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Abstract: The purpose of this work is to simulate the powder compaction of pharmaceutical mate-
rials at the microscopic scale in order to better understand the interplay of mechanical forces be-
tween particles, and to predict their compression profiles by controlling the microstructure. For this 
task, the new framework of multi-contact discrete element method (MC-DEM) was applied. In con-
trast to the conventional discrete element method (DEM), MC-DEM interactions between multiple 
contacts on the same particle are now explicitly taken into account. A new adhesive elastic-plastic 
multi-contact model invoking neighboring contact interaction was introduced and implemented. 
The uniaxial compaction of two microcrystalline cellulose grades (Avicel® PH 200 (FMC BioPoly-
mer, Philadelphia, PA, USA) and Pharmacel® 102 (DFE Pharma, Nörten-Hardenberg, Germany) 
subjected to high confining conditions was studied. The objectives of these simulations were: (1) to 
investigate the micromechanical behavior; (2) to predict the macroscopic behavior; and (3) to de-
velop a methodology for the calibration of the model parameters needed for the MC-DEM simula-
tions. A two-stage calibration strategy was followed: first, the model parameters were directly meas-
ured at the micro-scale (particle level) and second, a meso-scale calibration was established between 
MC-DEM parameters and compression profiles of the pharmaceutical powders. The new MC-DEM 
framework could capture the main compressibility characteristics of pharmaceutical materials and 
could successfully provide predictions on compression profiles at high relative densities. 
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1. Introduction 
The ability to predict the bulk behavior of granular materials is of great importance 

for many industrial applications (i.e., tableting, metal forming) when deformation has to 
be handled in a controlled manner. Pharmaceutical powders are a branch of granular ma-
terials and while undergoing high loaded compression under confined conditions, allow 
the formation of compact granules, especially tablets, a process known as compaction or 
tableting. Pharmaceutical powder compaction is a crucial production process for pharma-
ceutical manufacturing due to the prevalence of tablets as solid dosage forms. Under-
standing the compaction behavior is of practical importance to improve the efficiency of 
product development and the manufacturing performance [1,2]. 

Powder compaction is frequently modeled using either continuous or discrete nu-
merical techniques, or a combination of both. On the one hand, the finite element method 
(FEM) is a continuum approach that allows for the representation of deformation at a 
larger scale when combined with a suitable constitutive law, such as the Drucker–Prager 
cap (DPC) [3] or modified DPC [4], but does not reveal the physics of the system at the 
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particle level. For this reason, one way to model the mechanical response of discrete ele-
ments at a particle level is the application of the multiple particle finite element method 
(MPFEM) [5–7] where each individual particle is being meshed with finite elements. An-
other way is to combine FEM and discrete element method (DEM), referred as meshed 
discrete element method (MDEM) [8,9], an approach that uses the contact detection algo-
rithm from DEM and applies it in the FEM context. The capability to consider particles as 
deformable bodies is the key benefit of these approaches. The critical problem is their 
computational complexity, which prevents them from being used in large-scale industrial 
operations. 

On the contrary, granular materials are mathematically described as a collection of 
particles by using the soft discrete element method (DEM) [10], and the bulk behavior of 
the granular materials is determined based on the interactions between pairs of particles. 
Newton’s second law of motion is used to define the trajectories of each particle, and par-
ticle deformation is proportional to the overlap between particles that are in contact. When 
an overlap is detected, an appropriate contact model is called, which associates the over-
lap with the force experienced at the contact point. 

The DEM is the only currently available technique that can provide insight at the 
particle level and has been used in a wide variety of applications, such as ceramics [11], 
pharmaceutical, and food industries [12,13]. Given that the DEM is an excellent tool for 
studying these applications, modeling of confined powder compression with DEM re-
mains a challenge. Based on Hertz’s theory, particles are considered to be rigid bodies to 
which deformation occurs locally and concentrated at the contact points. However, the 
basic assumptions of Hertz’s theory (classical DEM) is limited on capturing small defor-
mations [14] and is rendered invalid for large strains, which typically occur under high 
relative densities and high loads. As a result, Hertz’s contact theory must be extended or 
modified to account for the fact that a larger (flattening) contact area results in a higher 
contact stiffness. To address this issue, many existing classical DEM contact models have 
added contact stiffness depending on plastic deformation and flattening in the contact 
areas. Ganrer et al. [15] proposed another adhesive elastic-plastic contact model to simu-
late powder compaction. The authors calibrated the contact stiffness between-particles (p-
p) and particles-walls (p-w) using simulations of mono-sized particles, to reach high rel-
ative densities, at the macro-scale, and to predict the compression profiles. In a similar 
way, Y. Gao et al. [16]. applied the Luding’s elastioplastic [17] contact model to model 
powder compaction. Coarse-grained particles were used in this method and contact stiff-
ness between particles (and p-w) was calibrated for one material under uni-axial compac-
tion and the calibrated values were then used to predict the compression profiles of mix-
tures of additional materials. 

In fact, many of the existing classical DEM contact models regard each contact of the 
same particle as independent of neighboring contacts, which is reasonable for loose pow-
ders but unrealistic for high relative densities. Three important characteristics of the me-
chanical behavior of elastic-plastic contacts are induced by a packing of simultaneously 
deforming particles undergoing uni-axial compaction (Figure 1): (a) the die filling and 
rearranging of the particles in the first phase; (b) the deformation is initially elastic, at this 
phase the contact areas between the particles are small with each contact independent of 
its neighbors; (c) the material yields entering the plastic zone and, because the pores are 
now almost closed the spatial confinement creates high contact pressures that allows for 
an additional degree of resistance that becomes more significant with time. Fischmeister 
and Arzt [18] refer to this as “geometrical hardening”. At this last phase, the compact is 
pressed to (nearly) full density [19], and mechanically behaves like a porous solid. The 
development of contact pressure originates from changes in the crystal lattices or inter-
molecular interactions. It has been suggested that contact dependency arises at relative 
densities of 0.7 and higher [14,20,21]. In practice, a relative density higher than 0.8 is re-
quired to produce commercial pharmaceutical tablets with adequate mechanical strength. 
As a result, multiple-contact DEM contact models are necessary. 
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Figure 1. The three phases of a packing of simultaneously deforming particles. 

In this regard, researchers have made efforts on the formulation of the multi-contact 
discrete element method (MC-DEM) as an attempt to implicitly introduce particles’ de-
formability. One way is to enhance Hertz’s elastic contact theory and rewrite its classical 
equations such that not only local particle deformation but also the global deformation is 
taken into account. The global deformation is defined as the result of multiple contacts 
imposed on a single particle by neighboring particles. Brodu et al. [22] suggested a tech-
nique wherein the strain field acting on a single particle is coupled with the classical 
Hertz’s equation to account for the global deformation. Brodu et al. [22], validated their 
novel model by predicting the compression profiles of a packing of hydrogel balls com-
pressed at low stresses. As an alternative, the stress field might be used in the equations. 
As a result, a multi-contact model that takes contact dependency into account was pro-
posed by Frenning [23]. The particle global deformation was related to the isotropic stress 
tensor in this case. Giannis et al. [24] introduced a stress-based multi-contact model that 
takes anisotropic particle deformation into account and was validated for relevant mate-
rials with in the elastic regime. Attempts have also been made to explicitly introduce de-
formable particles in the framework of the DEM in order to address the basic assumptions 
of Hertz’s theory. A sophisticated model was presented by Rojek et al. [25] proposed the 
approach of the so-called deformable discrete element method (DDEM). This method is 
conceptually similar to the method provided by Brodu et al. [22]. The main difference is 
that particle deformability is introduced explicitly with the DDEM. The per particle stress 
tensor generates the isotropic particle deformation. As a result, the new deformable shape 
induces the formation of new contact points (not accessible with classical DEM). The main 
issues of this method are that (a) only isotropic particle deformation is considered, and (b) 
the high computing cost limits its use to 2D cases [25] or 3-D [26] cases with a small num-
ber of particles. 

This work is divided into two parts: (a) using an extension of Giannis et al. [24] multi-
contact model, to consider plastic deformation of pharmaceutical particles, and (b) to com-
pare the results of the experiments with model calculations based on the MC-DEM frame-
work. 

The article’s outline is as follows: Section 2.1 contains the basic equations of the clas-
sical formulation of the DEM; multi-contact modeling is being discussed in Section 2.2 of 
this document; the materials used in this study are given in Section 3 of this article; Section 
4 presents the calibration strategy and numerical results; and the last section, concludes 
with some final thoughts. 

2. DEM’s Theoretical Background 
Particle deformations are reproduced in soft-particle DEM by overlaps between in-

teracting particles. When an overlap is detected, a contact law is used to compute the con-
tact forces (force–displacement) between two particles. The underlying assumption is that 
particle contacts are independent of one another, and therefore contact forces are resolved 
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locally. Newton’s equations of motion are used in this method to determine the connec-
tion between particle motion and forces acting on each particle. The equations of a parti-
cle’s translational and rotational motion are: 𝑚௜𝒂ሷ ௜ =  ෍(𝑭௡௜௝ + 𝑭௧௜௝)௝ + 𝑚௜𝒈   𝒂𝒏𝒅  𝐼௜𝝎ሶ ௜ =  𝝉௜௝ (1)

where 𝑚௜, 𝒂ሷ ௜,  𝐼௜ and 𝝎ሶ ௜ are the mass, acceleration, moment of inertia and angular ve-
locity for particle 𝑖, respectively; 𝑭௡௜௝, 𝑭௧௜௝, 𝝉௜௝ are the normal force, tangential force, and 
torque acting on particles i and j at contact points, respectively; 𝒈 is the acceleration due 
to gravity. 

Different contact models can be used to express force–displacement laws at contact 
points. This study does not go into great depth on the various contact models and their 
related equations. Rojek [27] and Thakur [28] summarize the many contact models that 
are used in discrete particle simulations. In their works, O’Sullivan [29] and Thornton [30] 
go into deep details on contact models. 

2.1. Classical Hertz–Mindlin Contact Model 
The linear spring-dashpot model [31], in which the spring stiffness is considered to 

be constant, is the simplest contact configuration. To enhance the linear contact model, the 
Hertz theory [32] (classical) is used to calculate the force-displacement relation for con-
tacting particles (e.g., nonlinear spring-dashpot model). In this case, the normal stiffness 
varies depending on the degree of overlap. The Hertz–Mindlin [33–36] contact model is 
another contact model for representing the force-displacement relation. This nonlinear 
model combines accuracy and simplicity of the Hertz theory in the normal direction with 
the Mindlin model in the tangential direction. This model includes a contact force as well 
as a viscous contact damping force at contact points. In the normal (n) and tangential (t) 
axes, these forces were calculated using elastic springs and dashpots (Figure 2). The nor-
mal repulsive contact force is: 𝑭௡ = 𝑘௡𝛿௡ଷ/ଶ + 𝛾௡ 𝛿ሶ௡ (2)

where 𝑘௡ = ସଷ 𝐸∗√𝑅∗  is the normal stiffness coefficient, with 𝑅∗ = ோ೔ோೕோ೔ାோೕ the effective ra-

dius and 𝐸∗ = ଵିఔ೔మா೔ + ଵିఔೕమாೕ  is the effective Young’s modulus. In this expression, 𝜈 and 𝐺 

represent the particles Poisson’s ratio and shear modulus, respectively. The normal over-
lap is 𝛿௡, 𝛿ሶ௡ is the relative velocity in normal direction of interacting particles and 𝛾௡ the 
viscoelastic damping constant for normal contact viscosity. The tangential force is [24]: 𝑭௧ = 𝑘௧𝛿௧ଷ/ଶ + 𝛾௧ 𝛿ሶ௧ (3)

where 𝑘௧ = 8𝐺∗√𝑅∗ is the tangential stiffness coefficient and 𝐺∗ = ଶିఔ೔ீ೔ + ଶିఔೕீೕ  the effective 

shear modulus. The tangential overlap is 𝛿௧, 𝛿ሶ௧ is the relative velocity in tangential direc-
tion of interacting particles and 𝛾௧ the viscoelastic damping constant for tangential con-
tact viscosity. 

The tangential overlap, 𝛿௧, between particles obtained by integrating surface relative 
tangential velocities during elastic deformation of the contact is given as [37,38]: 𝛿௧ =  න 𝑣௧𝑑𝑡 →௧ା௱௧

௧  𝛿௧  𝑣௧𝑑𝑡 (4)

where 𝑣௧ is the velocity component tangential to the contact surface and 𝛥𝑡 is the time-
step. 

The tangential and normal forces are connected by Coulomb’s law, 𝑭௧ ≤ 𝜇𝑭௡, in the 
event of sliding, there is dynamic friction. 𝑭௧ = 𝜇𝑭௡. The dynamic and static friction coef-
ficients are assumed to be equal in this case., μ = 𝜇ௗ = 𝜇௦. In order to allow for a restoring 
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force, a static situation requires the use of an elastic spring, i.e., a non-zero remaining tan-
gential force in static equilibrium due to activated Coulomb friction. By applying a torque 
to the contacting surfaces, rolling friction can be controlled. The rolling friction constant 
directional torque (CDT), 𝝉௜௝, used for this study, is given by [39]: 𝝉௜௝ = − 𝜔௥௘௟|𝜔௥௘௟|𝜇௥𝑅௥𝑭௡ (5)

 
Figure 2. Contact force model illustrating particle interaction with normal and tangential forces. 

The particles in these models are assumed to be spherical and do not deform during 
simulation. In a strict sense, it is assumed that particles are undergoing some kind of 
pseudo deformation, and this model is known as the truncated Hertz–Mindlin model [40]. 
Moreover, these models include binary interactions between two particles, which implies 
that during contacts, particles are in touch through a single point. 

2.2. Multi-Contact Adhesive Elastic-Plastic Model 
The linear or non-linear elasticity theory, on the other hand, is only applicable to 

small deformations. However, when it comes to powder compaction, plasticity prevails 
(flattening in contact areas), necessitating the modeling of elastic-plastic spheres in con-
tact. As a result, Hertz theory must be extended to cases in which particles are deformed 
plastically. Persson and Frenning [40], for instance, presented an extension of classical 
Hertz theory to account for elastic-plastic contacts. In this example, a limiting contact pres-
sure was added, whereas adhesion was not added, such that plastic deformation begins 
after the contact region’s maximum pressure is achieved. 

We propose a novel adhesive elastic-plastic multi-contact model that combines con-
cepts from the Luding [17] and Edinburgh [28] adhesive elastic-plastic (hysteretic) contact 
models and the multi-contact model proposed by Giannis et al. [24], the pseudo-code of 
the algorithm utilized is briefly described in the Appendix A. For the first time, this model 
is being used in this study to investigate the behavior of elastic-plastic medicinal materi-
als. When two particles collide with one another elastic and plastic deformation (linear 
and non-linear force-displacement curve) occur. A nonlinear contact model is proposed 
that takes into consideration both elastic-plastic contact deformation and adhesion. The 
adhesive plastic force is: 

𝐹௡ = ൞ 𝐹଴ + 𝑘ଵ𝛿௡ଷ/ଶ          𝑖𝑓  𝑘ଶ൫𝛿௡ଷ/ଶ − 𝛿଴ଷ/ଶ൯ ≥ 𝑘ଵ𝛿௡ଷ/ଶ𝐹଴ + 𝑘ଶ∗൫𝛿௡ଷ/ଶ − 𝛿଴ଷ/ଶ൯  𝑖𝑓  𝑘ଵ𝛿௡ଷ/ଶ ൐ 𝑘ଶ∗൫𝛿௡ଷ/ଶ − 𝛿଴ଷ/ଶ൯ ൐ −𝑘௖𝛿௡ଷ/ଶ𝐹଴ − 𝑘௖𝛿௡ଷ/ଶ          𝑖𝑓  −𝑘௖𝛿௡ଷ/ଶ ≥ 𝑘ଶ∗൫𝛿௡ଷ/ଶ − 𝛿଴ଷ/ଶ൯  (6)
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Figure 3 illustrates the force-displacement curve. The term “displacement” refers to 
the overlap of particles. The loading, unloading, re-loading, and adhesive branches e is 
defined by the loading branch stiffness 𝑘ଵ, the loading-unloading branch stiffness 𝑘ଶ, the 
adhesion branch stiffness 𝑘௖, the plastic overlap (deformation) 𝛿଴ and the constant pull-
off force 𝐹଴. During initial loading the contact model follows the virgin loading path 𝑘ଵ, 
until the maximum overlap is reached at 𝛿௠௔௫. The maximum overlap 𝛿௠௔௫ is a contact-
specific history-dependent parameter that is updated and saved. During unloading the 
contact will alter from virgin loading 𝑘ଵ to unloading/reloading 𝑘ଶ, which depends on 𝛿௠௔௫. At 𝛿௠௔௫, the force is decreasing from its value to zero at overlap 𝛿଴, which resem-
bles the plastic contact deformation (remaining overlap). The plastic overlap is defined as: 

𝛿ఖ = ൬1 − 𝑘ଵ𝑘ଶ൰ଶଷ 𝛿௠௔௫ (7)

for cases where the limit is met, with 𝑘ଵ = 𝑘ଶ results in 𝛿ఖ = 0 (no remaining overlap) 
yields to a special case of non-linear elasticity. Hence, the non-linear elastic Hertz–Mindlin 
contact model is included as a special case. On the other hand, 𝑘ଶ → ∞ captures a per-
fectly plastic contact. Unloading below 𝛿ఖ results in attractive adhesion forces until the 
minimum force is equal:  𝐹௠௜௡ = −𝑘௖𝛿௠௜௡ଷ/ଶ  (8)

And the overlap 𝛿௠௜௡ is: 

𝛿௠௜௡ = ൬𝑘ଶ  −  𝑘ଵ𝑘ଶ  −  𝑘௖൰ଶଷ 𝛿௠௔௫ (9)

Attractive forces emerge as the unloading process continues. 𝐹௡ = −𝑘௖𝛿௡ଷ/ଶ (10)

In order to account for the fact that a larger contact surface leads to a higher contact 
stiffness, the coefficient 𝑘ଶ is made dependent on the maximum overlap 𝛿௠௔௫ (history 
dependent parameter): 

𝑘ଶ∗(𝛿௠௔௫) = ቐ𝑘ଶ                  𝑖𝑓 𝛿௠௔௫ ≥ 𝛿௠௔௫∗𝑘ଵ + (𝑘ଶ − 𝑘ଵ) 𝛿௠௔௫∗𝛿௠௔௫   𝑖𝑓 𝛿௠௔௫ < 𝛿௠௔௫∗     (11)

The behavior of the unloading slope described by Equation (11) is similar to that as-
sumed by Luding [10,17], with the exception that nonlinear behavior is addressed here. 
Likewise, the limit of plastic flow overlap is given:  𝛿௠௔௫∗ =  𝑘ଶ𝑘ଶ − 𝑘ଵ 𝜑௙ 2𝑅௜𝑅௝𝑅௜ + 𝑅௝ (12)

where 𝜑௙ is the dimensionless plasticity depth, defined in relation to the reduced radius. 
The original contact model proposed by Luding can be characterized as a piecewise linear 
hysteretic model [17]. For the virgin loading, the contact normal stiffness 𝑘ଵ and normal 
overlap 𝛿௡ is used to calculate the force. While stiffness 𝑘ଵ is not a physical parameter 
according to Luding’s contact model, in this work it is depending on the Young’s modu-
lus. The new stiffness is 𝑘௡ = ସଷ 𝐸∗√𝑅∗ is identical to the one of Hertz theory (Section 2.1) 
and similar to the one of Edinburgh contact model. Furthermore, in contrast with Luding’s 
and in line with the Edinburgh [28] contact model, a non-linear force-displacement rela-
tion is proposed 𝐹௡ = 𝑘ଵ𝛿௡ଷ/ଶ. By contrast, the unloading stiffness 𝑘ଶ is load dependent as 
in Luding’s model. Additionally, the new contact model was supplied with a non-linear 
adhesion 𝐹௡ = −𝑘௖𝛿௡ଷ/ଶ. 
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Figure 3. A non-linear hysteretic, adhesive force-displacement (𝛿) relation in normal direction. The 
slope 𝑘ଶ∗ of the unloading and reloading branch interpolates between 𝑘ଵ and a maximum stiff-
ness 𝑘ଶ 

Moreover, to address the fundamental assumption of the classical DEM, which treats 
each contact locally as a binary pair interaction, Giannis et al. [24] presented a nonlocal 
model which takes into account the mutual influence between contacts. While this model 
has been verified for cases in the elastic regime, in this study we will extend its applica-
bility to capture plasticity. 

The main idea of the on how to account for multi contact effect is shown in Figure 4. 
Multiple contacts acting on a particle have been taken into account by using the trace of 
the average stress tensor coupled with the Poisson’s ratio (v), the contact area (A) between 
interacting particles, and a material-dependent prefactor (β). More information may be 
found here [24]. The new multi-contact law formulation yields to this equation: 𝑭௡ = 𝑘௡𝛿௡ଷ/ଶ + (𝛽𝜈𝐴௜௝)𝑃௜௝ (13)

The first term in Equation (13) was defined before in Section 2.1 of this article (Equa-
tion (2)). The second term carries the information from neighboring particles operating on 
the particle. In this expression, 𝛽 is a dimensionless empirical prefactor that allows for 
particle geometry changes to be taken into consideration indirectly, 𝜈 is the Poisson’s ra-
tio, and 𝐴௜௝ is the contact are between the interacting particles. The isotropic component 
of the stress is the pressure 𝑃௜௝ = ଵଷ (𝑡𝑟(𝜎௜) + 𝑡𝑟(𝜎௝)), with 𝑡𝑟(𝜎) = (𝜎௫௫ + 𝜎௬௬ + 𝜎௭௭) and 𝜎௜ ,𝜎௝ the stress tensors of particle 𝑖 and 𝑗, respectively. By combining Equations (6) and 
(13), the multi-contact model can be extended from linear to plastic deformation, yielding 
a new equation: 

𝐹௡ = ⎩⎪⎨
⎪⎧ 𝐹଴ + 𝑘ଵ𝛿௡ଷ/ଶ         + (𝛽𝜈𝐴௜௝)𝑃௜௝   𝑖𝑓  𝑘ଶቀ𝛿௡ଷ/ଶ − 𝛿଴ଷ/ଶቁ ≥ 𝑘ଵ𝛿௡ଷ/ଶ𝐹଴ + 𝑘ଶ∗ቀ𝛿௡ଷ/ଶ − 𝛿଴ଷ/ଶቁ + (𝛽𝜈𝐴௜௝)𝑃௜௝   𝑖𝑓  𝑘ଵ𝛿௡ଷ/ଶ ൐  𝑘ଶ∗ቀ𝛿௡ଷ/ଶ − 𝛿଴ଷ/ଶቁ ൐ −𝑘௖𝛿௡ଷ/ଶ𝐹଴ − 𝑘௖𝛿௡ଷ/ଶ         + (𝛽𝜈𝐴௜௝)𝑃௜௝   𝑖𝑓  −𝑘௖𝛿௡ଷ/ଶ ≥ 𝑘ଶ∗ቀ𝛿௡ଷ/ଶ − 𝛿଴ଷ/ଶቁ  (14)

In the next sections, this new equation (Equation (14)) will be investigated and veri-
fied for the modeling cases of uni-axial compaction of pharmaceutical materials. 
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Figure 4. A multi-contact modification of the classical DEM. 

3. Materials and Methods 
3.1. Materials 

Two microcrystalline cellulose grades Avicel® PH 200 (FMC BioPolymer, Philadel-
phia, PA, USA) and Pharmacel® 102 (DFE Pharma, Nörten-Hardenberg, Germany) were 
studied in depth. Henceforth, the powders shall be referred to by the abbreviations MCC-
A and MCC-P. A certain proportion of the MCC particles, particularly the larger particle 
sizes, are rounded agglomerates. Taking this into account, and due to the simplicity of 
this approach in simulation, spherical shapes are used in DEM simulations. The powder 
characteristics particle size distribution (PSD) and true density, are given in Table 1 and 
are available in the literature [41]. 

Table 1. Powder characteristics: PSD and densities [41]. 

Material 𝒙𝟏𝟎(𝑸𝟑) (𝝁𝒎) 𝐱𝟓𝟎(𝑸𝟑) (𝝁𝒎) 𝐱𝟗𝟎(𝑸𝟑) (𝝁𝒎) Span (-) True Density 
(𝒌𝒈𝒎ି𝟑) 

MCC-A 82.9 224.6 379.3 1.32 1541.1 
MCC-P 28.3 86.5 173.8 1.68 1533.7 

3.2. Experimental Methods 
Compaction experiments were performed applying a Styl’One evolution compaction 

simulator (CS; Medel’Pharm, Beynost, France). This equipment can accurately control the 
compaction process and allows for in-depth investigation of powder properties and to 
extract force/displacement profiles. In-die data were evaluated by applying the software 
ANALIS (Medel’Pharm, Beynost, France). Generic profile was applied for compaction to 
reach compression stresses of approx. 30, and 180 MPa. 

3.3. Numerical Methods 
In a wide range of applications, including this study, the discrete element method 

(DEM) is used to model and analyze granular materials. However, predictions can only 
be correct if the input parameter values are carefully chosen. There are a number of input 
parameters that need to be tuned depending on the contact model used; this procedure is 
known as calibration. An in-depth review into calibration is provided by [42–45]. If Lud-
ing’s [17] original contact model is to be used, a total of 19 input parameters must be pre-
defined or calibrated. A comprehensive experimental determination of these parameters 
would be highly time-consuming and labor-intensive to accomplish. Fortunately, not all 
parameters have the same effect on the simulation output. As a consequence, only the 
parameters that are most significant to the validity of the simulation results are consid-
ered. Material parameters for the single particles and used in this study were obtained 
from the study of Cabiscol et al. [41]. The calibration technique consists of bibliographical 
sources, experiments, and their replication by DEM simulations. DEM simulations of 
nano-indentation experiments were used to determine the fitting parameter that ex-
presses the identical experimental results, in terms of force and displacement; therefore 
the Young’s modulus (E) of a single particle may be determined. The ring shear tester and 
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the Jenike wall test were used for a direct determination of the sliding friction between 
particles (μs(pp)) and between particles and walls (μs(pw)). Later, the tumbling drum test was 
used to determine the final frictional and rotational DEM related parameters μs(pw), μr(pp), 
and μr(pw). This test functioned as a calibration test for the rolling friction as well as a sec-
ond and final iteration for μs(pw), starting from the values obtained from the ring shear 
tester and the Jenike wall test. The complete calibration method is described in depth in 
the Cabiscol et al. study [41]. The DEM input parameters for the material properties are 
summarized in Table 1. The calibration of the input parameters of the new multi-contact 
model will be discussed in Section 4.1.1. 

4. Results and Discussion 
4.1. Determination of a Representative Volume Element (RVE) 

Full-scale DEM simulations need a significant amount of computational power; to 
bypass this limitation, a representative volume element is used. The literature has several 
definitions of the representative volume element (RVE), the most notable of which are 
discussed in [46–49]. Although there is no single and exact definition of the RVE, the basic 
concept is that the RVE should be large enough to retain the microstructural information 
while being small enough in relation to the macroscopic structural dimensions to elimi-
nate fluctuations. In this study, the RVE concept was used to speed up the simulations. 
The method used to determine an RVE was similar to that described by Wiącek et al. [50]. 
The basic ideas are as follows: (a) set an initial packing contained in a small domain (the 
smallest possible); (b) gradually expand the domain’s dimensions while maintaining the 
same particle size distribution (PSD) and packing density; (c) carry out numerical simula-
tions to obtain the force-displacement curve; and (d) analyze the results to determine if 
they are converging. 

The simulations presented here involve a series of uni-axial compaction tests in cubes 
of the following ranging sizes: (0.6mm)ଷ  (1stRVE), (0.8mm)ଷ  (2nd RVE), (1.0mm)ଷ 
(3nd RVE), and (1.4mm)ଷ (4th RVE) (see Figure 5). To eliminate the wall boundary effect, 
periodic boundaries were used along the X and Y axes. The cubes contain a top and a 
bottom plate. A series of uniaxial compression simulations were performed using our new 
multi-contact DEM model. After calibration, as will be discussed later in Section 4.1.1, and 
based on the data shown in Figure 6 we can confirm the existence of an RVE since the 
results are converging. However, due to the small size of the sample, the results of the 
first RVE underestimated its macroscopic stress–strain response. There is excellent agree-
ment between the results of the following RVEs, as well as with the experimental data. It 
is therefore decided to use the second RVE for practical reasons (less computational time) 
as follows. 
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Figure 5. Determination of a representative volume element (RVE). 

 
Figure 6. Converging analysis of the suggested RVEs. 

4.1.1. Calibration Method for the Input Parameters of the Multi-Contact Model 
In this section, the calibration for the new multi-contact model is shown. In this case, 

and as discussed in Section 4.1, the system under consideration is a cube with dimensions (0.8mm)ଷ (2nd RVE in Figure 5) along x-y-z directions. The system under consideration 
contains 698 particles for the MCC-A material and 1193 particles for the MCC-P material 
with a particle size distribution for both materials given in Section 3.1 and Table 1. The 
particles are initially randomly positioned in a cubic system with periodic boundary con-
straints in order to minimize wall effects. After initial deposition, the particles are allowed 
to grow. Growth is terminated as soon as the desired packing density of approximately 
59% is reached and is in line with experimental results reported in the literature [41,51]. 
The sample was then compressed uni-axially along the z-axis to a maximum target strain 
of 57% for MCC-A and 53% for MCC-P, then it was decompressed. A strain-driven simu-
lation was used to achieve the maximum desired stress of 29 MPa for the MCC-A material 
and 25 MPa for the MCC-P material. The calibrated material parameters presented in Ta-
ble 2 (Section 3.2) were used here. However, the input parameters for the multi-contact 
model were obtained using an iterative process to determine the optimum parameters 
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that better fits the experimental results. A parameter optimization method was used based 
on a series of simulations, similar to the one presented by Gao et al. [16]. Given the exper-
imental macroscopic stress and strain response the 𝑅ଶ value between the experimental 
and simulated data was calculated from: 𝑅ଶ = 1 −∑(𝑦 − 𝑦ො)ଶ∑(𝑦 − 𝑦ത)ଶ (15)

where 𝑦 indicates the stress response of the experimental data, 𝑦ො indicates the stress re-
sponse of the simulated data and 𝑦ത indicates the mean of the stress response of the ex-
perimental data. The value of 𝑅ଶ was used to evaluate the accuracy with which the sim-
ulated input parameters fit the experimental data; a successful fit was attained when 𝑅ଶ 
was close to 1. Therefore, when 𝑅ଶ exceeded 0.95, the iterations needed for calibration 
were terminated. Figure 7 shows that experimental and simulated results are in excellent 
agreement, indicating that the calibration was successful. Table 3 summarizes the input 
parameters that were calibrated. For the dimensionless plasticity depth 𝜑௙, a high and 
constant value was selected (low contact stiffness) to achieve a high contact stiffness; when 
necessary, the prefactor β was tuned accordingly. 

Table 2. The input parameters for single particles and walls [41]. 

Property Symbol Units MCC-A MCC-P 
Young’s modulus—particle(p) E Nm−2 2.58 × 108 1.34 × 109 

Young’s modulus—wall(w) E Nm−2 7.62 × 1010 7.62 × 
1010 

Poisson’s ratio—particle ν - 0.30 0.30 
Poisson’s ratio—wall ν - 0.31 0.31 

Coefficient of restitution particle COR(p-p) - 0.352 0.346 
Coefficient of restitutio—wall COR(p-w) - 0.352 0.346 

Coefficient of sliding fric—(p-p) μs(pp) - 0.561 0.548 
Coefficient of sliding f—(p-w) μs(pw) - 0.707 0.715 

Coefficient of rollin—(p-p) μr(pp) - 0.3 0.3 
Coefficient of rol—(p-w) μr(pp) - 0.01 0.01 

Density ρ kg/m3 1541.1 1533.7 

Table 3. Multi-contact model input parameters. 

Property Symbol Units MCC-A MCC-P 
Unloading stiffness k2/k1 - 120 120 

Adhesion stiffness ratio Kc/k1 - 0.5 0.5 
Dimensionless plasticity depth φf - 0.99 0.99 

Prefactor of the MC-dem β - 1.3 1.5 
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(a) (b) 

Figure 7. Calibration for the: (a) MCC-A material under uni-axial compaction at maximum target 
stress of 29 MPa; (b) MCC-P material under uni-axial compaction at maximum target stress of 25 
MPa. 

4.1.2. Verification for Uni-Axial Compaction for MCC-A 
In this section, the simulation results for compaction of the MCC-A material are 

shown. The system is identical to the one presented in Section 4.1.1. The sample was com-
pressed uni-axially along the z-direction to a maximum target strain of 71%, and then 
decompressed. The target stress for this case is 180 MPa. The calibrated material input 
parameters given in Section 3.2 (Table 2) and, for the multi-contact DEM model given in 
Section 4.1.1 (Table 3), were used. When the calibrated prefactor β=1.3 (Section 4.1.1 (Table 
3)) was used, an excellent agreement between experimental and simulated results was 
achieved, as shown in Figure 8b. A value of prefactor β=0.0 indicates that the multi-contact 
effect is not included and when β=0.0 conventional DEM underestimates the macroscopic 
stress–strain response, as shown in Figure 8a. It is also clear from comparing Figure 8a,b 
the multi-contact effect predominates for strains higher than 0.2. 

  
(a) (b) 

Figure 8. Verification for the MCC-A material under uni-axial compaction at maximum target stress 
of 180 MPa: (a) without the multi-contact effect (prefactor β = 0.0); (b) with the multi-contact effect 
(prefactor β = 1.3). 
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4.1.3. Verification for Uni-Axial Compaction for MCC-P 
In this section, the simulation results for compaction of the MCC-P material are 

shown. The system is identical to the one presented in Section 4.1.1 for the MCC-P mate-
rial. The sample was compressed uni-axially along the z-direction to a maximum target 
strain of 69%, and then decompressed. The target stress for this case is 185 MPa. The cali-
brated material input parameters given in Section 3.2 (Table 2) and, for the multi-contact 
DEM model given in Section 4.1.1 (Table 3), were used. When the calibrated prefactor β = 
1.5 (Section 4.1.1 (Table 3)) was used, an excellent agreement between experimental and 
simulated results was achieved, as shown in Figure 9b. As expected with β = 0.0 conven-
tional DEM underestimates, the macroscopic stress–strain response is shown in Figure 9a. 
It is also clear from comparing Figure 9a,b that the multi-contact effect predominates for 
strains higher than 0.2, around the same point as that seen for a the MCC-A material in 
Section 4.1.2. 

  
(a) (b) 

Figure 9. Verification for the MCC-P material under uni-axial compaction at maximum target stress 
of 185 MPa: (a) without the multi-contact effect (prefactor β = 0.0); (b) with the multi-contact effect 
(prefactor β = 1.3). 

5. Conclusions 
In this study, by employing our new elastic-plastic multi-contact DEM model, the 

compaction profiles (stress–strain) of microcrystalline cellulose grades Avicel® PH 200 
(FMC BioPolymer, Philadelphia, PA, USA) and Pharmacel® 102 (DFE Pharma, Nörten-
Hardenberg, Germany) were successfully predicted. It was also shown that the multi-con-
tact effect predominates for strains higher than 0.2. A calibration strategy to calibrate the 
input parameters, prefactor β, for the multi-contact model was presented here. The prefac-
tor β was calibrated at low relative densities (low macroscopic stress) and subsequently 
used for high relative densities (high macroscopic stress). The new multi-contact model 
requires a separate calibration for each material as prefactor β is a material-dependent 
parameter. However, more research is needed to determine if this is also true for a mixture 
of other relevant materials. 

In terms of the input parameters for the multi-contact model prefactor β, the unload-
ing stiffness 𝜅ଶ and the cohesion stiffness 𝜅௖ were the only parameters that were cali-
brated. The loading stiffness 𝜅ଵ was related to the Young’s modulus of the material. The 
material input parameters were calibrated separately. The concept of a representative vol-
ume element (RVE) was used to speed up simulations. In comparison to alternative ap-
proaches that use coarse-grained particles, the RVE was preferred because the particle size 
distribution (PSD) can be maintained while using the RVE. 
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In future work, we will aim to calibrate the prefactor β as an intrinsic material pa-
rameter. The aim is to conduct uni-axial compaction simulation in a series of relevant ma-
terials, then create a comprehensive database, and finally, with the assistance of artificial 
intelligence (e.g., neural network), generalize the results. Furthermore, the results pre-
sented here are based on the assumption of perfect spherical particles; in a future attempt, 
the real shape of the particles should be addressed. 
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Figure A1. Pseudo-code used in to obtain the non-local contact forces acting on a particle. 
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