60 and neonatal Fc re-
ceptors that are overexpressed in tumor cells. Moreover, recent studies have reported
that HSA nanoparticles undergo aggregation in a tumor pH environment, thus favoring
accumulation and retention of HSA-drug complexes in tumor tissues [23].

Another approach to achieve active drug targeting is the incorporation of hyaluronic
acid (HA) into nanoparticle systems. HA is a negatively charged, non-sulfated glycosamino-
glycan composed of repeating units of D-glucuronic acid and N-acetyl-D-glucosamine
bound by beta-linkages and is found throughout the body in the extracellular matrix and
synovial fluids [24]. HA-based nanoparticles have been extensively explored as delivery
devices in cancer therapy by virtue of their ability to specifically bind CD44 receptor overex-
pressed on various cancer cells [25]. Furthermore, it is possible to endorse HA nanoparticles
with redox-responsive properties by cystamine decoration, enhancing the desired targeting
properties for tissues exhibiting increased GSH levels, such as tumors [26].

In this work, we aimed to develop a novel drug delivery system with redox-responsive
and actively targeting properties for anticancer therapies. Micelle-like nanoparticles were
obtained by a simple self-assembling process of a conjugate (HAssHSA) composed of
cystamine-modified HA (HAcys) and HSA. We hypothesized that the bioconjugation of
HAssHSA and the resulting self-assembling nanoparticles (HNPs) could merge the ad-
vantageous features of each component in a nanoparticle system with enhanced targeting
properties for CD44-overexpressing cells, redox responsiveness, and high loading ability.
The obtained nanoparticles were characterized by dynamic light scattering (DLS) and
transmission electron microscopy (TEM), and redox-triggered destabilization assays were
performed by measuring the variation of the nanoparticle mean diameter in reducing
media. The suitability of HNPs as drug carriers was then evaluated by loading with dox-
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orubicin hydrochloride (DOX), a DNA topoisomerase II inhibitor with a broad-spectrum
antineoplastic activity [27]. However, DOX use in clinical practice is often limited by
several side effects. In vitro release profiles from DOX-loaded HNPs were investigated,
varying the redox potential of the surrounding medium. Finally, cytotoxicity and cellular
uptake experiments were performed on healthy and cancer cells to assess the safety the
potential suitability of the system in cancer therapy.

2. Materials and Methods
2.1. Synthesis of HAcys

HAcys was obtained by reductive amination [28,29]. Briefly, after 0.1 g (0.24 mmol
disaccharide repeating units) of HA (10 kDa) were dissolved in 4 mL of an H,O:DMSO
(3:7 v/v) mixture, 0.31 g (4.93 mmol) of sodium cyanoborohydride and 1.1 g (4.45 mmol)
of cystamine dihydrochloride (cysHCl) were added, and the mixture was stirred for 24 h
at room temperature. The resulting solution was purified using dialysis membranes with
molecular weight cutoff (MWCO) of 3.5 kDa against water at 20 °C for 72 h, and finally
freeze-dried (98% yield). 'H-NMR spectra were recorded on a Bruker Avance 300 (Bruker
Italy, Milan, Italy) at 25 °C using D,O as a solvent.

HA was purchased from Lifecore Biomedical (Chaska, MN, USA). All other chemicals
were purchased from Merck/Sigma-Aldrich, Darmstadt, Germany. Dialysis membranes
were purchased from Medicell International LTD (London, UK).

2.2. Synthesis of HAssHSA Conjugate

HSA (0.074 g) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) (0.010 g,
0.052 mmol) were dissolved in 4 mL of a phosphate buffer solution (0.01 M, pH 7.4) and
left to react for 1 h at room temperature under magnetic stirring. Then, HAcys (0.017 g)
dissolved in 2 mL of phosphate buffer (0.01 M, pH 7.4) was added. The mixture was
magnetically stirred for 24 h at room temperature, purified by dialysis (MWCO 12-14 kDa)
against water at 20 °C for 72 h, and finally freeze-dried (98% yield). 'H-NMR spectra
were recorded on a Bruker Avance 300 (Bruker Italy, Milan, Italy) at 25 °C using D,O
as a solvent.

All chemicals were purchased from Merck/Sigma-Aldrich, Darmstadt, Germany.
Dialysis membranes were purchased from Medicell International LTD (London, UK).

2.3. Preparation of Labeled HAssHSA Conjugate

For the synthesis of the labeled conjugate, fluorescein isothiocyanate (FITC) was
covalently linked to the HAssHSA as previously described [30]. HAssHSA (60 mg) was
dissolved in 3.0 mL sodium carbonate buffer (100 mM, pH 9.2), and then 0.6 mL FITC
solution in sodium carbonate buffer (1.0 mg mL~') was added and allowed to react at RT
for 3 h. The obtained FITC-HAssHSA was purified by dialysis (MWCO 12-14 kDa) against
5.0 mM phosphate buffer (pH 3.0) for two days and characterized by UV-Vis spectra.
UV-Vis analysis was performed on an Evolution 201 spectrophotometer (Thermo Fisher
Scientific, Hillsboro, OR, USA) operating with 1.0 cm quartz cells. All chemicals were
purchased from Merck/Sigma-Aldrich, Darmstadt, Germany.

2.4. Determination of the Critical Aggregation Concentration (CAC)

The modification of the fluorescence properties of the nonpolar probe pyrene, when
located inside a micelle hydrophobic core, was exploited to measure the CAC of HAssHSA
in the aqueous phase [31,32]. In detail, 20.0 pL pyrene solution at a concentration of
3.0 x 107> M in acetone was evaporated in vials. HAssHSA conjugate was dissolved
at concentrations ranged from 1.6 x 1077 to 1 mg mL~! in phosphate buffer (0.01 M,
pH 7.4) under magnetic stirring, and then 1 mL of each solution was added to the pyrene
vials. The contents of the vials were mixed for 12 h, thereby leading to solutions with a
pyrene concentration of ca. 6.0 x 1077 M. Then, the intensity ratios (I3/1;) of the third
vibronic band at 385 nm to the first one at 373 nm of the fluorescence emission spectra
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of pyrene were recorded at 25 °C. Pyrene fluorescence emission spectra (Aexc = 336 nm;
Aem = 350-500 nm) were recorded on Hitachi F-2500 spectrometer (Tokyo, Japan). All
chemicals were purchased from Merck/Sigma-Aldrich, Darmstadt, Germany.

2.5. Preparation and Characterization of Micelle-Like Nanoparticles

Empty nanoparticle HNPs were obtained by dispersing the HAssHSA conjugate
(final concentration of 1 mg mL~!) in phosphate buffer solution (0.01 M, pH 7.4) under
magnetic stirring for 2 h at room temperature. For the cell uptake experiments, FITC-
HAssHSA was treated in the same manner, obtaining the fluorescent-labeled FITC-HNPs.
The size distribution of HNPs (final concentration 1 mg mL~!) was determined using
a 90 Plus particle size analyzer DLS equipment (Brookhaven Instruments Corporation,
Holtsville, NY, USA) at 25 °C. The autocorrelation function was measured at 90°, and the
laser beam operated at 658 nm. The polydispersity index (PDI) was directly obtained from
the instrumental data fitting procedures by the inverse Laplace transformation and Contin
methods. PDI values < 0.3 indicate homogenous and mono-disperse populations [33].
Morphological analysis of vesicles was carried out using TEM (HRTEM/Tecnai F30 (80 kV)
FEI Company, Hillsboro, OR, USA). A drop of the vesicle dispersion was placed on a Cu
TEM grid (200 mesh, Plano GmbH, Wetzlar, Germany), and the sample in excess was
removed using a piece of filter paper. A drop of 2% (w/v) phosphotungstic acid solution
was then deposited on the carbon grid for 2 min. Once the excess staining agent was
removed with filter paper, the samples were air-dried, and the thin film of stained vesicles
was observed.

All chemicals were purchased from Merck/Sigma-Aldrich, Darmstadt, Germany.

2.6. Destabilization Experiments

Destabilization experiments of empty nanoparticles in reductive environments were
performed by the dialysis method. Briefly, in separate experiments, 4 mL of freshly
prepared empty nanoparticles (final concentration 1 mg mL~!) were loaded in a dialysis
bag (MWCO 12-14 kDa) and dialyzed against 30 mL phosphate buffer (0.01 M, pH 7.4)
containing GSH at different concentrations (0 mM and 10 mM) at 37 °C in a beaker with
constant stirring. After 24 h, the mean diameter and PDI were measured by DLS. Each
analysis was performed in triplicate.

2.7. DOX Loading

DOX-loaded nanoparticles (DOX@HNPs) were prepared by dispersing HAssHSA
conjugate (final concentration 1 mg mL ') in a 58.8 uM DOX hydrochloride solution in
phosphate buffer (0.01 M, pH 7.4) under magnetic stirring for 12 h at room temperature [34].
The dispersion was used as such in the next release experiments. The loading efficiency
was confirmed by diluting 1 mL of DOX@HNPs dispersion in 25 mL of methanol in order
to disrupt the micelle-like structure [35], followed by the measurement of the fluorescence
of the solution (Aexc = 480 nm; Aem, = 590 nm).

2.8. Release Experiments

Release experiments were carried out by means of a dialysis method under sink condi-
tions. In two different experiments, 2 mL DOX@HNPs dispersion (polymer concentration
1 mg mL~!) were loaded in a dialysis bag (MWCO 3.5 kDa) and dialyzed against 10 mL
phosphate (0.01 M, pH 7.4) buffer containing GSH at different concentrations (0 mM and
10 mM) at 37 °C in a beaker with constant stirring. At pre-established times, samples
(0.5 mL) of release medium were withdrawn, replaced with fresh medium and quantified
by a fluorescence spectrometer (Aexc = 480 nm; Aem = 590 nm) using a standard calibration
curve of and DOX (2-30 uM) prepared under the same conditions. Experiments were
performed in triplicate.
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2.9. Cytotoxicity Experiments

MDA-MB231 (Cell Biolabs; San Diego, CA, USA) and BALB/3T3 (CCL-163; ATCC,
Manassas, VA, USA) cell lines were maintained in DMEM supplemented with 10 v/v%
FBS and 1% antibiotics (10,000 U/mL penicillin and 10,000 ug/mL streptomycin) in an
incubator at 37 °C and 5% CO,.

The cytotoxic effects of the drug, empty nanoparticles and drug-loaded systems on
cell viability were determined using a Cell Counting Kit 8 (CCK-8; Dojindo Molecular
Technologies; Rockville, MD, USA). MDA-MB231 or BALB/3T3 cells were seeded in 96-
well plates (1 x 10* cells/well) and incubated overnight. Then, cells were exposed to
increasing concentration of the drug (0.001 to 5 ug mL~1) or HNPs (0.1 to 2 mg mL™1)
and further incubated for 24 or 48 h. At each time point, the medium was discarded, cells
were washed with PBS, and 100 pL of freshly prepared CCK-8 working solution (90 puL
of culture medium and 10 pL of CCK-8 reagent) were added to each well and incubated
for 2 h at 37 °C. Finally, absorbance (450 nm) was recorded using a microplate reader
(Model 8; Bio-Rad, Philadelphia, PA, USA). Cell viability was determined by comparing
the absorbance of each condition with a positive control consisting of cells incubated in the
culture medium.

DOX@HNPs cytotoxicity was evaluated in MDA-MB231 and BALB/3T3 cells. For the
preparation of DOX-loaded HNPs, 1 mg of HAssHSA was dispersed in 5 mL of freshly
prepared DOX solutions (40, 20, 10, and 5 g mL~!) in phosphate buffer under magnetic
stirring overnight. Then, 1 mL of each nanoparticle dispersion was added to 3 mL of
phosphate buffer in order to obtain a final nanoparticle concentration of 0.025 mg mL~!
and DOX concentrations of 5, 2.5, 1.25, and 0.625 pg mL~!. MDA-MB231 or BALB/3T3
cells (1 x 10* cells per well) were seeded into 96-well plates and incubated for 24 h as
explained before. Then, the medium was removed, and 100 pL of fresh medium and 100 pL
of the freshly prepared DOX@HNPs nanoparticle solutions were added to each well and
cultured for 24 or 48 h. Phosphate buffer (0.01 M, pH 7.4) was used as the negative control.
At each time point, the medium was discarded, cells were washed with PBS and 100 uL
of freshly prepared solution (90 uL of culture medium and 10 pL of CCK-8 reagent were
added to each well and incubated for 3 h at 37 °C. Absorbance (450 nm) was then recorded
using a Model 8 microplate reader (Bio-Rad, USA).

2.10. Visualization of CD44-Mediated Cellular Uptake

MDA-MB231 and BALB/3T3 cells were cultured as explained in Section 2.6 and
seeded in 8-well glass slides (Lab-Tek II chamber slide; Thermo Scientific, Waltham, MA,
USA) at a concentration of 5 x 10* cells/well. After 24 h of incubation, cells were washed
with PBS and then, CD44 receptors were blocked by incubating cells with 10 equivalents of
free HA (solution in culture medium) for 1 h. Untreated cells were used as positive controls.
Subsequently, cells were washed with PBS and treated with FITC-HNPs (0.1 mg mL~!)
for 24 h. At each time point, cells were washed with PBS, fixed with paraformaldehyde
4% (100 pL per well) for 10 min, washed three times again with PBS and then, incubated
with Triton X-100 (0.2% in PBS pH 7.4, 40 uL, 5 min), and washed three times again with
PBS. Then, cells were stained with a phalloidin dye (Alexa Fluor 488 phalloidin, Molecular
Probes; Eugene, OR, USA) for 20 min following the manufacturer’s protocol and washed
again with PBS. Subsequently, samples were mounted using DAPI ProLong gold (Molecular
Probes; Eugene, OR, USA), covered with a cover glass, and frozen until observation.
Confocal images were recorded using a Leica confocal TCS-SP5 (Leica Microsystems;
Wetzlar, Germany). The evaluation of cellular uptake of DOX-loaded HNPs (DOX@HNPs)
was also carried out using confocal microscopy. Cells were seeded, and CD44 receptors
blocked, as explained before. Following this, cells were treated with culture medium
(negative control), a 0.8 mg mL~! DOX solution or DOX@HNPs (containing 0.8 mg mL !
of DOX), and incubated for 12 h. Finally, cells were fixed and stained as described before
and observed using a Leica confocal TCS-SP5 (Leica Microsystems; Wetzlar, Germany).
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2.11. Statistical Analysis

Statistical analyses were analyzed using GraphPad Prism (GraphPad Software, La
Jolla, CA, USA). All results were expressed as mean values with standard deviations. Two-
way analysis of variance and Tukey’s multiple comparison post-test were used. Differences
were considered significant for p < 0.05.

3. Results and Discussion
3.1. Synthesis of HAssHSA Conjugate

The covalent conjugation of biomacromolecules is attracting increasing interest be-
cause of the possibility to combine the advantages of each component, minimizing their
respective liabilities [36]. HAssHSA conjugate was obtained in a two-step procedure con-
sisting in (i) the synthesis of HAcys by reductive amination, a selective, fast and easy
reaction procedure using cysHCI and sodium cyanoborohydride as reactants; and (ii) the
conjugation of HAcys with HSA via covalent coupling with EDC (Figure 1).

HOOC
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OH ""‘" nn HOOC OH i
OH HOOC CysHClI 0 m) o IIO S NH
"“ 07Ho. HO IS
HO " 1070! ho 3/
Z=0i OH NaBHq(.N \" b \"
OH B ( 1y
=cn, ( n
HAcys
on mm(
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o uo O "0 \— A\
n < OH
{m \"
OH
(n
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Figure 1. Synthesis of HAcys and HAssHSA conjugate.

HAcys and HAssHSA were characterized by FT-IR and 'H-NMR analyses. As de-
picted in Figure 2a, the FT-IR spectrum of HAcys did not show any significative variation
compared to native HA because the absorption bands of cystamine were overshadowed
by the more intense absorption bands of the polysaccharide. In the 'H-NMR spectra
(Figure 2b), the signals of the two HA anomeric protons (3 and 3") were evident at around
4.30 ppm, while the presence of cystamine residues was quantitatively determined from
relative integration of peak () at 1.81 ppm corresponding to the three methyl protons of
N-acetyl group of HA and the triplet signal (v) at 2.80 ppm related to the four methylene
protons of cystamine. The derivatization degree (DD), expressed as cystamine moieties
with respect to HA repeating units, was calculated to be 12.7%.

The FT-IR spectrum of HAssHSA conjugate showed the typical absorption bands of
HA (1640 and 1032 cm™!), corresponding to the stretching vibrations of amide carbonyl
and C-OH, respectively). An absorption band at 1557 cm~! ascribable to the secondary
amide band of HSA was also present in the HAssHSA spectrum, confirming the successful
polysaccharide-protein conjugation. Furthermore, the conjugation was also evidenced
by the presence of observable peaks in the aromatic region (8.50-6.50 ppm) and aliphatic
region (0.50-1.80 ppm) of the 'H-NMR spectrum of HAssHSA.

The self-assembling capability of the HAssHSA conjugate was evaluated by measuring
its CAC, using pyrene as a fluorescent probe for hydrophobic domain formation. The
determination of CAC is pivotal in view of a potential application in vivo, where the system
is highly diluted in the systemic circulation: the lower the CAC value, the greater the stability
of the conjugate that will be able to organize at low concentrations. For this measurement,
the dependence of pyrene fluorescence spectra (Isg4 /1373 ratio) on the logarithm of conjugate
concentration was considered, and the results are depicted in Figure 3.
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Figure 2. FT-IR (a) and 'H-NMR (b) spectra of HSA, HA, HAcys and HAssHSA.
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Figure 3. Dependence of pyrene fluorescence spectrum signals on HAssHSA concentration at pH 7.4.

At low concentrations, the intensity values remained almost unchanged; when the
amount of conjugate increased, a sharp change of the intensity was observed, indicat-
ing the onset of self-assembly. From the crossover points, a CAC of 1.6 ug mL~! was
calculated in accordance with the data reported in the literature for HA-based nanoparti-
cles [37,38]. It is well-known that the amphiphilic properties of HSA, a globular protein
with hydrophobic domains in the inner core and hydrophilic domains in the surface layer,
enable self-assembling into micellar structures [39-41]. In fact, it was recently reported that
HA-albumin conjugates could self-assemble into uniform micelle-like structures [42].

3.2. Preparation of HNPs and DOX Loading

HNPs were prepared in a straight-forward procedure by dispersing the HAssHSA
conjugate in phosphate buffer solution at pH 7.4, exploiting the amphiphilic character of the
system. It was hypothesized that the hydrophobic core is constituted by the hydrophobic
domains of HSA, while the hydrophilic HA chains form the shell of the micelle-like
nanoparticles [42] (Figure 4a).
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Figure 4. (a) Proposed architecture of the vesicle membrane and (b) TEM image of negatively stained
HNPs (20 K magnification).

DLS analysis showed a unimodal particle size distribution, with a mean hydrody-
namic diameter of 70 £ 9 nm and a PDI of 0.2, while TEM micrographs revealed that
the HNPs were characterized by spherical shape and a mean diameter value close to that
recorded by DLS (Figure 4b). The size of the HNPs described in this work is significantly
smaller compared to previously reported HSA nanoparticles prepared by the desolvation
method [43-45] or self-assembling processes [46—-48]. Particle size is the result of the combi-
nation of different parameters, including physic-chemical properties of the amphiphile,
preparation method, and experimental conditions, that strongly affect the rearrangement of
the polymer structure during the self-assembling step. HNPs dimensions present an ideal
size that is large enough to accumulate in tumor tissues via enhanced permeability and
retention (EPR) effect. However, since the particle size is lower than 100 nm, it is expected
to achieve extensive tumor penetration [49].

3.3. Destabilization Experiments

GSH-responsive behavior of HNPs was assessed by means of destabilization ex-
periments performed in media mimicking the extracellular and intracellular redox en-
vironments. In particular, the variation of the dimensional distribution of micelle-like
nanoparticles was analyzed by DLS after 24 h incubation in phosphate buffer at physio-
logical pH with or without GSH 10 mM. The mean diameter of HNPs remained almost
unchanged in the medium, mimicking the extracellular environment, while in the presence
of the tripeptide GSH both the mean diameter and the PDI dramatically increased to 130
nm and 0.54, respectively. This observation confirms that HNPs were responsive to GSH,
which can be explained as a consequence of the reduction of disulfide bonds, resulting in
the destabilization of the nanoparticle structure [9,50].

3.4. DOX-Loading and Release Experiments

A stimuli-responsive drug delivery system is expected to quickly release its payload
when targeted tissues or cells are reached while remaining stable in the systemic circu-
lation. In this work, DOX hydrochloride, employed as a model drug, was loaded in the
nanoparticles in a one-step procedure, avoiding the need for organic solvents or H,O, to
solubilize the components or to initiate the molecular assembly of the drug-nanoparticle
complexes [43,51,52]. The drug was added at a concentration of 32 mg per g of conju-
gate during the self-assembling step, exploiting the strong affinity between DOX and
HSA [22,53,54], and the resulting DOX@HNPs dispersion was used as such in the release
experiments assuming that the total amount of added DOX was absorbed by the nanoparti-
cles. This assumption is supported by literature data reporting the range of DOX:HSA ratio
where the dissolved protein can completely absorb the drug from a water solution [46].

Release experiments from DOX@HNPs were performed in media mimicking the
physiological conditions (phosphate buffer at pH 7.4) and the intracellular space (GSH
10 mM) [55,56]. A controlled release profile was recorded at pH 7.4 simulating normal
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physiological conditions: after a slight burst release after the first 30 min (15%), the DOX
cumulative percentage in the releasing medium does not exceed 26%, indicating that the
DOX@HNPs are stable in the extracellular medium of healthy tissues and only a small
amount of drug would be leaked during blood circulation. These results reflect the high-
affinity between DOX and HSA in aqueous media at pH values close to physiological
conditions. In fact, recent studies have shown that the hydrophilic and hydrophobic
interactions between DOX and albumin result in the formation of more stable complexes
in HSA than other albumins, such as BSA [21].

The increase in the GSH concentration up to 10 mM led to a faster release profile,
with the release percentage increasing up to 42% in the first 30 min and raising 74% after
24 h (Figure 5). This different behavior, in accordance with the data of the destabilization
studies, is ascribable to the breakage of the disulfide linkage. Prolonging the release time
until 48 h, no significant enhancement of the release percentage was observed, probably
for the strong drug to polymer interaction.

100 +
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SEURP 4
0 . . . . .
0 5 10 15 20 25
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Figure 5. Drug release profiles of doxorubicin hydrochloride (DOX) from DOX@HNPs in phosphate
buffer at pH 7.4 without (dashed line) and with glutathione (GSH) 10 mM (solid line) at 37 °C.

3.5. Cytotoxicity Studies

The inhibition of cellular proliferation of DOX, HNPs and DOX@HNPs in a cancer
cell line (MDA-MB231; human breast adenocarcinoma) and a normal cell line (BALB/3T3;
mouse fibroblasts) was evaluated after 24 and 48 h using a CCK-8 assay. From these
results, half-maximal inhibitory concentration (ICsg) values of free drug and nanoparticle
concentration were also calculated. Both cell lines showed a progressive decrease in cell
survival in response to increasing concentrations of drugs and nanoparticles (Figure 6). For
BALB/3T3 cells, ICsq values of DOX at 24 and 48 h were 1.25 and 1.5 ug mL ™!, respectively.
MDA-MB231 cells showed a significantly higher ICsy at 24 h (>10 ug mL~1), while at
48 h, ICsp was 0.62 ug mL~!. The high ICsj value of DOX at 24 h can be explained due to
the drug resistance of the MDA cell line and the major role of efflux pumps, including P-
glycoprotein [57]. Overall, BALB cells were significantly more sensitive to DOX compared
to MDA cells. Similarly, the concentration of HNPs significantly affected the viability of
both cancer and fibroblast cell lines. The ICsy of HNPs after 24 and 48 h incubation was
>1 mg mL~!, except for the MDA cells at 48 h that showed an ICsy ~ 1 mg mL~!. This
finding suggested that HNPs could be easily uptake by MDA-MB231 cells due to the higher
affinity for CD44 receptors present on the surface of the cells and resulting in a higher
accumulation of nanoparticles in the intracellular space [26]. The proliferation inhibition
studies for DOX@HNPs were carried out using an HNPs concentration of 0.1 mg mL~! to
ensure the effective formation of nanoparticles (as per CAC value of the conjugate) and
negligible cytotoxic effects (as per ICsg value).
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Figure 6. Determination of ICs; of free DOX (a) and self-assembling nanoparticles (HNPs) (b) for
metastatic cancer (MDA-MB231) and healthy (BALB/3T3) cells after 24 and 48 h of cell culture.

The effects of DOX@HNPs on the inhibition of cell proliferation were evaluated using
MDA-MB231 and BALB/3T3 cell lines (Figure 7). The increase in DOX concentrations led
to a gradual decrease in the viability of both cancer and fibroblast cell lines. The cytotoxic ef-
fects of DOX@HNPs were significantly higher in MDA-MB231 cells than in fibroblasts when
comparing the same DOX concentrations. After 24 h, the incubation of both cell lines with
DOX@HNPs loaded with 0.625 pg mL~! led to similar values of cell survival (64.6 & 10.6%
and 61.0 £ 14.6% for BALB and MDA, respectively). However, higher concentrations of
DOX (1.25, 2.5, and 5 pg mL~!) were significantly more cytotoxic for MDA cells com-
pared to BALB. Incubation of MDA cells with DOX@HNPs containing DOX concentrations
of 1.25 pg mL~! decreased cell viability to values close to 20% (23.3 + 5.4%) after 24 h.
However, BALB cell viability was not significantly more affected (55.3 = 9.0%) at this
concentration compared to DOX@HNPs 0.625 g mL~!. The cytotoxicity of DOX-loaded
HNPs was more pronounced after 48 h of incubation in contact with MDA cells. The lowest
concentration of DOX@HNPs (DOX concentration of 0.625 ug mL~!) already showed a
drastic decrease in MDA viability (29.8 & 4.3%), compared to BALB cells (80.6 £ 10.6%).
These results showed that DOX@HNPs are relatively safe in non-cancer cells such as BALB
fibroblasts. Further information can be obtained by comparing the effect of free and encap-
sulated drugs on MDA-MB231. After 48 h of incubation, DOX@HNPs showed a marked
decrease in cell viability compared to the free DOX (p < 0.05, n = 5) due to a more efficient
cellular internalization in cancer cells overexpressing CD44. As previously reported, free
DOX is internalized via passive diffusion, while DOX@HNPs enter the cells via endocytosis
mediated by CD44 receptors and, furthermore, preventing efflux pump-associated drug
activity [58-60]. Taken together, these results demonstrated the efficiency of the complexes
in vitro and their effectiveness against cancer cells while avoiding the side effects of the
free drug in normal cell lines.
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Figure 7. Cell viability of BALB/3T3 (a) and MDA-MB231 cells (b) treated with DOX@HNPs (drug concentration ranging from
0 to 5 ug/mL) after 24 and 48 h of culture. Within each group, different letters denote statistical differences for p < 0.05, n = 5.

3.6. Cellular Uptake

Cellular uptake of nanoparticles is one of the key factors that will dictate the efficacy
of drug delivery in drug-NP complexes. The selective targeting of HNPs to CD44 (+) (MDA
MB231) or (—) (BALB/3T3) cells was evaluated using fluorescent-labeled FITC-HNPs,
obtained by covalent attachment of FITC on HAssHSA conjugate. The successful func-
tionalization was confirmed by UV-vis spectra, showing the appearance of the absorption
peak of fluorescein moiety (Figure S1).

In order to block CD44 receptors, cells were pretreated with free HA before incubation
with FITC-HNPs, and then confocal analysis was used to visualize the intracellular pres-
ence of labeled nanoparticles. Three fluorescent channels were used to acquire confocal
micrographs: cell nuclei were stained in blue using DAPI], cellular cytoskeleton (F-actin)
was stained in red using Alexa Fluor 568 phalloidin, and FITC-HNPs were observed in
green. As shown in Figure 8, FITC-HNPs exhibited an extensive cellular uptake and
accumulated in the intracellular space when directly incubated with MDA-MB231 cells,
as indicated by the green fluorescence observed in the areas surrounding cellular nuclei.
In contrast, when cells were pre-incubated with free HA to block CD44 receptors, the
cellular uptake of FITC-HNPs was markedly inhibited. Scattered extracellular aggregates
of FITC-HNPs were observed after incubation with a concentrated (0.1 mg mL~!) nanopar-
ticle dispersion, but the presence of intracellular nanoparticles was not evidenced in the
microscopic examination. When CD44 negative cells (BALB/3T3) were incubated with
FITC-HNPs, results showed a considerably lower accumulation of nanoparticles in the
cytoplasmatic region, indicating that HNPs specifically target cells overexpressing CD44
receptors (Figure 8).

The internalization of DOX@HNPs was also evaluated using the self-fluorescence
of DOX (Figure 9). MDA-MB231 cells incubated with free DOX showed an extensive
accumulation of drugs in the nucleus due to the passive diffusion of the drug into the cells.
The incubation of cells with DOX@HNPs for 12 h also showed the presence of intracellular
DOX fluorescence in the nuclear regions. This result indicated that DOX molecules are
released from HNPs after their internalization into the cell cytoplasmatic region. However,
the incubation of cells with DOX@HNPs after CD44 receptors were blocked with HA
showed a significant decrease in DOX concentration in the nuclear region of MDA-MB231
cells. The competition between free HA and HNPs to bind CD44 receptors indicate that
HNPs exhibit a receptor-mediated cell internalization mechanism via endocytosis through
the CD44 receptor [59]. These results are consistent with the cell proliferation inhibition
studies and confirmed that HNPs had enhanced anticancer activity with CD44 receptor
overexpressed cell lines (such as MDA-MB231 cells) rather than other cell lines under
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expressing CD44 receptors (including BALB-3T3 cells). These findings confirm that the
HA conjugation with HSA endowed the nanoparticles with GSH and pH responsiveness,
as already described in the literature, but also to enhances tumor targeting via CD44

receptors [47].

Nucleus HNPs Cytoskeleton Merged

C- BALB/3T3

C- MDA MB231

HNPs
BALB/3T3
(HA+)

HNPs
MDA MB231
(HA+)

HNPs
BALB/3T3
(HA-)

HNPs
MDA MB231
(HA-)

Figure 8. Representative confocal images of MDA-MB231 and BALB/3T3 cells exposed to HNPs (0.1 mg mL ™) for 24 h.
CD44 receptors were blocked with free hyaluronic acid (HA) (10 equivalents of HNPs concentration) 1 h before treatment
with HNPs. Green, blue, and red fluorescence correspond to fluorescein isothiocyanate (FITC)-HNPs, cell nuclei and

cytoskeleton, respectively. Cells exposed to culture medium were used as the negative control. Scale bar: 50 pum.
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Nucleus Cytoskeleton Merged

Control

Free DOX

DOX@HNPs
(HA+)

DOX@HNPs
(HA-)

DOX

Figure 9. Representative confocal micrographs of MDA-MB231 cells incubated in culture medium (control), free DOX
(0.8 ug mL~1), or DOX@HNPs (containing 0.8 pg mL~! DOX) for 12 h. CD44 receptors were blocked (HA+) with free HA
(10 equivalents of HNPs concentration) for 1 h before treatment with DOX@HNPs. Scale bar: 50 um.

4. Conclusions

In this study, DOX-loaded micelle-like nanoparticles for targeted drug delivery were
prepared by self-assembling of an HAssHSA conjugate obtained by covalent attachment
of HSA to a cystamine-modified HA. The particle size (70 nm) endorsed the obtained
nanoparticles with passive targeting properties via the EPR effect on tumor tissues. The
composition of the amphiphilic conjugate enabled their active targeting for cancer cells via
CD44 receptor interactions, a remarkable affinity for DOX, and stability at physiological pH.
Furthermore, disulfide linkers can induce redox-triggered destabilization, thus modulating
the drug release profiles. The efficacy of the proposed system was demonstrated by cell
viability experiments, where DOX@HNPs showed a higher cytotoxic effect in MDA-MB231
cells than in healthy cells in comparison to free DOX. Finally, cellular uptake experiments
confirmed the CD44-mediated internalization of nanoparticles in cancer cells. In conclusion,
this study may enable a novel and safe strategy to prepare doxorubicin delivery systems for
tumor targeting in cancer therapy. In vivo studies will be designed to further investigate
the potential applications of the reported strategy.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/1999-492
3/13/3/304/s1, Figure S1. UV-vis spectra of FITC (4 ug mL~!) and FITC-HAssHSA (0.4 mg mL~1)
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dissolved in carbonate buffer (100 mM, pH 9.2).
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