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Abstract: Chronic wounds (CW) create numerous entryways for pathogen invasion and prosperity,
further damaging host tissue and hindering its remodeling and repair. Essential oils (EOs) exert
quick and efficient antimicrobial (AM) action, unlikely to induce bacterial resistance. Cinnamon
leaf and clove oils (CLO and CO) display strong AM activity, namely against Staphylococcus aureus
and Pseudomonas aeruginosa. Chitosan (CS) is a natural and biodegradable cationic polysaccharide,
also widely known for its AM features. CS and poly (vinyl alcohol) (PVA) films were prepared
(ratio 30/70 w/w; 9 wt%) by the solvent casting and phase inversion method. The film’s thermal
stability and chemical composition data reinforced polymer blending and EO entrapment. Films
were supplemented with 1 and 10 wt% of EO in relation to total polymeric mass. The film thickness
and degree of swelling (DS) tended to increase with EO content, particularly with 10 wt % CLO
(* p < 0.05). UV-visible absorbance scans in the 250–320 cm−1 region confirmed the successful uptake
of CLO and CO into CS/PVA films, particularly with films loaded with 10 wt% EO that contained
5.30/5.32 times more CLO/CO than films supplemented with 1 wt% EO. AM testing revealed that
CS films alone were effective against both bacteria and capable of eradicating all P. aeruginosa within
the hour (*** p < 0.001). Still, loaded CS/PVA films showed significantly improved AM traits in
relation to unloaded films within 2 h of contact. This study is a first proof of concept that CLO and
CO can be dispersed into CS/PVA films and show bactericidal effects, particularly against S. aureus,
this way paving the way for efficient CW therapeutics.

Keywords: bactericidal; chitosan; essential oils; blended films; wound dressings; wound healing

1. Introduction

Diabetes mellitus (DM) is a disabling and incurable chronic metabolic and degen-
erative disorder, highly prevalent in Portugal and worldwide, severely affecting patient
quality of life and demanding high healthcare costs [1,2]. Diabetic foot ulcers (DFUs)
are microvascular lesions that can affect the skin, soft tissues, and bones in the lower
limbs [3,4]. However, more than half of those ulcers become infected, with pathogen
diversity and proliferation rate within the body’s tissues determining the severity of the
infection [3]. Infected DFUs are typically treated via surgical debridement [5–7], wound
cleansing with an antiseptic solution, and antibiotic administration [8,9]. Multiple wound
dressings [10,11] (e.g., films, hydrogels, foams, hydrocolloids, etc.) can then be placed over
the lesion site, to protect the wound, fight infection and promote healing. Still, recurrence
is frequent, with pathogen clearance and degenerated tissue recovery being increasingly
more difficult each time [4]. The most commonly isolated microorganisms residing in
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DFUs include the Gram-positive bacterium Staphylococcus aureus and the Gram-negative
bacterium Pseudomonas aeruginosa, which act as opportunistic pathogens [12–14]. Most of
the common antibiotics, because of their excessive and inappropriate use, have induced
bacterial resistance to treatment [15]. Current therapeutics are, in fact, ineffective in the
treatment of most DFU-associated infections, hence the urgency for efficient alternatives.
Opportunely, natural antimicrobial (AM) agents within DFU dressings have been suggested
as an alternative to the set of clinically-approved conventional approaches [16–21].

Chitin is the second most abundant natural polymer in the world. It is the primary
structural component of the exoskeleton of shrimps, crabs, lobster, and squid pens, and is
present in lesser amounts in cell walls of some fungi and yeast and in plants [22]. When
the degree of acetylation (DA, molar fraction of N-acetylated units) is lower than ≈ 50%,
the polymer is termed chitosan (CS), carrying glucosamine and N-acetylglucosamine units
connected via a β-1,4-glycosidic bond through acetal functions [23,24] (Figure 1a). CS is a
nontoxic and a biologically compatible carbohydrate biopolymer, fit for multiple biomedical
applications, including wound dressings. CS’s molecular weight (Mw) and the degree
of acetylation (DA) are its main structural parameters influencing the overall behavior
of the polymer as a biomaterial, namely its mucoadhesive, chemoattractive, analgesic,
hemostatic, and AM action (among others) [22]. Indeed, CS has a strong antibacterial
activity against S. aureus and P. aeruginosa, which makes it an attractive option for the
treatment of DFUs [25]. However, given its rapid biodegradation and poor mechanical
properties [26], CS is frequently combined with other polymers [22,24].
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Figure 1. Molecular units forming the (a) CS and PVA polymeric matrix, and (b) the main phenolic
component of CLO and CO, the eugenol, thereby representing the hydrophobic load.

Renewable plant-derived products with AM properties are increasingly considered as al-
ternatives to antibiotics [20]. Essential oils (EOs), in particular, are aromatic, volatile, lipophilic
biomolecules, extracted from different regions of plants, in which they work as secondary
metabolites, defending the host from microbial invasion [17,20,27]. These complex mixtures
contain hydrophobic molecules such as thymol, carvacrol, and eugenol (among others) that
exhibit a broad spectrum of AM activity against bacteria, fungi, and viruses [20,28]. Eugenol,
in particular, is an amphipathic hydroxyphenyl propene (Figure 1b), highly bactericidal
towards S. aureus and P. aeruginosa [20,29]. It is also the main bioactive constituent of
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the cinnamon leaf (CLO ≈ 79%) and clove essential oils (CO, ≈ 81%) extracted by the
Portuguese company Folha d’Água. CLO can be obtained through the bark and leaves of the
cut trees of Cinnamomum zeylanicum [30], whereas CO can be obtained by distilling different
parts of the plant, namely flowers, stems, and leaves of the clove tree (Eugenia caryophyl-
lus) [31]. These EOs are increasingly studied for applications in the pharmaceutical and
biomedical fields [19,20,28,32], due to their powerful antioxidant, anti-inflammatory, and
AM properties [31,33,34], either encapsulated and/or incorporated in nanoparticles, hydro-
gels, films, or fibers to facilitate their delivery [19,28,35–38]. Both EOs show a promising
inhibitory action on the growth of S. aureus and P. aeruginosa [19,20,39,40]. Still, their
cytotoxicity at increased concentrations, their low resistance to degradation by external
factors (e.g., temperature, light, moisture), and volatility in their free, liquid form hinder
their expanded use [28,41].

In the present work, we propose to engineer films via solvent casting and phase-
inversion method from CS and poly (vinyl alcohol) (PVA) blends, polymers widely com-
bined as templates for AM action [5,42,43], and load them with the antibacterial CLO or CO
to reach improved control of infections governed by S. aureus and P. aeruginosa. PVA is a
biodegradable synthetic polymer produced by free radical polymerization and subsequent
hydrolysis, whose chemical structure consists of a main chain formed by C-C bonds with
hydroxyl and acetate groups on the sides (Figure 1). Due to its biocompatibility, biodegrad-
ability, hydrophilicity, transparency, film-forming capacity, thermal stability, and chemical
resistance, PVA has been highly sought out for biomedical applications. Further, PVA’s
chain flexibility strongly contributes to its biomedical versatility, despite its instability in
an aqueous environment [44–46]. CS and PVA readily form hydrogen bonds due to a large
number of -OH groups from the monomeric units of both polymers [47]. Ergo, the main
goal of the present study is to explore the potential of CS and EO’s synergistic effect over
microbial growth inhibition within a matrix containing the flexible and hydrophilic PVA
for prospective CW treatments. Recent studies have shown that the volatile nature of EO
can be protected by combining it with polymeric matrices [28]. Yet, very few have explored
CS/PVA blended films as EO delivery platforms and none, to the author’s knowledge, has
used the proposed approach [48,49].

2. Materials and Methods
2.1. Materials

EOs were purchased from Folha d’Água (Santo Tirso, Portugal) and are listed in Table 1.
Trypticase soy broth (TSB), trypticase soy agar (TSA), nutrient broth (NB), and nutrient agar
(NA) were acquired from VWR (Alfragide, Portugal), while Mueller Hinton broth (MHB)
was obtained from CondaLab (Madrid, Spain). Bacteria were supplied from American
Type Culture Collection (ATCC), encompassing Gram-positive bacteria, S. aureus (ATCC
6538, grown in TSB/TSA) and Gram-negative bacteria, P. aeruginosa (ATCC 25853, grown
in NB/NA). EOs were selected based on results obtained elsewhere by the team [20,28],
apart from the minimum inhibitory concentration (MIC) value of CO while incubated with
P. aeruginosa that was here determined. In brief, the MICs of the chosen EOs–CLO and
CO–against S. aureus and P. aeruginosa were determined using the broth microdilution
procedure described by Wiegand et al. [50], which adapts the standard published by
the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on
Antimicrobial Susceptibility Testing (EUCAST) [51]. EO working solutions were diluted
in MHB at 40–3.7%, equivalent to 422.4–52.8 mg/mL for CO, respectively; maximum and
minimum concentrations were dependent on their inherent density (Table 1). Prepared
solutions were then added to the first column of 96-well plates in a volume of 100 µL. Serial
dilutions (1:2) were made with MHB in the consecutive wells, to a final volume of 50 µL.
Then, to each of these wells, 50 µL of the bacteria suspensions prepared at 1 × 107 colony
forming units (CFUs)/mL in MHB were added. EO-free bacteria suspensions and culture
media were used as controls. Absorbance readings at a wavelength of 600 nm (EZ READ



Pharmaceutics 2021, 13, 195 4 of 22

2000 Microplate Reader, Biochrom, UK) were made before and after plate incubation for
24 h at 37 ◦C and 120 rpm.

Table 1. List of tested EOs, their origin, density, and MIC values in relation to tested S. aureus and P. aeruginosa refer-
ence strains.

EO Abbreviation Origin Density (g/cm3)
MIC (mg/mL)

S. aureus P. aeruginosa

Cinnamon leaf CLO Cinnamomum zeylanicum 1.049 0.82 39.3
Clove CO Eugenia caryophyllus 1.056 0.83 52.8

The MIC value for each CO/bacteria combination was established as the concentra-
tion at which bacteria did not show any growth, determined visually, and confirmed by
differences in absorbance readings. The existence of viable cells at the MIC and at concen-
trations in its vicinity (concentration higher and lower than MIC value) was determined by
measuring the number of grown colonies. Briefly, aliquots of 10 µL of each cell suspension,
diluted from 101 to 105 in phosphate buffer saline (PBS) solution, were cultured on TSA
or NA plates for 24 h at 37 ◦C, and bacteria colonies were counted. Results are shown in
Table 1.

CS (Mw = 100–300 kDa; Acros Organics, Fair Lawn, NJ, USA) and PVA (Mw = 72 kDa,
88% hydrolyzed; Polysciences, Inc., Warrington, PA, USA) were used to produce the
blended films. A DA of 9.6 ± 1.4% was determined for CS by Fourier transform infrared
spectroscopy (FTIR) spectrum with KBr pellets, according to Brugnerotto et al. [52], using
the N-acetylglucosamine-specific band at 1320 cm−1 as the measuring band, and the band
at 1420 cm−1 as the internal reference. Aqueous solutions of glacial acetic acid (AA, Fisher
Scientific, Waltham, MA, USA) and distilled water (dH2O) were used as solvents for CS
and PVA, respectively. Sodium hydroxide (NaOH) and sodium sulfate (Na2SO4) were both
acquired from Merck (Oeiras, Portugal) and included in the coagulation bath of the blends.

2.2. CS/EO/PVA Film Production

CS and PVA films were prepared by solvent casting and the phase inversion method [17].
A 4% CS solution in 1% acetic acid was added to a 19% PVA solution (in dH2O at 80 ◦C),
stirred at 200 rpm for 30 min, and casted in glass Petri dishes (Ø = 14 cm). After drying at
40 ◦C (24–72 h; CS-24 h; PVA-72h; CS/PVA-56 h; CS/PVA/CLO 1%–52 h; CS/PVA/CLO
10%–48 h; CS/PVA/CO 1%–54 h; CS/PVA/CO 10%–52 h) to remove excess solvent, a
coagulation bath with 8% NaOH and 2% Na2SO4 was added to the samples with the goal of
neutralizing and detaching the built films. After optimizing the processing methodology for
each film type, a drying schedule was organized so that films could receive the coagulation
bath simultaneously. Films were then kept in the later bath at 20–25 ◦C for a maximum of
24 h, and afterward were washed three times with dH2O (using an orbital shaker at 50 rpm,
applied for 5 min to each wash). The latter was conducted prior to each characterization
method. EO-loaded films were obtained by incorporating EO within the CS solution
(already homogenous) 10 min before blending with PVA. EO was added at the necessary
volume to give rise to a concentration of 1 or 10 wt% EO in regard to the total polymeric
mass (specifically 35.1 or 351 mg within 3.51 g of CS and/or PVA). Figure 2 illustrates
the main steps taken to produce the films, while Table 2 highlights the main built film
processing conditions, along with CS/PVA mass ratios.
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Figure 2. Preparation of EO-loaded CS/PVA blended films. Films were prepared through solvent
casting followed by the phase inversion method, combining hydrophilic CS, and PVA to encapsulate
hydrophobic EO and, this way, assist in bacterial elimination. After separate polymer dissolution
in the adequate solvents, EO was added at 1/10 wt% (in relation to total polymeric mass) to the
CS solution, stirred for 10 min, and blended with PVA. The casted mix was refrigerated for bubble
removal, heated for solvent evaporation, and neutralized with salt ions in a suitable amount to
induce film detachment from the glass. After cleaning in dH2O, the loaded CS/PVA/EO films
were obtained.

Table 2. Data required to build tested CS/EO/PVA blended films, specifically EO loading amount (in µL), mass (g), and
volume (mL) of polymer solutions for each case, total mass percent (%w/v), total volume (mL), and selected CS/PVA
mass ratios.

EO CS Solution PVA Solution Total %
w/v

VTotal
(mL)

CS/PVA
Mass Ratiosm (mg) V (µL) mCS (g) V (mL) mPVA (g) V (mL)

CS - - 3.51 39 - - 9 39 100/0
PVA - - - - 3.51 39 9 39 0/100

CS/PVA - - 1.05 26 2.46 13 9 39 30/70
CS/PVA/CLO 1% 35.1 39.2 1.05 26 2.46 13 9 39 30/70

CS/PVA/CLO 10% 351.0 392.0 1.05 26 2.46 13 9 39 30/70
CS/PVA/CO 1% 35.1 33.2 1.05 26 2.46 13 9 39 30/70

CS/PVA/CO 10% 351.0 332.0 1.05 26 2.46 13 9 39 30/70

4% CS and 19% PVA solutions were used.

2.3. Physical and Chemical Characterization
2.3.1. Macroscopic Assessment

Representative images of the films’ macroscopic structures were taken. Thickness
measurements were conducted on 11 mm diameter samples of each type of film using a
handheld analogical micrometer with a dial indicator from Mitotoyo (ref. 2046F, Senhora da
Hora, Portugal) with a resolution of 0.01 mm, 10 mm pressing area, and 18 Pa of pressure.
Film wet weight (in mg) was registered, with any excess of dH2O on the surface of the
films being eliminated with Kimwipes (Kimtech) prior to weighting. The dried weight
was collected after seven days at 37 ◦C, the moment at which the films’ mass reached a
constant value. The films’ degree of swelling (DS, in %) was determined by measuring the
weight of the samples before and after drying, similar to the process previously performed
by Felgueiras et al. [17]. It was calculated using the Equation (1):

DS(%) =
mw − md

mw
× 100 (1)
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where mw (mg) is the weight of the wet film and md (mg) is the weight of the dry film.

2.3.2. Chemical Structure

The chemical structure (FTIR with attenuated total reflection, FTIR-ATR) of dried films
(seven days at 37 ◦C) [17] was evaluated using an IRAffinity-1S, SHIMADZU spectropho-
tometer (Kyoto, Japan), with an ATR accessory (diamond crystal). For each sample, a total
of 200 scans were performed at a spectral resolution of 2 cm−1, over the wavenumber range
of 400–4000 cm−1.

2.3.3. Thermal Properties

Thermal gravimetric analysis (TGA) measurements were conducted on an STA 449 F3
from NETZSCH Q500 using a platinum pan for films dried for seven days at 37 ◦C [17].
The TGA trace was obtained in the range of 25–700 ◦C under a nitrogen atmosphere, a
flow rate of 200 mL/min, and a temperature rise of 10 ◦C/min. Results were plotted as
the percentage of weight loss vs temperature. Differential scanning calorimeter (DSC)
data were acquired on a Power Compensation Diamond DSC (Perkin Elmer, MA) with an
Intracooler ILP, based on the standards ISO 11357-1:1997, ISO 11357-2:1999, and ISO 11357-
3:1999. Tests were conducted under a nitrogen atmosphere with a flow rate of 200 mL/min
and a heating rate of 10 ◦C/min. The thermogram was obtained in the range of 25–500 ◦C.
Results were plotted as heat flow vs temperature.

2.3.4. EO-Loaded Amount

Absorbance scans of each film were first collected between 200–800 nm (resolution of
1 nm), with a UV-2600 UV-vis spectrophotometer (Shimadzu), by resorting to an integrating
sphere (ISR-2600Plus) with a film holder for transmittance analysis. Film rectangles with
6 × 3 cm2 were first sliced from the periphery to its center (Figure S1).

The quantity of EO loaded onto each built film was estimated via UV-visible spec-
troscopy using a UV-1800 UV-visible spectrophotometer (Shimadzu) in an indirect manner.
Absorbance scans were equally collected, but using high precision quartz cuvettes of type
100-QS (Hellma Analyticals) and respective holder for transmittance measurements, for
each one of the solutions used to detach and wash each film, right before the characteriza-
tion studies. These comprised its first coagulation bath, a second coagulation bath, and
three dH2O washing amounts, all sequentially surrounding each film during their process-
ing. Absorbance values at 290 nm were registered, characteristic of bound eugenol within
both EOs [53], and considering each solution volume, the volume occupied by each film,
read absorbance values, dilution factor, and concentration from pre-determined EO-specific
calibration curves, EO presence in these solutions was calculated. The estimation of de-
tected EO mass within each film was determined after subtracting these values to the initial
EO loading amount. Calibration curves relating to CLO or CO concentration in ethanol
(with absorbance value ~280 nm, characteristic of eugenol within both EOs [19,54,55]) were
constructed around the CLO’s MIC value of 39.3 mg/mL, previously determined against
P. aeruginosa [20], following a 1:1000 dilution that enabled reliable detection of the spectra’s
region of interest. Results were plotted as absorbance vs wavenumber.

2.4. Antimicrobial Action
2.4.1. Agar Diffusion Assay

The Kirby-Bauer method allowed a qualitative evaluation of the antibacterial activity
of the films against S. aureus and P. aeruginosa through diffusion. Briefly, bacteria inoculums
were prepared in TSB and NB and left to grow overnight at 37 ◦C and 120 rpm. Then, their
concentration was adjusted to 1.0 × 107 CFUs/mL and 1 mL was collected and combined
with 14 mL of TSA/NA warmed at approximately 45 ◦C. The 15 mL bacterial solution
was poured into 90 mm diameter Petri dishes and left to solidify. Next, 6 mm diameter
samples were placed on the spiked agar and were incubated at 37 ◦C for 24 h. Zones of
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inhibition (ZoI) were observed and measured to confirm the EOs’ antibacterial efficacy.
Three replicate tests were carried out.

2.4.2. Time–Kill Kinetics

Bacteria suspensions were prepared at 1 × 105 CFUs/mL in TSB and NB and combined
with all prepared films. Control groups excluded film addition. Bacteria-containing
solutions were incubated at 37 ◦C and 120 rpm. After 0 (before action), 1, 2, 6, and 24 h
of incubation, bacteria were serially diluted (101 to 105 in PBS), cultured on TSA/NA
plates, and further incubated for another 24 h at 37 ◦C. Colonies of surviving bacteria were
counted and reported as mean ± standard deviation (SD). Log reduction determinations
were also determined between bacteria solutions with and without antimicrobial agents
and unloaded and loaded films.

2.5. Statistical Analysis

Statistical analysis was performed using GraphPad Prism (version: 7.04). The para-
metric distribution of the data was first evaluated by the D’Agostino-Pearson omnibus
normality test. As the data followed a non-parametric distribution, statistical analysis was
conducted with the Kruskal-Wallis test, followed by the Dunn’s multiple comparisons
test, to compare each unpaired group. A confidence interval of at least 95% was chosen to
define statistical significance (* p < 0.05, ** p < 0.005, *** p < 0.001 and **** p < 0.0001).

3. Results and Discussion
3.1. Macroscopic Assessment

CS/PVA blended films were produced via the solvent casting-phase inversion method,
following adaptation to what had been previously optimized by the team [17], at an opti-
mal CS/PVA mass ratio of 30/70, reflecting an effective polymer chain entanglement, and
observable macroscopic homogeneity of the films, in addition to what had already been
discovered elsewhere [48]. Macroscopically smooth and homogeneous films (Figure 3) with
0.72 ± 0.02 mm of thickness and 85.22 ± 2.93% of DS were obtained, apart from occa-
sional defects related to retained air bubbles. PVA’s highly ordered crystalline structure
created the thinnest films of the group [56], having only 0.47 ± 0.06 mm of thickness, but
also endowed them with high flexibility [43], as well as a soft and rubbery structure [46].
Contrarily, CS’s processing generated the thickest films, as expected from the rigid and
stereoregular structure of its bulky pyranose rings that typically culminate in large free
volume and less compact structures [57,58]. These films were equally inflexible and brittle,
becoming even difficult to handle [49]. CS’s assembly with PVA at the 30/70 mass ratio,
probably driven by hydrogen bonding, appeared to profit from both polymer’s confor-
mational features. CS/PVA films were also more pliable [42,43], envisaging facilitated
user handling and adaptation to the skin’s topography, for an improved efficacy as a
wound dressing material. CLO addition tended to increase film thickness up to 131.94%
or 181.94% (* p < 0.05), respectively, for films loaded with 1 or 10% CLO in relation to the
total polymeric mass of CS and PVA. The occurrence of less condensed films suggests an
alteration of the polymeric chain distribution and bonding opportunities [17]. Indeed, a
substantial increment (* p < 0.05) of 7.27% of the overall water retention capacity of the films
carrying 10% CLO was observed, suggesting a rearrangement of the polymer’s hydrophilic
moieties facing outwards, providing EO-shielding within its hydrophobic core motifs [59].
CO-supplemented films predictably displayed a similar behavior, considering that both
EOs are primarily composed of the same phenolic compound (i.e., eugenol), even though
smaller differences were observed when compared to the unloaded control structure. Films
composed of 10 wt% EO showed slightly increased pliability, though maintained adequate
film integrity.
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3.2. Chemical Structure

The characteristic saccharide peaks of CS in the 945−1190 cm−1 region can be ob-
served in Figure 4, namely the C−O stretching absorption band at 1063 and 1027 cm−1

and the C−O−C asymmetric stretching vibrations at ∼1151 cm−1. The N−H scissoring
deformation peak at 1594 cm−1, indicative of the presence of saturated primary amine
groups, is also evident in the spectrum curves. Within the highlighted region, PVA ab-
sorbs distinctively at 1091 cm−1 (C-O stretching vibrations), additionally displaying C−C
stretching vibrations at around 843 cm−1. CS/PVA’s spectrum shows peaks from both
CS and PVA, and new peaks are absent, thereby suggesting the occurrence of polymer
blending. The −NH and -OH stretching band (and intermolecular hydrogen bonding of
CS backbone [60]) between 3690–2985 cm−1, amplified in Figure 4b, reinforces the latter
assumption, suggesting that strong intermolecular hydrogen bonds of hydroxyl groups
are formed between the polymers, a fact also widely identified in the literature [41,56,61].
When CS was added to PVA, the typical characteristic absorption peak of 3363 cm−1 shifted
to a lower wave number of 3297 cm−1. In parallel, the polymer blends exhibited a peak
with increased intensity in this region (an increase of 246%) when compared to CS alone,
though shorter than the spectra of the film with 100% PVA (decrease of 38%), emphasizing
fewer free -OH groups, along with an increase in interchain hydrogen bonding between
the hydroxyl and amine groups of CS and the hydroxyl groups of PVA [43,49]. The broad
and diffuse peak observed at 2875 cm−1 (CS) and asymmetric methylene CH2 stretching
vibration at 2943 cm−1 (PVA) faded and slightly decreased to 2911 cm−1 in CS/PVA films,
an effect that may be due to the C–H stretching vibrations [49].
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Following EO inclusion within the films, a commitment of free –OH groups with
increasing EO amount is however noticeable with both EOs, ergo suggesting that hydrogen
bonds are formed between EO and the polymer chains. With CLO, the peak decreased 34%
and 55%, while loaded with 1% and 10% EO, respectively, in relation to CS/PVA films. CO
inclusion within CS/PVA films similarly promoted a 12% and 15% reduction in the inten-
sity of this region of the spectra. CLO thus seem to have been better integrated in the built
structures than CO, corroborating the observations made earlier from the TGA and DSC
results. The section of the spectra between 3750–2750 cm−1 has been amplified for a clearer
evaluation of these spectral variations (Figure 4b). However, in what concerns shifts of the
–OH stretching vibrations with EOs, that is unclear, as also described elsewhere for similarly
produced films, containing CS, PVA, and other EOs [48,49]. Among changes in C–H and
C–O stretching and N−H scissoring, vibrations are also evident while comparing the
spectra, as expected [49], reinforcing that bond rearrangements favoring EO incorpora-
tion took place with increasing EO loading amounts in the films, even though these are
differences that are difficult to dissect on account of multiple possible contributions to
the observed variations. Hints regarding a decrease in aliphatic C–H stretching vibration
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at 2911 cm−1 can be perceived through Figure 4c. Still, known EO-characteristic peaks,
expected at 1577 and 1543 cm−1 (assigned to the aromatic ring C=C skeleton vibration
of an aromatic substance) as well as at 1724 cm−1 (corresponding to the C=O stretching
vibrations of the oil components [19,28]) are undetected in these spectra due to bands
overlapping with the prominent 1730–1500 cm−1 region that contains a strong contribution
of the CS’s chemical fingerprint. FTIR spectra of as-prepared hydrated films, (Figure S2),
confirms results obtained.

3.3. Thermal Properties

Thermal properties of EO−loaded films were analyzed via TGA and DSC, specifically
evaluating the effect of the EOs on thermal degradation behavior through both thermo-
gravimetry (TG) and derivative TG (DTG) thermograms (Figure 5) and glass transition and
melting phenomena (Figure 6).
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Figure 5. Representative TGA (left) and DTG (right) curves of (a) CLO- and (b) CO-loaded CS/PVA
blended films, and respective controls from 25 to 700 ◦C, performed at a heating rate of 10 ◦C/min in
a nitrogen atmosphere.

TGA measurements showed that CS has a main degradation peak at 281 ◦C, revealing
a high residual weight (34.07%) after all the heating steps [39]. PVA film, on the other
hand, exhibited four degradation steps. A first common thermal-induced modest weight
loss occurred between 70–209 ◦C mostly due to solvent evaporation within the film, with
a second degradation step detected at 220–300 ◦C due to PVA’s deacetylation [62]. This
temperature range has also been reported as the onset of PVA’s side chain degradation. A
well-defined peak arises between 300–412 ◦C, being assigned to the cleavage of side chains
(still present), occurring the higher weight loss of PVA at 368 ◦C (60.16%). Finally, around
412–520 ◦C, the main chain of PVA polymeric backbone decomposes [63,64], until only
carbon char remains (3.20% of residual mass at 700 ◦C). CS/PVA-related curves display the
contribution of both CS and PVA’s main thermal features, corroborating the achievement
of CS/PVA blended films, which occur in three distinguished steps. However, the resultant
thermogram showed earlier thermal-induced degradation than the film composed only of
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PVA. To highlight, the loss of weight of the CS/PVA film started at around 40 ◦C (removal
of moisture and polymer-related solvents), showing that a prominent degradation step
occurs between 215 and 365 ◦C, with the maximum of this decomposition being clearly
perceived at 280 ◦C (at about 50%). It corresponds to CS’s decomposition, together with
the side chain decomposition and deacetylation of PVA. A second small and wider peak
culminates near 412–430 ◦C due to the degradation of the main PVA chain [65], with only
18.48% of the sample remaining after heating up to the threshold of 700 ◦C.
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blended films, and respective controls, from 25 to 700 ◦C, and performed at a heating rate of
10 ◦C/min in a nitrogen atmosphere.

EO inclusion into the CS/PVA matrix, as evident from the TG thermograms, led to a
decrease in weight loss compared to the unloaded CS/PVA films, indicating an enhanced
thermal stability, which was probably attributed to the existence of a stronger film network
favored by the interaction between polymers and EOs [66]. EO-supplemented films ex-
hibited the same degradation profile as CS/PVA films, along with signs of an effective
blending between the polymers and EOs (the presence of oils between the polymer chains
and/or even linked to their chain’s groups). CS/PVA/EO films registered an earlier onset
of weight loss, but simultaneously collected higher residual matter in the end, in compari-
son to the control. With increasing amounts of CLO in the blended structures, 23.30% and
25.08% weight remained with 1% or 10% CLO; while with matrices containing CO, 18.50%
and 29.01% weight also endured after afflicted thermal variations. This phenomenon could
be ascribed to the increased plasticizing effect of EOs with a rising temperature, which
enhances the free volume of the chains, promotes molecular mobility, and consequently
hinders the intermolecular polymer interactions and polymer–polymer interactions in the
overall film network [67,68]. Films incorporated with CLO showed lower weight loss com-
pared to those containing CO, possibly revealing stronger interactions between CS, PVA,
and CLO, as also observed by Xu et al. [39]. Notwithstanding, decreasing CLO amount
resulted in slightly greater weight loss compared to the 10% CLO condition, a fact that
highlights the strongest interactions established between this EO and the polymers [69].
Both EOs carry a large contribution of eugenol in their composition, yet they contain a
different global signature. CLO additionally contains 3.92% of β-caryophyllene and 1.91%
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of linalool (among other molecules present in smaller quantities), whereas CO has also
8.83% of eugenyl acetate and 8.29% of β-caryophyllene (together with numerous other
trace elements); differences that certainly played an important role in the physico-chemical
properties of the built films, namely its thermal-induced features. Oppositely, 10% CO
loaded CS/PVA films registered a more substantial mass loss, relative to 1% CO, suggesting
a weaker interaction of this EO with the polymer chains than CLO, possibly indicating
as well that the addition of higher concentrations of CO increased the discontinuity of
the film matrix having lower resistance to heat, with destructive consequences over the
homeostasis of the ternary system [70].

The DSC curves of CS, PVA, CS/PVA, CLO-, and CO-loaded CS/PVA films are shown
in Figure 6. The CS thermogram was predominantly exothermic, being an indicator of the
polymer degradation process, at around 288 ◦C, supporting TGA results. In what concerns
the PVA alone, the thermogram exhibited its glass transition temperature (Tg), near 43 ◦C,
and a well-defined peak at 230 ◦C corresponding to the fusion of the most crystalline
part of the polymer. This peak revealed that the crystalline structure of the polymer was
maintained after film formation. In fact, all DSC curves show the permanence of the
semicrystalline character of PVA, even after the production of all bioactive films. Large
peaks detected at 268, 343, and 444 ◦C are in accordance with the results obtained from the
TGA analysis, and are related to its deacetylation and decomposition of the side chains
and the main chain, respectively. The control CS/PVA film thermogram exhibited a single
Tg and the other thermal events (melting (Tm) and degradation temperature (Td)) were
typical of both polymers, CS and PVA. While Tg of polymer blends is used in studying the
miscibility and interaction between polymers, the Tm is mostly used in investigating the
crystallization of polymers [71]. A single Tg of CS/PVA film appears at 56 ◦C, confirming
the good miscibility between the polymers [72]. From the literature, to prove a good
miscibility only an intermediate Tg of the applied polymers should be identified [73], even
though CS’s Tg is still a subject of argument, owing to the strong intermolecular hydrogen-
bonding occurring between the polysaccharide macromolecular chains [74]. The Tg of the
unloaded films was higher than the one resulting from the PVA film (43 ◦C), uncovering a
higher limitation of chain mobility because of connections established between polymeric
chains [75]. The Tm relative of CS/PVA matrices was set at 225 ◦C, a slightly lower
temperature compared to the PVA film (at 232 ◦C), demonstrating that the entanglement
between both polymer chains alters the polymeric structure, decreasing its crystallinity
(as observed in PVA film) [76]. Then, the deacetylation of PVA is noticed at 265 ◦C, and at
300 ◦C an endothermic degradation process becomes evident, being mostly due to CS’s
decomposition and PVA side chains decomposition. At around 430 ◦C, there is a slight
change in the thermogram of CS/PVA film, showing the decomposition of the main PVA
chain. All these events were also seen on the TGA data, being clearly displayed in all
EO-loaded film thermograms. It reveals that a homogeneous blend was also achieved in
the presence of both EOs.

No changes in Tg were found in CLO-enriched films, remaining steady at 56 ◦C, which
may indicate along with the results of TGA that CLO has a good affinity with the CS and
PVA’s chains, not impairing the amorphous phase of the film. However, its Tm values and
enthalpies registered a decrease as more EO was incorporated on the account of a decrease
in structure crystallinity [70]. At 10% CLO loaded film, a smaller energy (25.39 J/g) was
required to degrade the matrix crystalline regions, comparatively to 1% CLO loaded film
(35.59 J/g) and unloaded films (34.59 J/g). These results undoubtedly emphasize that the
presence of EO between the chains, particularly with larger incorporated quantities, left
some free space between the chains. The peak relative to the degradation in the highest EO
concentration also required greater energy for the degradation to take place, confirming
that EO incorporation was efficient, even at 10% CLO. The different events within the CO’s
film thermogram also demonstrated efficient EO incorporation within the CS/PVA matrix.
The Tg from 1% CO suffered a slight reduction, accentuating the presence of CO between
the amorphous polymeric phase, thereby enabling easier chain mobility. The Tm and
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enthalpy values associated increased (227 ◦C and 40.74 J/g, respectively) comparatively
to control CS/PVA film, due to the oil presence between the polymeric chains, but not
connecting to them as effectively as CLO. Regardless, 10% CO loaded film thermogram
corroborates TGA findings, since there was no detection of Tg. Also, a prominent difference
was registered in the temperature range corresponding to the polymeric Tm, which was
detected at 245 ◦C, but within a much less evident peak and requiring much lower energy
to occur (13.34 J/g). These camouflaged events denote that this EO does not have as
good an affinity for the polymeric chains as CLO, being present in the film in a more
disorganized way.

3.4. EO-Loaded Amount

The successful loading of CLO and CO into CS/PVA films during film processing was
confirmed by UV-visible spectroscopy, with the absorption spectra being recorded over
wavelengths ranging from 200 to 800 nm, thereby including all relevant phenomena of light
absorption/scattering from the samples. The wavenumbers 282 and 281 nm, respectively
for CLO and CO (Figure 7b, left), constituted the most distinguishable wavenumbers
carrying a peak of light absorbance characteristic of the EOs. Coincidently, eugenol absorbs
at 280 nm due to its condensed benzene ring system [19,54,55]. Since eugenol is the main
contributor to both CLO and CO’s composition, this was taken as a reference for results
interpretation. Absorbance scans of increasing EO solution concentrations allowed to verify
that (Figure 7b, left), additionally enabling the determination of EO-specific calibration
curves that were then used to calculate EO concentration within the films.
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Figure 7. EO loaded amount within CS/PVA-based blended films. (a) UV-visible spectroscopy curves of CS/PVA-based
blended films, highlighting wavelength of 290 nm showcasing entrapped or bound EO [53]; (b) characteristic curves of
free CLO and CO at multiple concentration values, highlighting the wavelength of 280 nm as EO representative [19,54,55]
(left), along with a table (right) comprising representative data on EO mass (µg) within the loaded film samples of 6 mm
in diameter, obtained via an indirect route by analyzing EO presence within film coagulation baths and dH2O washing
volumes, all sequentially surrounding each film during their processing. Results included data from representative films.
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EO-loaded films at 10% displayed a maximum absorption peak at ~290 nm, as ex-
pected (Figure 7a). CS’s monomers are known to absorb light in this region of the spec-
tra [77]. PVA films, on the other hand, are transparent in the UV–visible region, which
results in a very low absorption level [78], with both CS and EO addition contributing to an
increase in film opacity and light scattering phenomena [53]. The shift from the ~280 nm ab-
sorption peak of the free oils to the ~290 nm of loaded films is, therefore, another indicator
of the strong binding denoted between film components and the entrapment/distribution
of the oil molecules within the polymeric matrix. Visualization of EO contribution within
1% loaded films was not possible. As observed from Figure 7b (left), as the concentration
of the oil decreases below 10 µg/mL, recognition of the peak becomes more challenging.
Thus, considering that via the indirect route only 0.050 µg/mL of CLO and 0.038 µg/mL of
CO were found (Figure 7b, right), this would be expected due to equipment sensitivity. Still,
data from FTIR and TGA/DSC analyses recognized the existence of the EOs in the films.
The loading amount of CLO and CO is very similar, though CLO appeared to have incorpo-
rated slightly more EO. This strengthens the observations made previously in which it was
stated the attraction of the CLO towards the polymers and the more resilient interactions
generated. Here, we confirm that the improved interactions between CLO and CS/PVA are
not an effect of its increased presence in the film but rather an enhanced affinity. It would
be expected that the loading amount achieved from 10% EOs solutions to be 10 times
superior to that attained with 1% solutions. Yet, that is not the case. Data reports an early
saturation of the films with 0.9% of the initial loading solution. Binding via the hydroxyl
groups of the polymer was promoted, facilitating the retention of EO-related molecules.
However, due to the porous nature of the films, which increases water infiltration, and the
polymers’ large affinity towards these molecules (Figure 3), it is also likely that competition
for these groups takes place, with many −OH radicals being blocked by water [17,57].

3.5. Antimicrobial Action
3.5.1. Agar Diffusion Assay

The antibacterial activity of unloaded and EO-loaded CS/PVA films was assessed
against the Gram-positive bacteria S. aureus and the Gram-negative bacteria P. aeruginosa
via the agar diffusion test. Data from Figure 8 shows the observed ZoI in the presence
of the film, before and after its removal from the agar plate. ZoI measurement was not
performed due to its feeble presence; however, this is not a statement of low AM activity.
As such, data from Figure 8 can only be considered as indicative of the AM potential of
the CLO and CO-loaded CS/PVA films. AM activity is materialized via multiple modes
of action, either acting collectively and independently [79,80]. CS film is AM by direct
contact with the bacteria, a fact that is evident by observing the corresponding images on
the right side of both (a) and (b) sections, particularly with S. aureus. Weak image contrast
in P. aeruginosa data hinders bacteria visualization. Solid CS can display AM activity over
a broader pH range than its soluble and diffusible form. As pH is above pKa (typically
near 6.5, though tunable with DA and Mw variations [57]) in standard bacterial cultures
such as these, the inhibitory effect is exerted by hydrophobic interactions and chelating
capacity of divalent metal ions in neutral conditions rather than electrostatic interactions
between its protonated amines and anionic bacterial outer layer structures [80]. PVA film’s
antibacterial action, surprisingly, was revealed in the P. aeruginosa microenvironment by a
thick bacteriostatic ring outside the film’s periphery, even though PVA is not traditionally
linked to an antibacterial effect. Regardless, the antibacterial action of the unloaded blended
films, containing 30% CS and 70% PVA, remained unattractive.

With EO-loaded CS/PVA films, a higher bioactivity was expected, since multiple
antimicrobial compounds co-exist within EO’s structure, namely low molecular weight
phenols, terpenes, and aldoketones [28]. In fact, a discrete improvement of their efficacy
was detected, particularly with S. aureus, exhibiting a thin but visible clean bactericidal ring
followed by an also thin but intense spiked ring (bi-phasic action) that typically contain
interaction precipitates and repelled bacteria [81]. In the Gram-negative specie, a thicker
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bacteriostatic ring became exposed, ergo, some activity against these microorganisms is
also observed through this characterization method. The superior activity against S. aureus
than P. aeruginosa can be explained by the differences between Gram-positive and Gram-
negative bacteria at the level of the architecture and molecular components of their cell
wall. In the case of Gram-negative, two distinct lipid membranes, the cytoplasmic and the
outer membrane, exist, thus forming a forceful inward/outward barrier. The absence of
the latter in the Gram-positive peripheral structure, containing only a bilayer membrane
(cytoplasmic), allows a higher facility for an antibacterial agent’s perfusion through its
cellular wall [20,82]. Still, no clear differences can be perceived between CLO and CO,
neither with higher nor lower EO amounts. The EOs are mainly within the films and not
on their surface, as such it is conceivable their hydrophobic nature to cause a poor EO
diffusion through the film network under static conditions. Further, the agar tortuosity
may also hinder the EO diffusion, which can be as well influenced by the oil density
(Table 1). CO is slightly denser than CLO; yet, in both cases, ZoI were very difficult to
identify. Even if tenuous, 10% CLO and 1% CO addition to the blends appears to have
induced a stronger AM effect. Eugenol is an amphipathic hydroxyphenyl propene highly
bactericidal towards S. aureus and P. aeruginosa [20,29], known to interfere with the cells
intracellular functions or ions transport, preventing important metabolites and connection
pathways from taking place and, ultimately, leading to the cell death [19]. However, the
aforementioned differences in CLO and CO’s composition most certainly played as well an
important role in the biological properties of the built films, despite all of these molecules
being considered AM [79,82–85].
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Figure 8. ZoI of unloaded and EO-loaded CS/PVA blended films while cultured with (a) S. aureus and
(b) P. aeruginosa bacteria, up to 24 h. Images were collected without regard for size proportionality,
being only used to reveal the halos formed. For each bacterium, left images depict films at their
original location at the beginning of the assay, along with the bacteria that grew over the incubation
period; while on the right, cultured films were carefully removed from the agar so that contact-kill
could be visualized.

3.5.2. Time–Kill Analysis

Quantitative data regarding growth inhibition of S. aureus and P. aeruginosa while
incubated with each one of the unloaded and EO-loaded films under dynamic conditions
was evaluated by the time–kill kinetics. Here, the number of remaining viable colonies
at specific incubation periods (1, 2, 6, and 24 h) and the respective log reduction was
determined for unloaded and EO-loaded CS/PVA films (Figures 9 and 10). Films created
with 30% CS, 70% PVA, and 1/10% CLO/CO were capable of invoking a higher AM
activity than the control without any agents, as expected. The suspicions around EO’s
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benefits, evoked by the agar diffusion assay, have been amplified with this test. Its inherent
dynamic conditions may have promoted EO’s mobility throughout the polymeric network
and facilitated bacterial encounters for a more efficient antimicrobial action. Additionally,
for both microorganisms, the bactericidal action of 100% CS films was observed from the
first hour of contact (** p < 0.005), being particularly devastating for P. aeruginosa with
total inhibition right from the first chosen time point of 1 h. Despite the complexity of the
Gram-negative bacteria cell wall, CS was extremely effective. Similar observations were
made by Tin et al. when testing different CS and CS-derivatives against commercial and
clinical strains of P. aeruginosa [86]. Predictably, after blending with PVA, the overall activity
decreased significantly. CS/PVA films comprise the same total mass, but only 30% of CS.
Thus, many of the cationic groups of CS, which are responsible for the strong interaction
with the electronegative surface of the bacteria and, consequently, its AM activity, became
entrapped within the matrix being less available for cell binding.
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Figure 9. Time–kill curves of (a) unloaded and EO-loaded films and (c) EOs at film loaded concentration, against S. aureus
bacteria, up to 24 h of culture. Positive controls for S. aureus (growth without agent or film) were also conducted (grey
line), reaching a maximum value of ≈ 8.9 × 106 CFUs/mL after a 24-h culture (data not shown in graphic). S. aureus
reduction (calculated as log reduction) of (b) the films and (d) EOs in relation to control samples. The elimination of 100% of
bacteria was considered as log 6. Results are represented as the mean ± SD (n = 3). Statistically significant differences can
be highlighted, * p < 0.05, ** p < 0.005, *** p < 0.001, and **** p < 0.0001, for each sample at each time point in comparison
to (c) each free EO or to the (d) loaded CS/PVA films, using the Kruskal-Wallis test, followed by the Dunn’s multiple
comparisons test. The evolution over time of each EO and EO-loaded film’s AM action was also examined and shown in a
table format for clarity.
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CS and PVA have a good capacity to form intermolecular hydrogen bonds due to a 
large number of inherent hydroxyl groups within their structures. CS/PVA blended films 
were successfully produced, with CS bestowing AM properties to the construct, and PVA 
adding flexibility and hydrophilic capacities. Even though both EOs were successfully 
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that appeared to be also bound to the polymer chain in a more effective way. In 1 h, films 
built solely of CS showed antibacterial signs against S. aureus and were totally effective in 
eliminating P. aeruginosa from the culture vessels. However, 100% CS films lacked me-

Figure 10. Time–kill curves of (a) unloaded and EO-loaded films and (c) EOs at film loaded concentration, against
P. aeruginosa bacteria, up to 24 h of culture. Positive controls for P. aeruginosa (growth without agent or film) were also
conducted (grey line), reaching a maximum value of ≈4.3 × 106 CFUs/mL, after a 24 h culture (data not shown in graphic). P.
aeruginosa reduction (calculated as log reduction) of (b) the films and (d) EOs in relation to control samples. The elimination
of 100% of bacteria was considered as log 6. Results are represented as the mean ± SD (n = 3). Statistically significant
differences can be highlighted, * p < 0.05, ** p < 0.005, *** p < 0.001, and **** p < 0.0001, for each sample at each time point in
comparison to (c) each free EO or to the (d) loaded CS/PVA films, using the Kruskal-Wallis test, followed by the Dunn’s
multiple comparisons test. The evolution over time of each EO and EO-loaded film’s AM action was also examined and
shown in a table format for clarity.

In the case of EOs, their action begins after 2 h of contact with each of the bacterium. In
S. aureus-enriched cultures, films impregnated with CLO at 10 wt% were the most effective
from the group. CS/PVA/CLO 10% induced a greater log reduction than CS/PVA matrices,
following a 2 h (**** p < 0.0001), 6 h (**** p < 0.0001) and 24 h (** p < 0.005) incubation.
Its activity over time (Figure 8b) clearly intensified at 6 h (*** p < 0.001) in relation to the
first time point. The CLO at 1 wt% also exhibited a promising antibacterial action at 2 h
(* p < 0.05) though blurred with increased incubation time. CO-supplemented films showed
a similar profile, though slightly weakened and inconsistent. Still, statistically significant
differences were determined at the time points of 2 h (*** p < 0.001) and 6 h (*** p < 0.001).
With these films, an intensified action was evident at 6 h (** p < 0.005) but even more



Pharmaceutics 2021, 13, 195 18 of 22

following the 24 h (**** p < 0.0001). Importantly, equivalent experiments with only EOs as
bioactive agents (Figure 8b) and added to the cultures, with EO concentration as estimated
through the results depicted in Figure 7b (concentration of EO within post-processed
films), followed the same trend as aforementioned for the films, confirming the results
obtained. The main observed difference was that 10 wt% CLO started its activity within
1 h (**** p < 0.0001 in respect with 1 wt% CLO) of contact with the established bacterial
settings, with 1 wt% EO causing a null log reduction effect. On the other hand, while
facing P. aeruginosa, EO-loaded films also tend to reduce the number of viable bacteria
more than films devoid of these biomolecules, with CO appearing to have increased
AM potential. Nevertheless, no statistically significant differences were seen apart from
increased antibacterial activity of CS/PVA/CO 10% at the time point of 2 h. All the same,
cultures with the EOs alone corroborated, again, results obtained with EO-containing films.

4. Conclusions

Films made up of CS and PVA incorporated with CLO and CO are here proposed for
the treatment of DFUs, a microenvironment rich in S. aureus and P. aeruginosa bacteria. The
incorporation of these two EOs in the CS/PVA film has the potential to increase the AM
activity conferred by the CS, since the combination with CLO and CO increased the films’
overall antibacterial effects against the two tested strains.

CS and PVA have a good capacity to form intermolecular hydrogen bonds due to a
large number of inherent hydroxyl groups within their structures. CS/PVA blended films
were successfully produced, with CS bestowing AM properties to the construct, and PVA
adding flexibility and hydrophilic capacities. Even though both EOs were successfully
encircled by the polymeric matrix, CLO incorporated 31% more EO than CO, an amount
that appeared to be also bound to the polymer chain in a more effective way. In 1 h, films
built solely of CS showed antibacterial signs against S. aureus and were totally effective
in eliminating P. aeruginosa from the culture vessels. However, 100% CS films lacked
mechanical properties enabling an adequate handling and applicability. CS/PVA films
supplemented with CLO or CO were mechanically fit, showing efficient bactericidal effects
following 2 h of direct contact within the infected microenvironments, being significantly
more efficient than unloaded films.

Future work will be directed towards a balance between AM action of CS and its
mechanical hindrance after processing, together with the combination with CLO or CO for
an intensified antimicrobial profile against both bacteria.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-4
923/13/2/195/s1, Figure S1: Macroscopic view of CS/PVA-based blended films. Representative
photographs of sliced rectangles (from the periphery to its centre) with 6 × 3 cm2, used for UV-
visible spectroscopy measurements, Figure S2: FTIR-ATR spectra of the EO-unloaded and loaded
CS/PVA-based blended films (4000-400 cm−1), in a (a) hydrated (as-prepared), and (b) dried state
(after drying for 7 days at 37 ◦C).
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