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Abstract: Malnutrition in children is a global health problem, particularly in developing countries. 

The effects of an insufficient supply of nutrients on body composition and physiological functions 

may have implications for drug disposition and ultimately affect the clinical outcome in this 

vulnerable population. Physiologically-based pharmacokinetic (PBPK) modeling can be used to 

predict the effect of malnutrition as it links physiological changes to pharmacokinetic (PK) 

consequences. However, the absence of detailed information on body composition and the limited 

availability of controlled clinical trials in malnourished children complicates the establishment and 

evaluation of a generic PBPK model in this population. In this manuscript we describe the creation 

of physiologically-based bridge to a malnourished pediatric population, by combining information 

on (a) the differences in body composition between healthy and malnourished adults and (b) the 

differences in physiology between healthy adults and children. Model performance was confirmed 

using clinical reference data. This study presents a physiologically-based translational framework 

for prediction of drug disposition in malnourished children. The model is readily applicable for 

dose recommendation strategies to address the urgent medicinal needs of this vulnerable 

population. 
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1. Introduction 

Malnutrition, as in undernutrition, is a major public-health problem throughout the 

developing world and is an underlying factor in over 50% of the 10–11 million children 

under 5 years of age who die of preventable causes each year [1]. The implications of 

nutrient deficiency on physiology are dependent on factors such as severity, time frame, 

and occurrence related to age. Accordingly, different malnutrition classifications have 

been adopted and the most commonly used terms are stunting and wasting [2]. Stunting 

is caused by long-term insufficient nutrient intake and/or frequent infections, typically 

occurring before the age of two. Stunting is defined by a low height-for-age (HFA) and is 

related to adverse health and development effects, which are largely irreversible. Wasting 

is related to a low body weight (BWT) for height (HT) ratio, and is commonly the result 

of acute food shortage and/or disease [2]. Different systems and ranges for the 

classification of malnutrition have been adopted over the decades; among these systems, 

the prevalence ranges to classify levels of wasting and stunting for children below 5 years 

have recently been revisited [3]. The medical needs in this pediatric population are high, 

Citation: Sjögren, E.; Tarning, J.; 

Barnes, K.I.; Jonsson, E.N. A 

Physiologically Based 

Pharmacokinetic Framework for 

Prediction of Drug Exposure in 

Malnourished Children. 

Pharmaceutics 2021, 13, 204. 

https://doi.org/10.3390/ 

pharmaceutics13020204 

Academic editor: Xavier Declèves 

Received: 16 December 2020 

Accepted: 28 January 2021 

Published: 2 February 2021 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2021 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses

/by/4.0/). 



Pharmaceutics 2021, 13, 204 2 of 24 
 

 

as the state of malnutrition is related to a high incidence of severe pathological conditions, 

which are either a direct consequence of the nutritional deficiency or an indirect effect of 

immune compromise leading to an increased prevalence of infectious diseases [1]. 

However, uncertainties in how and to what extent pathophysiological changes influence 

drug disposition prevent standard age- or weight-based dosing strategies to be defined 

for this patient population [4,5]. Clinical trials to identify dosing regimens for this specific 

patient population are very sparse, and malnourished children are often explicitly 

excluded from clinical trials, most likely due to the risk-adverse nature of drug 

development. Consequently, easily-adopted and cost-efficient methodologies that can be 

applied to guide urgent clinical decisions with little prior information is needed to 

maximize chances of successful treatment of this vulnerable population. 

The importance of pediatric medication safety and efficacy has been gaining 

increasing attention over the past decade with new regulatory demands from authorities 

in USA and EU [6,7]. Although pediatric doses often have been based on allometric scaling 

of adult doses, the application of physiologically based pharmacokinetic (PBPK) models 

has proven its usefulness in designing and optimizing clinical trial designs since infants and 

children, in many cases, do not exhibit pharmacokinetic (PK) properties of “little adults” [8–

11]. With the possibility to inform the model with prior knowledge of age-dependent 

changes to the organism, the PBPK modeling approach has successfully been used to 

establish age-dependent drug exposure relationships. This has facilitated for more 

efficient establishment of pediatric dosing strategies as clinical studies to determine 

pediatric safety and efficacy could be optimized [12,13]. 

The effects of malnutrition on physiology are, like age-dependent factors, more 

complex than just a simple reduction in total body mass. As for modeling of age-

dependencies, the PBPK approach provides a possibility to account for the multi-scale 

changes in anatomical and physiological parameters due to different types and severity 

of malnutrition. This allows for a knowledge-based translation of measured consequences 

of malnutrition on organ volumes, body composition, and hematology. However, detailed 

information on the differences in body composition of malnourished children compared 

to a non-malnourished reference population is very limited. This complicates the 

development of systemic PBPK model parameters in this vulnerable population. A further 

complication is related to the limited availability of controlled clinical trials in 

malnourished children with sufficient information that could potentially be used as 

reference studies for model evaluation. Additionally, the majority of published clinical 

trials of relevance report demographic and physiological data without sufficient 

granularity for model evaluation, e.g., measurements are aggregated across age groups, 

or are not directly translatable for traditional PBPK parameterization, e.g., mid-upper arm 

circumference (MUAC). 

This study aims to overcome these obstacles by creating a physiologically-based 

bridge to a malnourished pediatric population by combining information on a) the 

differences in body composition between healthy and malnourished adults and b) the 

differences between healthy adults and healthy children. This bridge would allow for 

predictions of drug exposure in malnourished children based on PK data in healthy 

adults. Furthermore, this could provide a cost-efficient method to address an urgent 

unmet medical need by using quantitative re-purposing of existing data and knowledge. 

This study presents the development and evaluation of a physiologically-based 

framework for prospective simulations of drug exposure in malnourished children; this 

framework is informed by previous knowledge on physiology of non-malnourished 

children and physiological consequences of malnutrition. 
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2. Materials and Methods 

2.1. Software 

PBPK models were developed using PK-Sim® modeling software (Open Systems 

Pharmacology Suite 8.0, https://www.open-systems-pharmacology.org). Published 

clinical study data were digitized with WebPlotDigitizer Version 4.3 

(https://automeris.io/WebPlotDigitizer/ (© A. Rohatgi)). Model input parameter 

optimization (Monte-Carlo) and sensitivity analysis were performed in PK-Sim®. The 

software R 3.5.3 (The R Foundation for Statistical Computing, Vienna, Austria) and 

RStudio 1.2.5019 (RStudio, Inc., Boston, MA, USA) were used for statistical calculation 

and creation of graphical data plots. PK parameters were either acquired from PK-Sim® 

or calculated in R using the ncappc R-package. 

2.2. Physiologically Based Pharmacokinetics 

A generic whole-body PBPK model implemented in PK-Sim® was adopted, including 

15 organs or tissues, connected by the circulating blood system and defined by tissue 

volume, composition, and blood flow. Each organ consists of four sub-compartments: 

plasma, red blood cells, extracellular space, and intracellular space [14]. Description of 

tissue:plasma partition coefficient (Kp) could be calculated according to five different 

models, PK-Sim® Standard, Rodgers and Rowland, Schmitt, Poulin and Theil, and 

Berezhkovskiy. The absorption model in PK-Sim® divides the gastrointestinal tract into 12 

segments defined by tissue volume, transit time, and pH. Each segment consists of lumen, 

mucosal tissue, and nonmucosal tissue. For oral solutions, the lumen of each segment is 

modeled as two compartments, representing the drug in solution and the fluid volume 

available in the luminal segment [15]. For solid oral formulations, an additional 

compartment connected to the dissolved drug is included [16]. Solid formulations can be 

described either by a release profile or by dissolution kinetics, according to the Noyes-

Whitney equation describing the dissolution of spherical particles [17]. 

2.3. Modeling Physiological Changes due to Malnutrition 

2.3.1. Creation of Virtual Malnourished Pediatric Populations 

The strategy applied for the creation of virtual malnourished pediatric populations 

can be summarized into two consecutive steps (Figure 1). With step one, a non-

malnourished virtual pediatric population is created utilizing the in-built population 

algorithm in PK-Sim®. This functionality accounts for age-dependencies in physiology as 

well as maturation of biological systems, e.g., metabolic enzymes and plasma proteins. 

With this functionality, virtual individuals are stochastically generated applying a defined 

age-dependent population variability within the specified age range for the specific 

population. The biometric variability of these virtual populations was then reduced by 

excluding individuals deviating more than one standard deviation in BWT/HT from the 

population mean. Further details on the population algorithm have been published 

previously [17]. With the second step, the non-malnourished population was transformed into 

a malnourished population. This was accomplished by developing a set of physiological 

scaling parameters (PSPs), representing the physiological derangement caused by 

malnutrition, for the system parameters defining the whole-body PBPK model. In summary, 

the malnourished virtual pediatric population was created by scaling the system parameters 

of each virtual individual in the non-malnourished population to the developed set of PSPs. 

Using this approach, virtual malnourished pediatric populations can be created for any age 

range. 
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Figure 1. Schematic overview of the physiologically-based strategy for prediction of drug exposure in a malnourished 

pediatric population. The strategy involves (a) establishment of PBPK model for adult PK of target drug, (b) physiological 

model for pediatric scaling and (c) physiological model for scaling to malnutrition to enable (d) PK simulations of target 

drug in malnourished pediatric subjects. 

2.3.2. Creation of Physiological Scaling Parameters 

The literature was searched for reports including data suitable for the construction 

of PSPs. In this sense, reliable information is hard to obtain as physiological and 

morphological measures are only relevant if given as relative changes to normal 

conditions or if accompanied by a reference value for normal conditions. Other conditions 

for data to be used in a PBPK model, are that reported data should be translatable and 

reasonably complete, i.e., provide multiple physiological measures of malnutrition-

induced changes. No suitable data set for malnourished children was found in the 

literature. Nevertheless, two studies on adult malnutrition were found to be appropriate, 

fulfilling reliability criteria as well as overcoming the abovementioned limitations, and 

were thus selected to be used in this study. We deemed the combined information from 

these studies sufficient and suitable for the intended purpose, i.e., the creation of scaling 

parameters describing the relative changes in malnourished physiology compared to a 

non-malnourished population. The selected reports included data from non-

malnourished and malnourished individuals of Colombian (males, n = 49) and Dutch 

origin (males and females, n = 39) [18,19]. In addition to general biometrics, e.g., age, BWT 

and HT, these studies also included measures on hematological variables, tissue 

composition, and organ volumes. Furthermore, the available data allowed for calculations 

of PSPs at different degrees of malnutrition: mild, intermediate, and severe [18]. The data 

used for the generation of PSPs are summarized in Table 1. Organ and tissue PSPs were 

calculated as the ratio of reported malnourished and non-malnourished measurements, 

unless stated otherwise. Parameters describing tissue composition used to calculate 

specific Kp values, e.g., tissue volume content fractions, were not included in the set of 

PSPs. The theoretical differences in organ volumes, given the HT differences in study 

populations, were accounted for using typical values extrapolated from the International 

Commission on Radiological Protection (ICRP) database (Equation (1)): 

��� =

��,�
��,�
�

��,�
��,�
�

 (1)

where Xr is the reported tissue/organ value and Xt is the typical ICRP tissue/organ value 

given the HT of study populations. M and N indicate nutritional status (M = 

malnourished, N = non-malnourished). 

The typical values for a 30-year-old man (with HT = 176 cm and BWT = 73 kg) 

extrapolated from the ICRP population were used as non-malnourished reference values, 
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unless stated otherwise. Linear extrapolations based on adjusted BWT/HT ratios were 

performed when information was missing for certain degrees of malnutrition. 

Hematological PSPs were calculated from data reported by Barac-Nieto and 

colleagues [18]. The value of 4.25 g/100 mL was considered as the reference albumin 

concentration in non-malnourished male adults and was used to calculate the PSP for 

serum albumin [20]. Equal effect of nutrition status on alpha-1-acid glycoprotein levels as 

for albumin was assumed. The volumes of venous, arterial, and portal blood 

compartments were calculated using the PSP calculated for total blood volume [18]. 

Organ-specific measurements at conditions of non-malnutrition and severe malnutrition 

were available for the calculation of PSPs for brain, heart, liver, spleen, and kidneys [19]. Bone 

PSP was calculated based on reported bone mineral content, whereas measures of lean 

body mass were used as surrogates for calculation of the PSP for gonads, intestines, lung, 

and stomach. Skin PSP was determined based on the difference in calculated body surface 

area (BSA), i.e., as a function of total BWT according to the Du Bois—Du Bois formula [21]: 

BSA = 0.007184 × BWT0.425 × HT0.725. 

Fat and muscle mass PSPs were calculated based on data reported by Barac-Nieto 

and Bosy-Westphal, respectively [18,19]. To ensure that the sum of organ weights added 

up to the target total BWT, when applying the PSPs calculated for other tissues/organs, 

these two PSPs were adjusted while still maintaining the relationship between these two 

tissues in terms of weight. 

In summary, this PSP strategy enabled scaling of the system parameters while 

maintaining the continuity of physiological integrity and plausibility. These scaled 

parameters were then used to define the physiology in the established whole-body PBPK 

model structure implemented in the software PK-Sim®. 

Table 1. Reported physical characteristics of study populations used to calculate physiological 

scaling parameters (PSPs). 

Study 
Measurement 

Barac-Nieto 1 Bosy-Westphal 2 

Nutritional category 3 M I S IW UW 

Weight (kg) 52.03 48.24 42.52 70.9 46.3 

Height (cm) 156 157 156 178 165 

BWT/HT (kg/m) 33.3 30.8 27.4 39.8 28.1 

% of standard BWT/HT 89.5 82.7 73.9   

Serum albumin (g/100 mL) 3.8 3 2.1   

Hematocrit 44.4 37.2 32   

Fat mass (%) 17.7 19.8 15.2   

Brain (kg)    1.51 1.13 

Heart (kg)    0.33 0.22 

Liver (kg)    1.64 0.94 

Spleen (kg)    0.23 0.11 

Kidney (kg)    0.36 0.21 

BMC (kg)    2.68 1.93 

LBMtrunk (kg)    24.1 16.9 

MM (kg)    27.6 16.6 

BWT = body weight, HT = height, M = mild nutritional impairment, I = intermediate nutritional 

impairment, S = severe nutritional impairment, IW = intermediate weight, UW = underweight, 

BMC = bone mineral content, LBMtrunk = Lean soft tissue trunk, MM = skeletal muscle mass. 1 

Barac-Nieto et al. [18] 2 Bosy-Westphal et al. [19] 3 as defined in publications. 

2.3.3. Evaluation of Physiological Scaling 

The suitability of the adopted scaling strategy and the developed PSPs was evaluated 

by comparing how scaling of a non-malnourished pediatric population to a malnourished 

pediatric population corresponded to clinical classifications of pediatric malnutrition. 

This check was performed both versus the World Health Organization (WHO) standards 
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of z-score and versus a set of clinical observations [22,23]. Briefly, a z-score is calculated 

as (observed value—median value of the reference population)/standard deviation of the 

reference population. The observed reference population had previously been enrolled in 

an intervention study to determine the efficacy and pharmacokinetic/pharmacodynamic 

(PK-PD) properties of lumefantrine in African children with severe acute malnutrition (n 

= 131) and a control group of non-malnourished children (n = 266) [23]. This population 

included Malian and Nigerian children, aged 6–59 months, with uncomplicated P. 

falciparum malaria. Children were classified as having severe acute malnutrition according 

to the WHO criteria, i.e., weight-for-height z-score (WHZ) < −3 and/or MUAC < 115 mm. 

Children with kwashiorkor, severe stunting (severe chronic malnutrition given by a HFA 

z-score < −3), severe anemia, known underlying or chronic diseases, or other 

complications requiring hospitalization were excluded from the study. 

The evaluation versus standard WHZ was performed by comparing the BWT/HT 

relationship of a virtual pediatric ICRP population of mixed sex (50:50), aged 46–48 

months, considered both before and after scaling, according to the set strategy of adopting 

PSPs for severe malnutrition. To evaluate the PSPs versus clinical observations, we 

generated a virtual population from the ICRP database matching the study population in 

terms of age range and sex distribution. Both the non-malnourished (after removal of 

outliers) and scaled populations (with mild, intermediate, or severe malnutrition) were 

compared to the study population in terms of weight-for-age z-score (WAZ) and WHZ. 

Additionally, we performed simulations to facilitate direct evaluation of the PSPs 

effect on simulated pediatric PK profiles. For each model drug included, simulations were 

performed using a representative study setup given the pediatric reference studies, e.g., 

population age and dose regimen. These simulations were conducted using both a non-

malnourished and a severely malnourished population, generated from the non-

malnourished population via the PSP translation strategy, and alike in all other aspects. 

This approach ensured that potential differences between simulation output, when 

adopting a non-malnourished or a severely malnourished virtual population, were a 

direct consequence of the PSPs translation. Furthermore, simulations were performed 

using both a BWT-adjusted and a flat dose to facilitate assessments of dose effects as well 

as to compare these dosing strategies. 

2.4. PBPK Drug Models and Study Data Used in PK Evaluation 

2.4.1. Caffeine 

The caffeine PBPK model used in this study was adapted from the one available for 

caffeine included in the PK-Sim® model compound library. Some model refinements were 

performed to match the clinical plasma concentrations in healthy Nigerian adult 

volunteers (n = 10) after a 300-mg oral dose dissolved in water [24].  

The PK evaluation of the PSP strategy was performed using extracted plasma 

concentration data from malnourished Nigerian children (n = 7) with kwashiorkor with 

an average age of 2.6 years (range 1.3‒4.5 years) [25]. Caffeine plasma concentrations were 

reported after a 40-mg dose (3.6–5.6 mg/kg) administered via nasal gastric tube. 

Simulations were performed for a severely malnourished pediatric population replicating 

the reported study in terms of study population and design. The simulations were 

performed at post-prandial state after intake of 100 mL of a simulated nutritional drink 

(caloric content = 75 kcal). Evaluations were performed towards the prediction of severe 

malnutrition. Oral doses of 40 mg and 3.2 mg/kg, in a population with average age of 2.6 

years (range 1.3‒4.5 years), were used to perform simulations for direct evaluation of dose 

effects and dosing strategy. 

2.4.2. Cefoxitin 

A cefoxitin PBPK model was developed to serve the purpose of this study. Initial 

model setup was done based on information on cefoxitin physico-chemical properties, as 
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well as its absorption, distribution, metabolism, and excretion (ADME) properties. The 

PBPK model was then optimized, by parameter identification, towards the clinical plasma 

concentrations reported in healthy volunteers after intravenous cefoxitin doses of 2 g (5-

min infusion) or 30 mg/kg (3-min infusion) [26,27]. PK evaluation of the PSP strategy was 

performed using reported serum concentration data after a 40-mg/kg intravenous cefoxitin 

dose in malnourished South African children (n = 6) with kwashiorkor with average age 28 ± 

12 months [28]. Simulations were performed for a severely malnourished pediatric population 

replicating the reported study in terms of study population and design. Intravenous doses of 

520 mg and 40 mg/kg, in a population with average age of 28 ± 12 months, were used to 

perform simulations for direct evaluation of dose effects and dosing strategy. 

2.4.3. Ciprofloxacin 

The ciprofloxacin PBPK model used in this study was adapted from a previously 

published model [29]. Some model refinements were performed to match the clinical 

plasma concentrations in healthy American adult volunteers (n = 14) after a 750-mg oral 

dose [30]. PK evaluation of the PSP strategy was performed using extracted plasma 

concentration data from Kenyan children (n = unknown) defined as malnourished by the 

following criteria: WHZ ≤ 3, MUAC < 11 cm, or the presence of bilateral pedal oedema 

(kwashiorkor) [31]. The reported data were categorized according to age groups of 0.5, 1, 

2, 5, and 10 years and ciprofloxacin plasma concentrations were reported after an oral 

dose of 10 mg/kg [32]. Simulations were performed for a severely malnourished pediatric 

population replicating the reported study in terms of study population age groups (±10%) 

and design. The simulations were performed at post-prandial state after intake of 200 mL 

of a simulated nutritional drink (caloric content = 300 kcal). Oral doses of 120 mg and 10 

mg/kg, in a population with average age of 2 years (range 1.8‒2.2 years), were used to 

perform simulations for direct evaluation of dose effects and dosing strategy. 

2.4.4. Lumefantrine 

A lumefantrine PBPK model was developed to serve the purpose of this study. Initial 

model setup was based on information on lumefantrine physico-chemical, 

biopharmaceutical, and ADME properties. Model development was performed to include 

previous clinical observations on effects of food intake and susceptibility to CYP3A4 

inhibition. We characterized lumefantrine intestinal absorption using data reported by a 

food-effect study in Chinese healthy adult volunteers (n = 16) as well as previous 

assessments of fraction absorbed (fabs), reported to be 4.7% and 75% in fasted and fed state, 

respectively [33,34]. Elimination pathway confirmation, via CYP3A4, was performed using 

clinical data reported by a drug-drug interaction trial with ketoconazole in Caucasian 

healthy adult volunteers (n = 16) [35]. The PK evaluation of the PSP strategy was 

performed versus observations of lumefantrine in malnourished Malian and Nigerien 

children (n = 131), aged 6‒59 months, with uncomplicated P. falciparum malaria [23]. 

Children were classified as having severe malnutrition according to the following criteria: 

WHZ < −3 and/or MUAC < 115 mm. Children with kwashiorkor, severe stunting (severe 

chronic malnutrition, HFA z-score < −3), severe anemia, known underlying or chronic 

diseases, or other complications requiring hospitalization were excluded from the study. 

Lumefantrine plasma concentrations were reported for a standard three-day oral twice-

daily dosing of 120 mg (~15.5 mg/kg) lumefantrine given in a fixed dose combination with 

artemether. Simulations were performed for a severely malnourished pediatric 

population replicating the reported study in terms of study population and design. The 

simulations were performed at post-prandial state after intake of 100 mL of a simulated 

nutritional drink (caloric content = 75 kcal) accounting for the reported effects on 

bioavailability [36]. A single oral dose of 120 mg and 12 mg/kg, in a population with 

average age of 2.75 years (range 0.5‒5 years), were used to perform simulations for direct 

evaluation of dose effects and dosing strategy. 
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2.4.5. Pyrimethamine 

A pyrimethamine PBPK model was developed to serve the purpose of this study. 

Initial model setup was done based on information on pyrimethamine physico-chemical, 

biopharmaceutical, and ADME properties. Model development was then performed, by 

parameter identification, towards: (a) clinical plasma and whole-blood concentrations 

reported in healthy volunteers (n = 7) after a 25-mg oral dose of pyrimethamine; and (b) 

whole-blood concentrations reported in malaria-infected adult volunteers (n = 228) after a 

75-mg oral dose [37–40]. PK evaluation of the PSP strategy was performed using compiled 

observations of pyrimethamine in malnourished malaria-infected African children (n = 

60) aged 16–60 months [38,39]. Children were classified as malnourished according to the 

criteria of WAZ < −2. Pyrimethamine whole-blood concentrations were reported after a 

single oral dose of 12.5, 18.75, 25, or 50 mg. Simulations were performed for a severely 

malnourished pediatric population replicating the reported study in terms of study 

population and design. Oral doses of 25 mg and 1.8 mg/kg, in a population with average 

age of 2.75 years (range 0.5‒5 years), were used to perform simulations for direct 

evaluation of dose effects and dosing strategy. 

2.4.6. Sulfadoxine 

A sulfadoxine PBPK model was developed to serve the purpose of this study. Initial 

model setup was done based on information on sulfadoxine physico-chemical, 

biopharmaceutical, and ADME properties. Model development was then performed, by 

parameter identification, towards: (a) clinical plasma and whole-blood concentrations 

reported in healthy volunteers (n = 7) after a 500-mg oral dose of sulfadoxine; and (b) whole-

blood concentrations in malaria-infected adult volunteers (n = 228) after a 1500-mg oral dose 

[37–40]. PK evaluation of the PSP strategy was performed using compiled observations of 

sulfadoxine in malnourished African children (n = 59), aged 17–60 months, with P. 

falciparum malaria. Children were classified as malnourished according to the criteria of 

WAZ < −2. Whole-blood concentrations were reported after a single oral dose of 250, 375, 

500, or 1000 mg of sulfadoxine. Simulations were performed for a severely malnourished 

pediatric population replicating the reported study in terms of study population and 

design. Oral doses of 500 mg and 36 mg/kg, in a population with average age of 2.75 years 

(range 0.5‒5 years), were used to perform simulations for direct evaluation of dose effects 

and dosing strategy. 

3. Results 

3.1. Physiological Scaling Parameters 

The calculated set of PSPs for three different levels of malnutrition (mild, 

intermediate, and severe) are summarized in Table 2. The largest relative change in 

physiology due to malnutrition was predicted to occur for plasma protein levels (PSP = 

0.494), followed by organ and tissue volume of spleen (PSP = 0.612) and fat (PSP = 0.624). 

Consequences of scaling according to the PSPs, for different levels of malnutrition, on 

summary biometric parameters are visualized for a typical 30-year-old European man in 

Table 3 [41]. The simulated loss in total BWT was according to the reported values for 

malnutrition, i.e., mild (11%), intermediate (17%), and severe (26%). When applying the 

PSP translation strategy to a virtual pediatric population (ICRP population of mixed sex 

(50:50), aged 46–48 months), approximately 26% of the population were discarded as 

outliers, with no difference between sexes. In Figure 2, the individual BWT/HT ratios 

before (n = 500) and after scaling (n = 371) when adopting PSPs for severe malnutrition are 

shown and compared to the BWT/HT ratios according to standard WHZ. The simulated 

WHZ for a severely malnourished population was, on average, −3, with individual 

measures ranging between −1 and −4.5. 
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Table 2. Derived physiological scaling parameters for translation of physiological changes at 

different levels of malnutrition. 

Component  Not Malnourished 
Malnutrition Level 

Mild Intermediate Severe 

Bone 1 0.947 0.913 0.869 

Brain 1 0.918 0.865 0.797 

Fat 1 0.817 0.822 0.624 

Gonads, intestines, lung, stomach 1 0.936 0.894 0.84 

Heart 1 0.902 0.839 0.758 

Kidney 1 0.874 0.792 0.686 

Liver 1 0.872 0.789 0.682 

Muscle 1 0.893 0.771 0.715 

Pancreas 1 0.936 0.894 0.84 

Skin 1 0.954 0.922 0.879 

Spleen 1 0.844 0.743 0.612 
 arterial 1 1.03 0.992 0.833 

Blood venous 1 1.02 0.979 0.822 
 portal vein 1 1.02 0.982 0.825 

Plasma proteins 1 0.894 0.706 0.494 

Hematocrit 1 0.945 0.791 0.681 

Table 3. Consequences of scaling according to the PSP strategy, for different levels of 

malnutrition, on summary biometric parameters for a typical 30-year-old European man [41]. 

Biometric  Not Malnourished 
Malnutrition Level 

Mild Intermediate Severe 

BWT (kg) 73.0 65.3 60.3 53.9 

HT (cm) 176 176 176 176 

BMI (kg/m2) 23.6 21.1 19.5 17.4 

BWT/HT (kg/m) 41.4 37.1 34.3 30.6 

BSA (m2) 1.9 1.8 1.7 1.7 

BWT = body weight, HT = height, BMI = body mass index, BSA = Body surface area. 

Comparisons of the WHZ and WAZ scores between a virtual population at different 

levels of malnutrition and observations are displayed in Figures 3 and 4. Quantitative 

differences between simulated and observed populations was observed. Overall, the z-

scores for the observed population were lower than those for the simulated one, both in 

the non-malnourished and severely malnourished groups (Figure 3). However, the 

observed and simulated populations were similar in terms of z-score differences between 

malnourished and non-malnourished populations (Figure 4). Based on the combined 

assessment of these results, severe malnutrition was selected for the PK evaluation of the 

scaling strategy. 
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Figure 2. Individual body weight/height (BWT/HT) ratios for a male and female virtual pediatric 

population, aged 46–48 months, compared to the BWT/HT ratios according to standard weight-for-

height z-scores (WHZ) before and after scaling, adopting PSPs for severe malnutrition. The lines 

show standard WHZ scores ranging between 0 and −4 with while dots indicate individual BWT/HT 

ratios. Before scaling, each population consisted of 250 individuals; after scaling and exclusion of 

individuals deviating more than one standard deviation in BWT/HT from the population mean, the 

male and female populations included 184 and 186 virtual individuals, respectively. (a) male 

population before scaling, (b) female population before scaling, (c) male population after scaling to 

severe malnutrition, (d) female population after scaling to severe malnutrition. 
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Figure 3. Comparison the observed weight-for-age z-scores (WAZ) and weight-for-height z-scores 

(WHZ) in African children, classified as either not malnourished or severely malnourished, and a 

virtual population at different levels of simulated malnutrition, according to the PSP translation 

strategy. Box plots represent median and interquartile range. 

 

Figure 4. Difference in weight-for-age z-scores (WAZ) and weight-for-height z-scores (WHZ) 

(malnourished—not malnourished) in African children, classified as either not malnourished or 

severely malnourished, and a virtual population at simulated intermediate and severe malnutrition, 

according to the PSP translation strategy. Box plots represent median and interquartile range. 

3.2. PBPK Drug Model Development 

3.2.1. Caffeine 

Model refinement was performed for the caffeine PBPK by parameter optimization 

to better represent the target population. Performance of the caffeine model was improved 
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by optimizing logP, intestinal permeability (Pint) and capacity for CYP1A2 metabolic 

clearance, via the parameter maximum rate of reaction (Vmax). The model refinement was 

performed adopting an oral solution for caffeine administration. All other model 

parameters and calculations were in accordance with the PK-Sim® v8 caffeine drug model 

library file. Final parameters for the caffeine PBPK model are summarized in Table 4 and 

results from a virtual trial simulation are shown in Figure 5. 

 

Figure 5. Concentration-time profiles (log-linear scale) in adult populations for (a) caffeine, (b) cefoxitin, (c) ciprofloxacin, 

(d) lumefantrine, (e) pyrimethamine and (f) sulfadoxine. Clinical observations are represented by dots (mean ± standard 

deviation [SD]). Shaded areas represent the simulated 5–95% quantiles for virtual populations. Details of clinical reference 

data, study design, and PBPK models are further described in the respective drugs sub-section in PBPK Drug Models and 

Study Data Used in PK Evaluation (Materials and Methods) and PBPK Drug Model Development (Results). 
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3.2.2. Cefoxitin 

The cefoxitin PBPK model development was informed with the measured fraction 

unbound in plasma (fu.p), calculated pKa, and solubility, whereas logP and elimination, 

via glomerular filtration rate (GFR) and tubular secretion, were optimized towards clinical 

data. The final parameters for renal elimination suggest the involvement of active renal 

excretion, which is in line with previous clinical observations [26]. The model 

development was performed adopting intravenous cefoxitin administration. Kp values 

and cellular permeabilities were calculated adopting the methods of Rodger and 

Rowlands and standard PK-Sim®, respectively. Final parameters for the cefoxitin PBPK 

model are summarized in Table 4 and results from a virtual trial simulation are shown in 

Figure 5. 

3.2.3. Ciprofloxacin 

The ciprofloxacin PBPK model was adopted as reported, except for that optimization 

was performed to enable majority of intestinal absorption to occur in the proximal parts 

of the intestine. This optimization was achieved by estimation of intestinal permeability 

(Pint) and the effective surface area enhancement factor (SAEF) in the caecum, while SAEF 

values for the small intestine and other regions of the large intestine were set to default 

and zero, respectively. Model development simulations were performed for ciprofloxacin 

administered as an oral suspension (monodisperse, particle radius = 10 µm). Final 

parameters for the ciprofloxacin PBPK model are summarized in Table 4 and results from 

a virtual trial simulation are shown in Figure 5. 

3.2.4. Lumefantrine 

The development of a lumefantrine PBPK model was informed by reported values 

for logP = 2.9, pKa = 9.35, and fu.p = 0.001–0.003 [33,42,43]. To reach an optimal performance, 

logP and fu.p were estimated to 3.09 and 0.0029, respectively. The plasma binding entity of 

lumefantrine was modelled using albumin as a surrogate to high-density lipoproteins, 

since this binding entity was not available in PK-Sim®. The observed reduction of lipid 

levels in malnourished children, and its potential effects on fu.p, was assumed to be similar 

to the changes in albumin levels and would therefore be captured by the suggested PSP 

strategy [44–46]. Metabolic elimination via CYP3A4 was optimized and evaluated in 

relation to the reported increase in exposure after concomitant administration of the 

CYP3A4 inhibitor ketoconazole (area under the curve, AUCobs ↑ 60.8%, AUCsim ↑ 61.1%) 

[35]. Intraluminal solubility, at fasted and fed state, were estimated as a categorical effect 

along with prandial state specific dissolution, described by the Weibull function (fasted 

state: time to 50% dissolved = 270 min, shape = 6.9; fed state: time to 50% dissolved = 217 

min, shape = 1.9). The in-vivo effect of a nutritional drink on intraluminal solubility was 

assumed similar to the maximum effect observed after concomitant soy milk intake. This 

effect was estimated assuming that the 6-fold increase observed in lumefantrine plasma 

exposure with soy milk intake was a direct effect of an increase in the fraction absorbed 

due to enhanced solubility [36]. Kp values and cellular permeabilities were calculated 

using the standard PK-Sim® method. Final parameters for the lumefantrine PBPK model 

are summarized in Table 4 and results from a virtual trial simulation are shown in Figure 

5. 
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Table 4. Final PBPK model parameters applied for simulations of the investigated drugs. 

Parameter  Caffeine 1 Cefoxitin Ciprofloxacin 2 Lumefantrine Pyrimethamine Sulfadoxine 

logP 0.87 0.84 3 0.95 3.09 3 3.14 3 3.74 3 

fu.p 0.7 0.48 4 0.67 0.0029 3 0.095 5 0.036 5 

Mw 194.2 427.45 331.3 528.9 248.71 310.33 

pKa 0.8 B 3.58 A 6 6.09 A, 8.62 B 9.35 B 7 6.9 B 5 6.2 A 5 

Solubility 8 21.6 @ pH = 7 0.2 @ pH = 7 9 38.4 @ pH = 7 

fasted: 0.0097 3 @ pH = 

6.5 

fed—high fat: 0.18 3 @ 

pH = 5 

fed—milk: 0.05 3 @ pH 

= 5 

0.12 @ pH = 5 5 
0.474 @ pH = 

5 5 

Distribution PK-Sim RR PK-Sim PK-Sim RR 10 RR 11 

Pint 223 3 0.161 12 1.57 3, 13 24.4 3 6370 3 1690 3 

Renal 

elimination 

CLspec =2.46 

×10−3 

CLspec =3.8 3 + 

GFR 
CLspec =1.61 + GFR  GFR GFR × 0.21 3 

Hepatic 

elimination 

Vmax.CYP1A2 = 

73.1 3  

Km.CYP1A2 = 

14.7  

 
CLspec.CYP1A2 = 0.043  

CLspec.bile = 0.096  
CLint.CYP3A4 = 93.7 3  CLspec = 0.089 3   

fu.p = unbound fraction in plasma, Mw = molecular weight (g/mol), pKa = negative base−10 

logarithm of the dissociation constant, A = acid and B = base, Pint = intestinal permeability (10−6 

cm/min), GFR = glomerular filtration rate, Vmax = maximum rate of reaction (pmol/min/mg 

protein), Km = Michaelis-Menten constant (µM), CLspec = volume normalized clearance (1/min), 

CLint. = intrinsic clearance (µL/min/mg protein). 1 as per PK-Sim® library value if not indicated 

otherwise, 2 as reported in Schlender et al. 2018 [29] if not indicated otherwise, 3 optimized, 4 

Carver et al. 1989 [27], 5 Charman et al. 2020 [47], 6 ChemAxon (http://www.chemaxon.com), 7 

Kotila et al. 2013 [42], 8 solubility in mg/mL at indicated pH (@ pH), 9 ALOGPS 2.1 

(http://www.vcclab.org/lab/alogps/), 10 B:P optimized via Vf.proteins = 0.19 and Vf.lipid = 0 in blood 

cell, 11 B:P optimized via Vf.proteins = 0.06 and Vf.lipid = 0 in blood cell, 12 calculated in PK-Sim®, 13 

Absorption modification Enhancement factors for Cecum = 26.24 and other regions of large 

intestines = 0.  

3.2.5. Pyrimethamine 

The PBPK model for pyrimethamine was developed based on input data on fu.p, pKa, 

and solubility reported by Charman et al. in 2020 [47]. Final model parameters were 

obtained by optimizing logP and hepatic elimination. Furthermore, to adequately 

describe whole-blood concentrations, while still maintaining the possibility to translate 

values using the PSP strategy, the parameters that determine partitioning to erythrocytes, 

i.e., the Vf of proteins and lipids in erythrocytes, were optimized. Non-specific hepatic 

elimination was adopted as no information on specific metabolic pathways could be 

found. Renal elimination described by GFR was also included and contributed to 

approximately 30% of the total elimination, in accordance with previous observations [48]. 

Kp values and cellular permeabilities were calculated adopting the methods of Rodger 

and Rowlands and the standard charge-dependent Schmitt normalized to PK-Sim®, 

respectively. Model development simulations were performed for pyrimethamine 

administered as solid formulation, assuming dissolution kinetics as described by a 

Weibull function (time to 50% dissolved = 10 min, shape = 1). Final parameters for the 

pyrimethamine PBPK model are summarized in Table 4 and results from a virtual trial 

simulation are shown in Figure 5. 

3.2.6. Sulfadoxine 

The PBPK model for sulfadoxine was developed based on input data on fu.p, pKa, and 

solubility reported by Charman et al. in 2020 [47]. Final model parameters were obtained 

by optimizing logP and renal elimination, via the GFR factor. Furthermore, to adequately 

describe whole-blood concentrations, while still maintaining the possibility to translate 

values using the PSP strategy, the parameters that determine partitioning to erythrocytes, 



Pharmaceutics 2021, 13, 204 15 of 24 
 

 

i.e., the Vf of proteins and lipids in erythrocytes, were optimized. In agreement with 

previous clinical reports, the model suggests that sulfadoxine elimination is slower than 

that calculated using GFR, thus indicating tubular reabsorption of sulfadoxine [49]. Kp 

values and cellular permeabilities were calculated adopting the methods of Rodger and 

Rowlands and standard charge dependent Schmitt normalized to PK-Sim®, respectively. 

Model development simulations were performed for sulfadoxine administered as solid 

formulation, assuming dissolution kinetics as described by a Weibull function (time to 

50% dissolved = 10 min, shape = 1). Final parameters for the sulfadoxine PBPK model are 

summarized in Table 4 and results from a virtual trial simulation are shown in Figure 5. 

3.3. Pharmacokinetic Evaluation of Physiological Scaling Parameters 

Systemic concentration-time profiles of the model drugs included in this study were 

simulated for severely malnourished pediatric virtual populations and then compared 

with clinical reference data. Reference data for caffeine and cefoxitin were only available 

as means with standard deviations [25,28]. Clinical data for ciprofloxacin did not allow 

for AUC calculations on an individual level. Hence, clinical exposure (represented by 

AUC) was calculated for each age group from mean profiles, and the population mean 

value was then calculated as mean of the AUCs from different age categories [32]. 

Reference exposure (AUCs) for lumefantrine, pyrimethamine, and sulfadoxine was 

calculated for a single dose administration based on individual co-variates and parameter 

estimates from previously reported population PK analyses: dose × bioavailability/CL 

[23,40,50]. 

Pediatric population demographics and trial design were selected to replicate clinical 

reference studies. PSPs representing severe malnutrition and developed PBPK models 

were applied accordingly. The number of individuals considered in the severely 

malnourished pediatric virtual populations were 82, 68, 361, 3250, 3313, and 3257 for the 

simulations of caffeine, cefoxitin, ciprofloxacin, lumefantrine, pyrimethamine, and 

sulfadoxine, respectively. Overall, simulated systemic concentration-time profiles agreed 

well with clinical observations (Figure 6). Similarly, the systemic exposure was predicted 

with adequate accuracy with a simulated-to-observed mean AUC-ratio of 0.78, 1.12, 0.93, 

1.68, 0.854, and 1.13 for caffeine, cefoxitin, ciprofloxacin, lumefantrine, pyrimethamine, 

and sulfadoxine, respectively (Figure 7). The absolute average deviation of simulations to 

observations in AUC was 1.22-fold, while the average error was 1.08-fold. Predicted 

population variability in systemic PK was similar to observations for caffeine, cefoxitin, 

lumefantrine, and sulfadoxine, while it was to some extent underpredicted for 

pyrimethamine and sulfadoxine. 

The simulated effects of severe malnutrition and the implication of flat or BWT-

adjusted dose on the exposure to the drugs included are illustrated in Figure 8. According 

to the simulations using a BWT-adjusted dose, a reduction in simulated exposure is to be 

expected for all drugs. Notably, our simulations led to substantial differences in the level 

of these reductions, ranging from AUCmalnourished/AUCnot-malnourished ratios of 0.66 

(sulfadoxine) to 0.93 (caffeine). Similarly, the simulated effects of malnutrition on 

exposure when adopting a flat-dose regimen (i.e., dose set according to age) showed large 

differences among the investigated drugs. The relative exposure (AUCmalnourished/AUCnot-

malnourished) at malnutrition was predicted to be higher for caffeine (1.36), cefoxitine (1.16), and 

ciprofloxacin (1.25), lower for lumefantrine (0.73) and sulfadoxine (0.89), and remain similar 

for pyrimethamine (0.95). Clinical observations for the flat-dose regimen of lumefantrine were 

also available for a non-malnourished population, which confirmed the simulation results. 
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Figure 6. Concentration-time profiles (log-linear scale) in severely malnourished pediatric 

populations, (a) caffeine, (b) cefoxitin, (c) ciprofloxacin, (d) lumefantrine, (e) pyrimethamine and (f) 

sulfadoxine. Clinical observations (reported either as mean ± SD or individual measurements) are 

represented by dots. Shaded areas represent the predicted 5–95% quantiles for virtual populations. 

Details of clinical reference data, study design, and PBPK models are further described in the 

respective drugs sub-section in PBPK Drug Models and Study Data Used in PK Evaluation (Materials 

and Methods) and PBPK Drug Model Development (Results). 
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Figure 7. Systemic drug exposure, i.e., AUC, in severely malnourished children after a single-dose administration, (a) 

caffeine, (b) cefoxitin, (c) ciprofloxacin, (d) lumefantrine, (e) pyrimethamine and (f) sulfadoxine. Box plots represent predictions 

for a virtual population while horizontal dashed and dotted lines either indicate the observed mean ± SD (caffeine, cefoxitin, and 

ciprofloxacin) or the median (Q1, Q3) (lumefantrine, pyrimethamine and sulfadoxine) from clinical reference studies. Fold error 

(FE) is calculated as the simulated to observed ratio of specified AUC central tendency measure. Details of clinical reference data, 

study design, and PBPK models are further described in the respective drugs sub-section in PBPK Drug Models and Study Data 

Used in PK Evaluation (Materials and Methods) and PBPK Drug Model Development (Results). 
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Figure 8. Predicted systemic drug exposure in severely malnourished (orange) or non-malnourished (blue) children after 

single-dose administration, (a) caffeine, (b) cefoxitin, (c) ciprofloxacin, (d) lumefantrine, (e) pyrimethamine and (f) 

sulfadoxine. Dotted lines included for fixed-dose administration of lumefantrine represent the observed median for the 

respective nutritional status. Fold deviation (FD) is calculated as the median AUC ratio between severely malnourished 

and non-malnourished. Box plots represent median and interquartile range. Simulations were performed for a flat dose 

(mg) and per body weight (mg/kg), and according to reference simulations performed in the Pharmacokinetic Evaluation of 

Physiological Scaling Parameters (Results). Details of study design and PBPK models are further described in the respective 

drugs sub-section in PBPK Drug Models and Study Data Used in PK Evaluation (Materials and Methods) and PBPK Drug 

Model Development (Results). 

4. Discussion 

PBPK modeling simulates PK profiles on the basis of compound-related information 

and a model structure parameterized with relevant physiological input parameters of the 

individual, such as organ volumes, tissue composition, blood flow rates, and clearance. In 

essence, the model structure and parametrization, i.e., the system, of a PBPK model aims 

to describe the organism. The traditional way to accomplish this is to inform the model 

with as detailed information as possible on the anatomical and physiological 

characteristics of the target population. Once the model has been established, the 

appropriateness of the model should be verified to ensure that representative virtual 

populations can be generated and that these are suitable for the intended purpose, i.e., PK 

simulations. The aim of this study was to establish a generic PBPK framework for 
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simulations and predictions of PK properties in malnourished children. To this aim, we 

needed to define and verify the alterations to physiology induced by malnutrition. In 

literature, quantitative anthropometric measurements (HT, BWT, body mass index, 

skinfold thickness, and MUAC) of malnourished children are abundant. However, since 

these measurements do not provide any information at a tissue or organ-level, they have 

little value for the purpose of informing PBPK models. Well-defined reference values at 

normal conditions, i.e., normal nutritional status, are also often missing. In the absence of 

target population data, an alternative approach was adopted to reach the set study goals. 

Under the assumption that in a state of malnutrition similar physiological alterations 

occur for children and adults, a physiologically-based bridge to a malnourished pediatric 

population was developed. This was achieved by combining information on a) the 

differences in body composition between non-malnourished and malnourished adults 

and b) the differences between adults and healthy children in a normal nutritional state. 

A set of PSPs to scale a non-malnourished population to different levels of malnutrition 

was established based on previously published measurements and the physiological 

database included in the PBPK platform PK-Sim®. By this strategy, virtual populations 

representing different target malnourished pediatric patient populations were generated, 

and accurate PK predictions were achieved. However, it should be noted that the current 

approach presents a generic translation of body composition and does not account for 

potential changes to specific physiological attributes and functionalities, such as specific 

tissue composition and capillary fenestration, which may be important for the disposition 

of certain drugs. Consequently, although the results support the overall appropriateness 

of the presented strategy, specific interpretations should be made with care. Finally, as the 

presented strategy was adapted to be used with the open access and open source software 

PBPK platform PK-Sim®, it is available for any organization to be used and further 

developed [51]. 

The final PSPs included malnutrition-induced alterations to tissues, organs, and 

plasma protein levels as defined in the PBPK model structure in PK-Sim® (Table 2). To 

accomplish this, data from two different studies were used [18,19]. Even though relative 

changes compared to a normal nutritional state were established in both publications, 

inter-study bias may have been introduced when combining the collated information. The 

PSPs for severe malnutrition simulated a 26% loss in BWT with different levels of effect 

on organs/tissues. A higher relative loss was simulated for fat (38%), kidney (31%), liver 

(32%), muscles (29%), and spleen (39%). As previously discussed, absolute comparisons 

between studies are hard to perform, but our estimated effects of PSPs, e.g., on BWT 

reduction and specifically affected organs, are in agreement with previous reports [52]. 

One important note is that malnutrition is a heterogeneous condition in terms of 

manifestations, e.g., marasmus and kwashiorkor are two conditions that have not been 

accounted for in this study. It should also be noted that the state of “severe malnutrition” 

reported in this study does not represent lethal malnutrition, i.e., lethal starvation, which 

occurs at an approximate 40% loss of BWT. These conditions may have additional 

implications for drug disposition [4]. However, the innate difficulty to study drug 

disposition in children with such life-threatening malnutrition is further complicated by 

many confounding variables caused as a results of concomitant malnutrition management 

and the prevalence of comorbidities [53]. Furthermore, we propose no distinction in 

applicability of the suggested strategy related to the malnutrition classes stunting and 

wasting. The rationale for this is that there are little evidence supporting a significant 

difference between these categories in terms of changes in tissue and organ weights 

compared to a non-malnourished state, which is the basis of the PBPK modeling 

approach. In this sense we therefore consider that the proposed strategy will work equally 

well for both categories and that it will be helpful, rather than harmful, for both classes. 

This is also supported by that adequate predictions were acquired overall, although the 

patient populations were in different states of malnutrition, including kwashiorkor. As 
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knowledge increase, both regarding data and information but also by further evaluation, 

refinements to the strategy may be achieved. 

The use of PSPs also indirectly influences the virtual cardiac output (CO), i.e., the 

sum of blood flows in each organ/tissue excluding lungs, as blood perfusion in each 

organ/tissue is parameterized as blood flow per organ/tissue weight. Consequently, when 

applying the PSPs, the absolute perfusion rate will decrease linearly with the reduction in 

organ weight. Hence, the simulated effect of malnutrition on CO will be a function of 

absolute reduction of tissue/organ weights, specific blood flow per organ/tissue weight, 

and the relative mass of each organ/tissue. In average, the simulated change in CO 

according to the PSPs is approximately 23%. The implications of this effect in relation to 

the observations are hard to assess. For instance, although the CO was reported to 

decrease by 48% after 6 months of semi-starvation, the observed circulatory index (i.e., 

cardiac function related to metabolic demand) was unchanged [52]. 

The presented set of PSPs does not include parameters related to GI functionality 

even though some changes in oral, gastric, and small intestinal physiology have been 

reported [54]. The co-prevalence of GI diseases in populations suffering of malnutrition 

leads to an inherent difficulty to distinguish the effects of malnutrition on GI physiology 

and function [52]. Although some general trends pointing towards GI alterations due to 

malnutrition have been suggested, these could not be linked to clinical relevance for 

absorption of orally administered drugs [54]. This could be related to the fact that the 

capabilities of food digestion and nutrient absorption are rarely lost despite that 

alterations to the GI tract may occur [52]. Overall, the lack of detailed information about 

patients and study design, as well as the absence of data from representative reference 

populations, reduce the possibility to discriminate underlying mechanisms from 

observations. Consequently, in some cases, changes of PK profiles have bene attributed to 

variations in absorption while they were most likely due to changes in clearance and age-

dependent first-pass effects [4,54]. Changes of PK profiles have also been interpreted as 

an alteration in elimination capacity [4,5]. At the same time, numerous reports state that 

renal function is unaffected by malnutrition and no direct evidence exists on malnutrition-

induced changes in enzyme abundances for enzymes commonly involved in drug 

metabolism, e.g., cytochrome P450 and uridine 5′-diphospho-glucuronosyltransferase 

family [52,55]. A contributing element to this discrepancy may be that other factors than 

functionality of the eliminating organs, such as distribution and protein binding, can 

influence the rate of drug disappearance from the systemic circulation. This may have 

influenced the interpretation of effects observed in clinical studies. Nevertheless, due to 

the high prevalence of disease in these populations, comorbidities and disease-induced 

effects may need to be accounted for when performing model simulations involving such 

populations [52,55–57]. 

When adopting the PSPs to generate a severely malnourished virtual pediatric 

population, the population’s WHZ was −3, on average, and ranged between −1 and −4.5 

(Figure 2). The inclusion of individuals with WHZ > −3, although they do not meet the 

WHO definition of severe malnutrition, may seem counterintuitive. However, the scaling 

strategy should be viewed from the perspective of scaling each individual in a population 

at a normal nutrition level to a fixed state of malnutrition. In practice, the use of PSPs will 

lead to an equal drop in WHZ across the population, and the WHZ of each individual at 

malnutrition will depend on his/her original WHZ. The drawback of this approach is, as 

mentioned above, that individuals with a WHZ > −3 also will be included. The benefits 

are that (a) direct comparisons of drug disposition in populations at different nutritional 

states can be made, and (b) interindividual variability in body composition, as well as 

integrity of physiology, are maintained. For the specific purpose of assessing the overall 

implications of malnutrition for drug disposition, we believe that the benefits of the 

approach prevail over the drawbacks. When comparing a virtual population with a target 

patient population, clear differences were observed with the “non-malnourished” 

reference population (Figure 3). This was expected given that virtual populations were 



Pharmaceutics 2021, 13, 204 21 of 24 
 

 

created on the basis of the ICRP database, which includes detailed information on age and 

gender-related differences in the anatomical and physiological characteristics of reference 

individuals for a western European population [41]. The ICRP database was selected and 

used throughout this study given the lack of a specific database on the African population. 

Although an “African population” cannot be defined due to the great heterogeneity in 

Africa, some discrepancies in population biometrics, and potentially also in absolute 

outcome, were expected. However, the relative effect of malnutrition was anticipated to 

be less dependent on these factors, as we have confirmed (Figure 4). Based on these 

results, the simulated implications of severe malnutrition were used throughout the 

study. In addition, since the majority of drug PBPK models used (except those for cefoxitin 

and ciprofloxacin) were developed using clinical reference data collected from African 

adults, the potential effects that using the ICPR population may have had on PK profiles 

was reduced. The calibration of the PBPK models to an African population consequently 

also increases the appropriateness for PK predictions in African children. 

The suggested approach was able to accurately predict PK profiles and parameters 

in severely malnourished children for six drugs with a wide range of ADME properties, 

such as different routes of elimination, level of protein binding, extent of tissue 

distribution, and potential for intestinal absorption after oral administration. This was 

reflected in an absolute average deviation in predicted to observed systemic exposure of 

1.22-fold with no systematic trend for under- or overprediction, indicated by an average 

error of 1.08-fold. The diversity in drug properties supports the overall appropriateness 

of the suggested PSPs translation strategy for generic and prospective simulations of drug 

disposition in a malnourished pediatric population. Although the simulated variability in 

plasma exposure was well predicted overall, the available reference data did not allow 

further analyses to investigate the mechanisms behind the variability. The model strategy 

allows one to integrate, when available, additional knowledge on specific target patient 

populations. e.g., higher granularity in demographics or disease-related effects, to further 

inform the model for increased specificity and performance. 

By comparing the simulated exposure of the investigated drugs after a fixed or a 

BWT-adjusted dose, shows that the implications of malnutrition can be expected to vary 

among drugs (Figure 8). For instance, the preferable dose regimen to attain comparable 

exposure in a severely malnourished population would be a fixed dose for pyrimethamine 

and a BWT-adjusted dose for caffeine (Figure 8). The difference can be related to the 

simulated tissue distribution, which in the PBPK model are determined by several 

parameters, such as fu.p, logP, and molecular weight. Additionally, by adopting the PBPK 

methodology one can account for, and further investigate, several aspects of potential 

relevance, such as dose regimens, routes of administration, food effects, and selection of 

drug delivery system. The use of this model for these patient populations also allows for 

traditional PBPK applications, such as drug-drug interactions and predictions of dose 

non-linearities due to saturation or solubility-limited absorption. The latter aspect is 

especially relevant for the simulation outcome of the poorly soluble drug lumefantrine, 

included in this study. When dosed by BWT, the bioavailability of lumefantrine will be 

higher in lighter subjects, and thus a higher fraction of the dose will be dissolved before 

intralumenal saturation occurs. In addition, since lumefantrine is eliminated via CYP3A4, 

which reaches full maturation at ~3 years of age, this drug provides an example of 

complex age and dose-dependent drug exposure that would be difficult to assess with 

means other than PBPK. Given these complex exposure dependencies, the accurate 

predictions obtained for lumefantrine further support the appropriateness of the 

proposed modeling strategy (Figure 7). 

5. Conclusions 

This study presents a physiologically-based translational framework for prediction 

of drug disposition in children with severe malnutrition by repurposing existing data and 

knowledge. The translational approach presented is readily applicable for dose 
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recommendation strategies to address the urgent medicinal needs of this highly 

vulnerable population. 
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