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Abstract: Drug repurposing is a valuable alternative to traditional drug design based on the assump-
tion that medicines have multiple functions. Computer-based techniques use ever-growing drug
databases to uncover new drug repurposing hints, which require further validation with in vitro and
in vivo experiments. Indeed, such a scientific undertaking can be particularly effective in the case of
rare diseases (resources for developing new drugs are scarce) and new diseases such as COVID-19
(designing new drugs require too much time). This paper introduces a new, completely automated
computational drug repurposing pipeline based on drug–gene interaction data. We obtained drug–
gene interaction data from an earlier version of DrugBank, built a drug–gene interaction network,
and projected it as a drug–drug similarity network (DDSN). We then clustered DDSN by optimizing
modularity resolution, used the ATC codes distribution within each cluster to identify potential drug
repurposing candidates, and verified repurposing hints with the latest DrugBank ATC codes. Finally,
using the best modularity resolution found with our method, we applied our pipeline to the latest
DrugBank drug–gene interaction data to generate a comprehensive drug repurposing hint list.

Keywords: bioinformatics; drug repurposing; complex network analysis; modularity clustering;
ATC code

1. Introduction

The growth in the number of newly approved pharmaceutical substances has stag-
nated despite the ever-growing resources that the industry allocates [1–4]. Designing,
developing, and testing new medicines is an expensive, long, and cumbersome pro-
cess [5], which becomes explicitly bothersome for new rare diseases—because funds are
limited—and new pathogen epidemics—stopping the disease spread requires a rapid
therapeutic solution [6,7]. One convenient alternative to the pharmaceutic industry’s pro-
ductivity challenges is drug repurposing, underpinned by the R&D in the pharmaceutical
industry, as well as the observations and long-time experience indicating the favorable
polypharmacological profile of drugs (in other words, most pharmaceutical substances tend
to have multiple functions) [8–10]. The trend that calls for drug repurposing techniques is
in sync with the recent expansion of Big Data and machine learning in genetics, biology,
and medicine; therefore, we witnessed the development of a wide array of computer-based
methodologies to uncover new drug repurposing [11–13].

A significant area in computational repurposing (or repositioning) relies on the
complex network representations of various drug interaction/relationship types, e.g.,
drug–drug [14], drug–target [15–17], drug–side effect [18], drug–gene. The networks con-
sist of nodes/edges—representing drugs, targets, genes, or side effects—and links/edges—
representing interactions or other types of relationships [19]. The network of specific drug
interactions allows for the characterization of a complex biological system under therapy;
therefore, researchers can use computational techniques and network science principles to
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explore the interplay between microscale interactions and macroscale behavior [14]. An
important area in network science is community/cluster detection and analysis [20,21].
The assumption is that nodes from a distinct cluster have similar topological properties
and, thus, share a common feature; this results in drug repurposing opportunities [6].
(If most drugs in a cluster have a particular therapeutic function, then it is reasonable
to assume that the function also exists at least in some of the other drugs in the cluster).
Many network-based computational drug repurposing methods use topological network
features, such as centralities (topological indicators/measures of a node’s importance in
the network) and modularity, to identify potential repositioning [22,23].

All computational drug repositioning methods produce lists of hints or predictions
that require testing or confirmation in silico (e.g., molecular docking) [24], in vitro, and in
vivo [25]. One can also indirectly prove the effectiveness of the computational technique by
applying it on an earlier database version and testing the predictions on the latest data [14,22].
The existing computational pipelines predicted several important drug repurposings. More-
over, the crisis generated by the COVID-19 pandemic called for drug repurposing solutions to
counter SARS-CoV-2 infections.

In our prior study, we also approached the problem of drug repositioning by building
a drug–drug interaction network [14] and a drug–drug similarity network based on drug–
target interactions [22]; we used the corresponding drug–drug and drug–target interaction
data from DrugBank 4.1 and 4.2, respectively. In [14], we used community detection with
energy-based layouts and fixed modularity; in [22], we also used energy-based layouts
and fixed modularity, as well as ranking nodes by network centralities; in both previous
approaches, we labeled the clusters and confirmed predictions with expert analysis.

In this paper, we also use a method based on network community detection and
analysis. To this end, we build a drug–drug similarity network, because similarity networks
are better suited for community detection: Nodes in the same community are more likely
to be similar. Indeed, many other computational drug repurposing methods operate on
similarity networks [26,27], with similarity defined on various criteria—from drug–target
interactions [22] to adverse effects [18]. We find inspiration in the diseasome project [28,29]
based on processing a disease–gene bipartite network (i.e., with two types of nodes, namely,
genes and diseases); the processing of the disease–gene network projects it as either a gene–
gene similarity or a disease–disease similarity network. In the gene–gene network, a link
between two genes exists if there is at least one common disease with which they interact;
in the disease–disease network, a link between two diseases exists if at least one gene is
responsible for both diseases.

Our method builds a drug–gene interaction network with drug–gene interaction data
from the earlier DrugBank 5.0.9 version, then projects it as a drug–drug similarity network;
this is the first drug repurposing method derived from a gene-based drug–drug similarity
network to the best of our knowledge. Our drug–drug similarity network is weighted—
the weight of the link between two nodes/drugs represents the number of genes with
which the two drugs interact in the same manner. We then use modularity-based network
clustering to identify drug communities/clusters. We adopt the same assumption as in the
case of the diseasome analysis in [30] that nodes inside the same community most probably
share a common function or property. In this manner, if a drug inside one community
does not have the ATC code level 1 of the majority, then we hypothesize that the drug can
be repurposed accordingly. Nonetheless, we improve the efficiency of the approach by
providing an automated procedure for tuning modularity resolution [31] by comparing
the ATC code level 1 predicted with our method applied to DrugBank 5.0.9 [32] with the
level 1 ATC codes of the drug in the latest DrugBank version 5.1.8 [33]. Finally, we apply
our pipeline—with the optimized modularity resolution—to the latest DrugBank data to
generate a new list of repurposing hints, which we support by existing literature findings.
Refer to the overview of our proposed methodology in Figure 1. We only considered drugs
listed as approved in DrugBank.
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Figure 1. The overview of our proposed computational drug repurposing pipeline. In the first step, we use drug–gene
interaction information from DrugBank 5.0.9 to build the (bipartite) drug–gene interaction network, which we then
projected as a drug–drug similarity network (DDSN). In the second step, we used modularity class network clustering
to identify drug communities with shared properties, analyzed the DrugBank 5.0.9 first-level ATC code histograms in
each community to predict new drug properties, and checked these predictions against the latest DrugBank 5.1.8 level 1
ATC codes. The procedure in the second step allows maximizing the number of confirmed repositionings by adjusting
modularity resolution. The third step uses our method with the optimized resolution value determined in the second step
to generate a repurposing hints list according to DrugBank 5.1.8.

Three arguments support the novelty of the research presented in this paper. First,
this manuscript is—to the best of our knowledge—the first to build and process a DDSN
based on drug–gene interaction data. Second, we present a novel method (based on level 1
ATC codes) that labels clusters and generates repositioning hints automatically. Third, we
tuned modularity resolution algorithmically and automatically confirmed repositioning
hints by comparing two chronologically distinct DrugBank versions.

From a pharmacological perspective, our overarching contribution is to develop, for
the first time, and promote the drug–gene interaction networks as a valuable analytical,
screening, and visualization tool in drug repositioning. Our method can complement
existing computational repositioning pipelines; therefore, it can be integrated into more
sophisticated ensemble methods.

2. Materials and Methods

In this section, we present the conceptual description of our algorithmic drug reposi-
tioning method from Figure 1. The thorough technical implementation and description are
provided on our GitHub page https://github.com/GrozaVlad/Drug-repurposing-using-
DDSNs-and-modularity-clustering (last commit on 21 October 2021). We used Nodejs
with packets xml-js (for parsing the DrugBank xml files) and pg (for interacting with the
PostgreSQL database), and Docker and Docker-compose for containerized databases [34].
For building and clustering DDSN, we used the Python packages Psycopg2, Pandas [35],
NetworkX [36], and Cdlib [37]; for visualizing the networks, we used Gephi [38]. The hard-
ware platform for running this project was a MacBook Pro, Intel Core i9—2400 MHz with
16 GB RAM, GPU Radeon Pro 560× 4 GB.

https://github.com/GrozaVlad/Drug-repurposing-using-DDSNs-and-modularity-clustering
https://github.com/GrozaVlad/Drug-repurposing-using-DDSNs-and-modularity-clustering
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2.1. Databases

In order to facilitate an automated procedure of validating our drug repurposing
pipeline, we used the earlier DrugBank version 5.0.9 to generate repurposing predictions
in one of the anatomical or pharmacological groups described by the first-level ATC
codes, then we validated the predictions with the ATC codes with the latest DrugBank
version 5.1.8 (last accessed on 30 September 2021).

In DrugBank version 5.0.9, there are 1966 drugs, 2352 genes, and 7249 drug–gene
interactions; the interaction types are part of the set Ie = {inhibitor, agonist, antagonist,
other/unknown, ligand, partial agonist, inducer, other, suppressor, binder, antibody, modu-
lator, allosteric modulator, potentiator, neutralizer, stimulator, activator, component of, sub-
strate, inactivator, blocker, antisense oligonucleotide}. In the latest DrugBank version 5.1.8,
there are 3117 drugs, 4108 genes, and 8396 drug–gene interactions with interaction types
part of the set Il = {inhibitor, agonist, antagonist, other/unknown, antibody, substrate,
ligand, partial agonist, inducer, other, suppressor, binder, potentiator, modulator, activator,
cofactor, degradation, positive allosteric modulator, incorporation into and destabilization,
allosteric modulator, neutralizer, stimulator, binding, inactivator, inverse agonist, blocker,
chaperone, inhibition of synthesis, antisense oligonucleotide, gene replacement, regulator}.
Refer to Section 4.1 for explanations.

We chose DrugBank [33] because it is a comprehensive, versioned, and scientifically
curated (i.e., robust) database with consistent support for in silico drug design and reposi-
tioning space exploration [32].

2.2. Building the Drug–Drug Similarity Network

The bipartite drug–gene interaction network is a graph G = (V, E), where V is the
set of vertices or nodes, and E is the set of edges. The network G is bipartite because
V = VD ∪ VG, where VD is the set of drugs and VG is the set of genes. The edges eij ∈ E
represent interactions between a drug Di ∈ VD and a gene Gj ∈ VG (the interaction is of the
type Tk ∈ I, with I defined in Section 2.1). An example of such a drug–gene bipartite graph
is presented in Figure 2a, with 4 drugs, 3 genes, and 3 types of drug–gene interactions.

Figure 2. An illustrative example of projecting the bipartite drug–gene interaction graph G (a) into a weighted drug–drug
similarity network W (b). In our example, G has 4 drugs (D1, D2, D3, and D4), 3 genes (G1, G2, and G3), and 3 types of
drug–gene interactions. In the drug–drug similarity network from panel (b), nodes are drugs, and links between two drugs
represent the number of genes with which the drugs interact in the same manner. For instance, as shown, the link w1,3 between
nodes/drugs D1 and D3 has a weight of 3 because D1 and D3 have the same type of interaction with genes G1, G2, and G3.
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From the drug–gene bipartite network G, we generated the weighted drug–drug
similarity networkW = (VD, W) using network projection [39]. In the DDSN, the nodes
represent drugs, and a link between two nodes exists if there is at least one gene with
which the two drugs interact in the same manner (i.e., the interactions are of the same type
Tk ∈ I). In Figure 2b, we present the DDSN projection of the drug–gene example network
in Figure 2. The network is weighted because two drugs Di and Dj can have the same type
of interactions with m genes; therefore, the weight of edge wij ∈W is m.

2.3. Network Clustering Analysis

The clustering of network G = (V, E) is the process of classifying all nodes vi ∈ V in
one of the n (disjoint) subsets Cj, with V =

⋃n
j=1Cj, according to their topological properties.

In this paper, we use modularity-based clustering because of its proven effectiveness in
drug network analysis [14,22,23]. As defined in [40], the modularity of a clustering C in a
weighted network such as our DDSN—represented asW—is defined as follows.

M =
1
2a∑ij

(
wij −

kik j

2a

)
p
(
Ci, Cj

)
. (1)

In Equation (1), a = 1
2 ∑ijwij; i and j are the indexes of nodes vi, vj ∈ VD; ki and k j are

the node degrees (i.e., the sums of weights of incident edges) for nodes vi, vj ∈ VD; wij
is the adjacency matrix of nodes inW ; Ci and Cj are the communities that include nodes
vi, vj ∈ VD, respectively; and p is a function p(x, y) that returns 1 if x = y and 0 otherwise.
(In our DDSN, nodes vi and vj are drugs Di and Dj, respectively).

The modularity of clustering C is a value MC ∈ [−1, 1], representing the edge density
within the clusters with respect to the edge density between clusters. The clustering
algorithms are based on modularity search for the best partitioning C of the node-set
such that the value of M is maximized. The problem is that an exhaustive search for the
best modularity entails large computational burden. Consequently, in practice, heuristic
algorithms approximate optimal modularity clustering. However, if the network is very
large, such approximations cannot identify small-size clusters—even if the density of
internal edges is high and the density of edges between these small clusters and the rest of
the network is low.

In this paper, we use the modularity-based clustering algorithm from [41], which
controls the resolution of the clustering using a recursive procedure that starts with each
node being a cluster and then moving nodes vi (i.e., Di in our DDSN) to a different cluster
Cj if this generates a positive modularity gain expressed as follows.

∆M =

K*
Cj
+ K

Cj
i

2a
−
(

KCj + Ki

2a

)2
−

K*
Cj

2a
−
(

KCj

2a

)2

−
(

Ki
2a

)2
. (2)

In Equation (2), K*
Cj

is the sum of the weights of all edges within cluster Cj; KCj is the
sum of the weights of all edges incident to nodes in cluster Cj; Ki is the sum of the weights

of all edges incident to node vi (Di in DDSN); and K
Cj
i is the sum of the weights of links

from vi to all nodes in cluster Cj. The algorithm controls the clustering resolution using the
value of λ = ∆M—a lower λ determines a higher number of clusters.

2.4. Tuning Resolution λ

Using Algorithm 1, we tune the modularity resolution to achieve efficiency in predict-
ing new drug properties. To this end, we try λ values in the [0.1, 5] interval, with a step
of 0.1, generate the modularity clustering C for each resolution value (Clustering(G, λ)),
and determine the dominant property Pi in each cluster Ci ∈ C. The dominant property
Pi corresponds to the level 1 ATC code of the majority of drugs in cluster i, Dj ∈ Cj,
as resulting from the level 1 ATC code histogram of Ci, and denotedA1(Ci). Then, for each
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drug Dj in each cluster Ci, we checked the list of first level ATC codes for drug Dj (denoted
A1(Dj

)
) against the drug’s cluster dominant property Pi. If Pi is not in the list of DrugBank

5.0.9 level 1 ATC codes for Dj (i.e., A1(Dj
)
), but it is present in the list of DrugBank 5.1.8

level 1 ATC codes (i.e., A1
c
(

Dj
)
), then we consider this as a confirmed repositioning of Dj

to property Pi. As such, we will add drug Dj to the list of repositionings confirmed with
DrugBank 5.1.8 level 1 ATC codes, Rc. Value λmax corresponds to Rc with the biggest
number of elements, namely max{|Rc|}.

Algorithm 1 Find the parameter λ, such that the clustering C of nodes/drugs Di in G with
modularity resolution λ (i.e., Clustering(G, λ)) produces the biggest number of reposition-
ings confirmed with the level 1 ATC codes in DrugBank 5.1.8.
Input: Drug-drug similarity network G = (VD, E) based on drug-gene interaction data
from DrugBank 5.0.9., ATC codes for drugs in DrugBank versions 5.0.9 and 5.1.8
Output: The λ value that generates the highest number of confirmed repositionings.

1: for λ in range (0.1 to 5), with 0.1 steps do
2: C ⇐ Clustering(G, λ)
3: for all Ci ∈ C do
4: Pi ⇐ A1(Ci)
5: Rc

i ⇐ ∅
6: for all Dj ∈ Ci do
7: if thenPi /∈ A1(Dj

)
& Pi ∈ A1

c
(

Dj
)

8: Rc
i ⇐ Rc

i ∪
{

Dj
}

9: end if
10: end for
11: end for
12: Rc =⇐ ⋃

iRc
i

13: end for
14: Return the value of λmax corresponding to max{|′Rc|}

2.5. Generating New Repurposing Hints

We generated a list of new repositioning hints using the modularity clustering with
the resolution value determined by Algorithm 1 in Section 2.4. Algorithm 2 presents the
method we follow: Cluster the DDSN built with drug–gene interaction information from
DrugBank 5.1.8 using the tuned resolution λmax (C = Clustering(G, λmax)); determine
the dominant property Pi of each cluster Ci ∈ C as resulted from Ci’s level 1 ATC code
histogram (denoted A1(Ci)); and check for each drug Dj in each cluster Ci the list of first
level ATC codes of Dj (denoted A1(Dj

)
) against its cluster’s dominant property Pi. If

the cluster’s dominant property Pi is not in A1(Dj
)

(the list of Dj level 1 ATC codes), we
hint that Dj can be repositioned to Pi. Consequently, we add these repositioning cases as
drug–predicted property pairs

(
Dj,Pi

)
to the repositioning hints list N .
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Algorithm 2 Generate the list of drug repurposing hints by clustering the DDSN G with
the tuned modularity resolution.
Input: Drug–drug similarity network G = (VD, E) based on drug–gene interaction data
from DrugBank 5.1.8, λmax, and the ATC codes for drugs in DrugBank 5.1.8.
Output: The repositioning hintsN as a list of drug–predicted property pairs,

(
Dj,A1(Ci)

)
.

1: C ⇐ Clustering(G, λmax)
2: N ⇐ ∅
3: for all Ci ∈ C do
4: Pi ⇐ A1(Ci)
5: for all Dj ∈ Ci do
6: if Pi /∈ A1(Dj

)
then

7: N ⇐ N ∪
{(

Dj,Pi
)}

8: end if
9: end for

10: end for
11: Return the list of drug repositionings N as drug–predicted property pairs

3. Results
3.1. DDSN Using Drug–Gene Interactions from DrugBang 5.0.9

Following the algorithmic approach presented in Figure 1, according to the methods
described in Sections 2.2–2.5, we employ cluster-based network analysis on the drug–drug
similarity network (DDSN) built with drug–gene interaction information from DrugBank
5.0.9 to search for the most effective modularity resolution λmax—in other words, the
modularity resolution that produces the highest number of drug repositionings confirmed
with level 1 ATC codes from DrugBank 5.1.8. Figure 3 presents the result of running
Algorithm 1 from Section 2.4; the best results correspond to resolutions 1.9 and 2.0 (the
same nine confirmed repositionings in both cases). Henceforth, we will consider λmax = 2.0.

Figure 3. The number of confirmed repositioningsRc for resolution λ values in the [0.1, 5] interval,
with a step of 0.1, after running Algorithm 1 on the DDSN G built with drug–gene interaction
information from DrugBank 5.0.9. The highest number of repositionings confirmed with level 1 ATC
codes from DrugBank 5.1.8 (i.e., 9) corresponds to resolutions 1.9 and 2.0.

Figure 4 presents the largest connected component of the DDSN, constructed with
drug–gene interaction data from DrugBank 5.0.9 and clustered with modularity resolution
λmax = 2.0; the text indicates the topological coordinates of repositionings confirmed with
DrugBank 5.1.8 data.
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Figure 4. Drug–drug similarity network (DDSN) built with drug–gene interaction data from DrugBank 5.0.9, clustered
using modularity classes for resolution λmax = 2.0. We indicate the position of drugs repositioned and confirmed (with
level 1 ATC codes from DrugBank 5.1.8) them by labeling the corresponding nodes with their names. The brown nodes
represent drugs in cluster C0 (512 drugs), yellow nodes represent drugs in cluster C1 (238 drugs), green nodes represent
drugs in cluster C2 (197 drugs), pink nodes represent drugs in cluster C3 (143 drugs), and light blue nodes represent drugs
in cluster C4 (88 drugs).

In Figure 4, nodes represent drugs, and links represent similarity relationships based
on drug–gene interactions, as described in Section 2.2; node colors correspond to spe-
cific clusters, as determined by the modularity class, and all links are represented with
grey lines.

In Appendix A.1, Figures A1–A3, present zoomed details of DDSN from Figure 4 in the
vicinity of nine confirmed repositionings corresponding to λmax = 2.0. The repositionings
come from cluster C0–brown and cluster C2–green nodes. We indicated the drug reposi-
tionings confirmed with DrugBank 5.1.8 data with red arrows (→) in Figures A1 and A2;
in Figure A3, we have many confirmed repurposed drugs and a high density of nodes;
hence, red diamonds (�) were used instead of arrows.

The zoomed details provided by Figures A1 and A2 show that mepolizumab and
naloxone are within cluster C0 (brown nodes), where the dominant property is given by the
level 1 ATC code N–Nervous system, followed by code R–Respiratory system. As such, our
method automatically predicts that mepolizumab (listed as L–Antineoplastic and immunomod-
ulatory drugs in DrugBank 5.0.9) acts as a drug with level 1 ATC code R. (In Appendix A.2,
Figure A4 shows that in cluster C0—in addition to the dominant level 1 ATC codes N—we
also have many subcluster drugs with level 1 ATC codes A–Alimentary tract and metabolism;
R–Respiratory system; and C–Cardiovascular system). Our method predicts that naloxone
(an opioid overdose antidote in DrugBank 5.0.9) also acts on the nervous system (first level
ATC N). The more recent DrugBank 5.1.8 confirms the predictions, listing mepolizumab
with first level ATC code R and naloxone with N (see more details in Section 3.3.1).

In Appendix A.1, Figure A3, we zoom in to the region in DrugBank 5.0.9 DDSN
with the confirmed repositionings in cluster C2 (green nodes), with the dominant level
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1 ATC code G–Genitourinary system and sex hormones (see the histogram in Appendix A.2
Figure A4). The confirmed repositionings in cluster C2 are torasemide (ATC level 1 code
C, cardiovascular system), quinetazone (C), methazolamide (S, sensory organs), acetazo-
lamide (S), dorzolamide (S), and brinzolamide (S). Zonisamide (N, nervous system) is a
brown node (cluster C0) but in the close vicinity of cluster C2; therefore, one can expect
functional overlappings [14]. Our method automatically predicts that all these drugs have
genitourinary system properties, and DrugBank 5.1.8 confirms the predictions (see the
detailed description in in Section 3.3.1).

Using ATC codes as references for drug repurposing is already used in the state-
of-the-art contexts, although confirmations based on ATC codes are very conservative
(i.e., the World Health Organization assigns new ATCs after a long and thorough pro-
cess) [25,42]. Confirming the predicted drug repositionings by performing a research
literature review will reveal many more confirmations [25,43]. By this logic, our analysis
of DrugBank 5.0.9 does not reveal many confirmed repurposings, yet it helps tune the
modularity resolution λ.

3.2. DDSN Using Drug–Gene Interactions from DrugBang 5.1.8

According to the algorithmic approach presented in Figure 1, we generated the DDSN
based on the drug–gene interactions reported in DrugBank 5.1.8 and clustered DDSN
using the modularity classes obtained for resolution λmax (by employing Algorithm 1 with
the results presented in Section 3.1). We display the largest connected component of the
DrugBank 5.1.8 DDSN in Figure 5, with cluster C0 (brown nodes) having the dominant level
1 ATC code N–Nervous system; clusters C1 and C2 (green and orange nodes) J–Anti-infectives
for systemic use; cluster C3 (light blue nodes) L–Antineoplastic and immunomodulating agents;
and cluster C4 (pink nodes) A–Alimentary tract and metabolism.

By running Algorithm 2 on the DDSN built with DrugBank 5.1.8 data and clustered
with modularity classes at resolution λmax, we generated lists of drug repurposing hints
for each drug cluster. In the Supplementary Materials Table S1 file DDSN-results.xls, tab
DB 5.1.8 resolution 2.0, we present the first 10 drug clusters and the entire list of drug
repurposing candidates generated with Algorithm 2 (759 candidates).

Generating a list of 759 drug repurposing candidates with the latest DrugBank data
and experimental confirmation is beyond the focus of our paper, and we select the first
10 drugs in each cluster in terms of betweenness/degree centrality (the methodology
used in [22]) and checked them with the state-of-the-art scientific literature. For checking
repositioning hints, we searched for articles in PubMed. The terms we used to search
the literature were the name of the drug and the words/pharmacological terms that form
level 1 of the ATC code. For example, our methodology predicted for methotrexate ATC
code with level 1 J–Anti infectives for systemic use; we searched for the confirmation of this
prediction by using keywords methotrexate anti-infective, as well as keywords representing
therapeutic groups included in class J (i.e., methotrexate antiviral, methotrexate antibacterial,
or methotrexate antimycotic). The confirmation results of our extensive literature check
are presented in Table 1, showing the drug name, cluster number, current level 1 ATC
code, predicted level 1 ATC code, and confirmation references. We also added a detailed
discussion of the repurposing hints from Table 1 in Section 3.2.
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Figure 5. Drug–drug similarity network (DDSN) built with drug–gene interaction data from Drug-
Bank 5.1.8, clustered using modularity classes for resolution λmax = 2.0. The brown nodes represent
drugs in cluster C0 (479 drugs), green nodes represent drugs in cluster C1 (346 drugs), light blue
nodes represent drugs in cluster C2 (270 drugs), orange nodes represent drugs in cluster C3 (129
drugs), and pink nodes represent drugs in cluster C4 (12 nodes).

We present the topological DDSN placement of Pyridoxal phosphate—predicted repo-
sitioning from cluster C0—in Figure 6, where a red diamond (�) marks the exact position.

In Figure 7, we illustrate the position of albendazole and methotrexate in the DDSN
built with DrugBank 5.0.8 data as predicted drug repositionings from cluster C1. Other drug
repurposing candidates from cluster C1 (presented in Table 1) are shown in Appendix B.1
and Figure A5: simvastatin, fluvastatin, lovastatin, and atorvastatin.

Figure 8 displays the DrugBank 5.0.8 DDSN placement of cholecalciferol, ergocal-
ciferol, and calcifediol—drug repurposing candidates from cluster C2. In Appendix B.1,
Figures A6–A8, we identify the topological positions of the other drug repurposing candi-
tates in cluster C2 (Table 1): meloxicam, theophylline, and chloroquine.
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Table 1. The list of drug repurposing candidates generated with our methodology in Figure 1 on data from DrugBank 5.1.8,
and confirmed with scientific literature. The rows correspond to drugs or drug classes (for example, simvastatin, fluvastatin,
lovastatin, and atorvastatin are statins). The columns indicate—from left to right—the name, the cluster, the current level 1
ATC code in DrugBank 5.1.8, the predicted level 1 ATC code, and the confirmation references for the drug (or drug class) in
each row.

Drug Cluster Current Level 1 ATC Predicted Level 1 ATC References

Pyridoxal phosphate C0 A H [44,45]
Albendazole C1 P J [46,47]
Methotrexate C1 L J [48–50]

Simvastatin
Fluvastatin
Lovastatin
Atorvastatin

C1 C J [51,52]

Theophylline C2 R L [14,53]
Meloxicam C2 M L [54–56] Cholecalciferol

Ergocalciferol
Calcifediol

C2 M, A L [57,58]

Chloroquine C2 P L [59–63][
Mecasermin
Mecasermin rinfabate C4 H A [64–66]

Ornithine C25 A N [67]

We also show the placement of drug repurposing candidates mecasermin and mecaser-
min rinfabate (in Figure 9, in cluster C4, with red diamonds �) and ornithine (in Figure 10,
in cluster C25, with a red arrow→).

The histograms showing the dominant properties (as level 1 ATC codes) in clusters
C0, C1, C2, and C4 are presented in Appendix B.2, Figure A9.

Figure 6. The DrugBank 5.1.8 DDSN network’s zoomed detail shows the repositioning within
cluster C0 (brown nodes) with a red diamond (�). Our repositioning pipeline predicts that pyridoxal
phosphate (currently at ATC level 1 code A–Alimentary tract and metabolism) has properties described
by the level 1 ATC code N—Nervous system.
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Figure 7. The DrugBank 5.1.8 DDSN network’s zoomed detail shows two repositionings within
cluster C1 (green nodes) with a red diamond (�). Our repositioning pipeline predicts that albendazole
and methotrexate (currently at ATC level 1 codes P–Antiparasitic products, insecticides, and repellents
and L–Antineoplastic and immunomodulating agents, respectively) have properties described by the
level 1 ATC code J–Anti infectives for systemic use.

Figure 8. The DrugBank 5.1.8 DDSN network’s zoomed detail shows three repositionings (vitamin
D derivatives) within cluster C2 (light blue nodes) with a red diamond (�). Our repositioning
pipeline predicts that cholecalciferol, ergocalciferol, and calcifediol (currently at ATC level 1 codes
A–Alimentary tract and metabolism and M–Musculo-skeletal system) have properties described by the
level 1 ATC code L–Antineoplastic and immunomodulating agents.
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Figure 9. The DrugBank 5.1.8 DDSN network’s zoomed detail shows two repositionings within
cluster C4 (pink nodes) with a red diamond (�). Our repositioning pipeline predicts that mecasermin
and mecasermin rinfabate (currently at ATC level 1 codes H–Systemic hormonal preparations, excluding
sex hormones and insulins) have properties described by the level 1 ATC code A–Alimentary tract
and metabolism.

Figure 10. The DrugBank 5.1.8 DDSN network’s zoomed detail shows a repositioning within cluster
C25 (light orange) with a red arrow (→). Our method predicts that ornithine (currently at ATC
level 1 code A–Alimentary tract and metabolism) has properties described by the level 1 ATC code
N–Nervous system.



Pharmaceutics 2021, 13, 2117 14 of 27

3.3. Repositioning Confirmations
3.3.1. Confirmed Drug Repositionings in DrugBank 5.0.9

This section discusses the drug repositioning hits generated with our methodol-
ogy in DrugBank 5.0.9 and confirmed with the level 1 ATC codes in DrugBank 5.1.8.
Our procedure confirmed the predicted hints in modularity classes 0 and 2.

Modularity Cluster C0

In modularity cluster C0, DrugBank 5.1.8 confirms mepolizumab and naloxone (see
Figures A1 and A2). Naloxone (ATC code V03AB15) is a µ-opioid receptor antagonist
indicated in the treatment of opioid overdose. In DrugBank 5.0.9, naloxone’s first level
ATC is V–Various; its level 4 (V03AB) means naloxone is in the Antidotes category.

Our methodology predicts naloxone’s level 1 ATC as N–Nervous system; the latest
DrugBank 5.1.8 adds two N level 1 ATC codes to naloxone (level 4 ATC category Natural
opium alkaloids for the combinations with hydromorphone and oxycodone), thus confirming
our prediction.

Mepolizumab (ATC code L04AC06) is a monoclonal antibody acting as an antagonist
of interleukin-5, included in the L–Antineoplastic and immunomodulating agents level 1 ATC
category by DrugBank 5.0.9.

DrugBank 5.1.8 does not list the L04AC06 code anymore for mepolizumab; instead,
it uses the level 1 ATC code R–Respiratory system (the level 4 ATC is R03DX, which includes
other systemic drugs for obstructive airways diseases, as mepolizumab is indicated in severe
eosinophilic asthma).

Modularity Cluster C2

In modularity cluster C2, DrugBank 5.1.8 confirms torasemide, methazolamide, aceta-
zolamide, dorzolamide, brinzolamide, zonisamide, and quinetazone (see Figure A3).

Torasemide, quinetazone, methazolamide, acetazolamide, dorzolamide, and zon-
isamide, brinzolamide (ATC codes: C03CA04, C03BA02/C03BB02, S01EC05, S01EC01,
S01EC03, N03AX15, S01EC04/S01EC54) are sulfonamide compounds with various pharma-
codynamic effects. According to DrugBank 5.0.9, torasemide and quinetazone are diuretics
used as antihypertensive drugs, included in the C–Cardiovascular system level 1 ATC cate-
gory. Zonisamide is an antiepileptic drug (level 1 ATC N–Nervous system). Methazolamide,
acetazolamide, dorzolamide, and brinzolamide are carbonic anhydrase inhibitors used in
glaucoma (level 1 ATC S–Sensory organs).

Our methodology predicts G–Genito urinary system and sex hormones as the level
1 ATC code for torasemide, quinetazone, methazolamide, acetazolamide, dorzolamide
zonisamide, and brinzolamide. Indeed, the latest DrugBank 5.1.8 version includes all these
drugs in the G level 1 ATC category—more precisely, in the G01AE level 4 ATC category of
Anti-infective and antiseptics having a sulfonamide-based chemical structure.

3.3.2. Drug Repositioning Hints in DrugBank 5.1.8

This section discusses the validity of some drug repositioning hints generated with
our methodology in DrugBank 5.1.8; as this is the latest database version, we cannot use
the same confirmation procedure based on ATC codes. Consequently, we provide evidence
found in the state-of-the-art literature as confirmation clues. However, as both the number
of clusters and their size prohibit an exhaustive literature search, we focus on the clusters
with confirmed drug repurposing candidates—clusters C0, C1, C2, C4, and C25.

Pyridoxal phosphate (cluster C0, ATC code A11HA06) is the active form of vitamin B6
and belongs to the A–Alimentary tract and metabolism level 1 ATC category, along with the
rest of water-soluble and fat-soluble vitamins. Our method predicts pyridoxal phosphate as
level 1 ATC code N–Nervous system (see Figure 6); H-S Wang et al. reported that pyridoxal
phosphate controls idiopathic intractable epilepsy in children [44]. P.B. Mills and team
identified two groups of patients with neonatal epileptic encephalopathy (determined by
PNPO mutations) that respond to pyridoxal phosphate [45].
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Albendazole (cluster C1, ATC code P02CA03) is an antiparasitic drug (first level ATC
P–Antiparasitic products, insecticides and repellents) efficient in various helminthic infec-
tions. Our methodology predicts J as level 1 ATC code, suggesting potential systemic
anti-infective effects (see Figure 7). Of note, ATC lists drug classes such as antivirals,
antibacterials, antimycotics, and vaccines in the J–Anti-infectives for systemic use category.
In vitro results show that albendazole exerts antifungal activity against Aspergillus spp. [46];
moreover, experiments on mice revealed antifungal effects against Pneumocystis carinii [47],
confirming the new potential antifungal medical use of albendazole.

Methotrexate (cluster C1, ATC codes L04AX03, L01BA01) is an anticancer and immuno-
suppressant agent; therefore, the level 1 ATC is L–Antineoplastic and immunomodulating
agents. We predict the first level J–Anti infectives for systemic use (see Figure 7). The literature
survey reveals several papers reporting in vitro antiviral effects of methotrexate in a dose-
dependent manner on SARS-CoV-2 [48] and Zika virus replication [49]; methotrexate also
prevents the replication of human cytomegalovirus and inhibits viral DNA synthesis [50].

Simvastatin, fluvastatin, lovastatin, and atorvastatin (cluster C1, ATC codes A10BH51/
C10AA01/C10BX04/C10BA02/C10BX01/C10BA04, C10AA04, C10AA02/C10BA01, and
C10BX15/C10AA05/C10BX03/C10BA05/C10BX11/C10BX08/C10BX06/C10BX12) are
HMG-CoA reductase inhibitors (also called statins) that lower serum lipid levels, reducing
the risk of cardiovascular events caused by hyperlipidemia; they are in the level 1 ATC C–
Cardiovascular system class. The first level of their ATC code, as predicted by our method, is
J–Anti infectives for systemic use (see Figure A5), confirmed by literature; as such, simvastatin
exhibits in vitro antimicrobial effect on methicillin-susceptible Staphylococcus aureus [51].
S.P. Parihar et al. [52] review the literature reporting preclinical and clinical evidence of
statins effects in viral, parasitic, fungal, and bacterial infections, pointing out the factors
that influence the response to statins, such as human polymorphism, metabolism, and drug
interactions; this review includes data on all mentioned statins. Our algorithm predicts
that all statins in cluster C1 are potential anti-infective agents. As shown, for the statins
we highlighted in Figure A5, we found literature confirming our prediction; for the other
statins, new experiments and studies may provide confirmation.

Theophylline (cluster C2, ATC codes R03DA54, R03DA74, R03DA20, R03DA04, and
R03DB04) is a methylxanthine derivative used to treat obstructive respiratory conditions,
such as asthma and COPD, hence having R–Respiratory system as first level ATC code.
Our methodology indicates theophylline’s Anticancer and immunomodulating properties, as
reflected by the predicted ATC first level L (see Figure A7), thus further confirming the repo-
sitioning proposed by our previous research [14]. Indeed, recent literature demonstrates
the anticancer properties of theophylline in breast and cervical cell lines [53].

Meloxicam (cluster C2, ATC codes M01AC56 and M01AC06) is an oxicam derivative
with anti-inflammatory and antirheumatic properties of the M–Musculo-skeletal system
ATC category. Our network-based methodology predicts L as the first level of the ATC
code (see Figure A6). The literature confirms our prediction of the anticancer properties
of meloxicam: Meloxicam inhibits tumor growth in COX-2 positive colorectal cancer [54].
Tsubouchi et al. report that COX-2 plays a significant role in the pathogenesis and pro-
gression of non-small cell lung cancer (NSCLC), demonstrating the inhibitory effect of
meloxicam on the NSCLC growth by preferentially inhibiting COX-2 [55]. Reference [56]
shows that meloxicam is efficient in osteosarcoma in both COX-2-dependent and indepen-
dent inhibitory manners.

Cholecalciferol, ergocalciferol, and calcifediol (cluster C2, ATC codes M05BB09/
M05BX53/M05BB07/M05BB08/A11CC55/M05BB05/A11CC05/M05BB03/M05BB04,
A11CC01, and A11CC06) are vitamin D analogs. Cholecalciferol (vitamin D3) is a
fat-soluble vitamin (ATC level 1 A–Alimentary tract and metabolism, a category which
includes hydro-soluble and lipo-soluble vitamins) with a well-established role in bone
mineralization (ATC second level M05–Musculo-skeletal system, drugs for treatment of
bone diseases). Ergocalciferol and calcifediol are also grouped in A–Alimentary tract and
metabolism level 1 ATC. We predict these drugs as targeting diseases at level 1 ATC code
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L–Antineoplastic and immunomodulating agents (see Figure 8).There is extensive literature
reporting the beneficial effects of vitamin D analogs in different cancers and highlighting
the epidemiological, preclinical, and clinical results; all these back up their evolution as
prophylactic and curative anticancer drugs [57,58].

Chloroquine (cluster C2, ATC code P01BA01) is an antimalarial drug; consequently,
it belongs to the P–Antiparasitic products, insecticides and repellents level 1 ATC category.
According to our results, the predicted first-level ATC is L–Antineoplastic and immunomod-
ulating agents for chloroquine (dominant in cluster C1, see Figure A8). Multiple research
reviews report in vitro, in vivo, and clinical trials testing chloroquine’s anticancer effect
in glioblastoma [59] and other types of cancers [60–63], hence supporting the potential
repositioning of chloroquine as an anticancer drug, as uncovered by our methodology.

Mecasermin and mecasermin rinfabate (cluster C4, ATC codes H01AC03, H01AC05)
are recombinant insulin-like growth factor-1 drugs indicated in growth failure in children
with primary IGF-1 deficiency and, hence, are included in the H–Systemic hormonal prepara-
tions, excluding sex hormones and insulins. Literature and medicine regulatory authorities
reports present the secondary pharmacologic actions of mecasermin and mecasermin rin-
fabate, including the anabolic and insulin-like effects (i.e., hypoglycemia) [64–66]; these
pharmacologic effects could place the drugs in the A–Alimentary tract and metabolism level 1
ATC, as predicted by our methodology (see Figure 9).

Ornithine (cluster C25, ATC code A05BA06) is a non-essential amino acid indicated as
nutritional supplementation and for a good liver function and included in the A–Alimentary
tract and metabolism level 1 ATC. M. Miyake et al. suggest that L-ornithine may interfere
with the Central Nervous System, following a randomized, double-blind controlled trial
that demonstrated that L-ornithine relieved stress and improved sleep quality in humans
compared to the placebo group [67]. Indeed, we predicted ornithine at level 1 ATC N–
Nervous system (see Figure 10).

4. Discussion

In this section, we discuss the particularities of our method, namely the data we use,
the limitations of our method and its validation with ATC codes, and the way to integrate
it into an ensemble drug repositioning framework.

4.1. Drug–Gene Interactions

The method we propose in this paper uses drug–gene interaction data from DrugBank
versions 5.0.9 and 5.1.8. Table 2 presents examples of drug–gene interactions and their cor-
responding types, as defined by DrugBank 5.1.8 (see a detailed list of drug–gene interaction
types in the Supplementary Materials Table S1 file DDSN-results.xls and how to retrieve
such drug–gene interactions from DrugBank in the GitHub page https://github.com/
GrozaVlad/Drug-repurposing-using-DDSNs-and-modularity-clustering (last commit on
21 October 2021)).

4.2. Method Limitations

The mechanisms that influence the polypharmacological profile of drugs are highly
complex. Indeed, the medicinal compound interacts with a complex system represented by
the human organism. Complex systems are context-dependent; in other words, any detail
at the micro-scale influences the macroscale behavior. As such, many factors can be consid-
ered when analyzing the functions of any pharmaceutical substance: from the chemical
structure to various types of relationships and interactions, as well as pharmacokinetics and
pharmacodynamics. By this logic, our approach is limited to considering a narrow informa-
tional angle, namely drug–gene interactions. Nonetheless, considering many mechanisms
and types of data simultaneously within the same model would be prohibitively complex,
and the networks would become much too dense for any centrality of community analysis.
Even considering one type of information has become significantly complex; for instance,
the drug–drug interaction networks in DrugBank 3.0 had an average degree of ∼20, and

https://github.com/GrozaVlad/Drug-repurposing-using-DDSNs-and-modularity-clustering
https://github.com/GrozaVlad/Drug-repurposing-using-DDSNs-and-modularity-clustering
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in DrugBank 5.1.8 the average DDI network degree is ∼600). Recent literature [68–70]
advances the so-called ensemble methods to address this new situation of being confronted
with an overabundance rather than scarcity of data (see Section 4.4).

Table 2. Examples of drug–gene interactions listed in DrugBank.

Drug Name Gene Name Interaction Type

Alteplase PLG activator
Hydromorphone OPRK1 agonist
Varenicline CHRNB2 partial agonist
Prazosin ADRA1B antagonist
Ascorbic acid EGLN1 chaperone
Pyridoxal phosphate GAD1 cofactor
Vardenafil PDE6G allosteric modulator
Trastuzumab ERBB2 antibody
Nusinersen SMN2 antisense oligonucleotide
Methysergide HTR1F binder
Tiapride DRD2 blocker
Carvedilol KCNJ4 inhibitor
Clobetasol propionate ANXA1 inducer
Clofazimine PPARG modulator
Cerliponase alfa IGF2R ligand
Filgrastim CSF3R stimulator
Dalteparin SERPINC1 potentiator
Vitamin A RDH13 substrate
Nedocromil CYSLTR1 suppressor
Belimumab TNFSF13B neutralizer
Esmirtazapine HRH1 inverse agonist
Procainamide DNMT1 other
Haloperidol HTR2A other/unknown

4.3. Labeling and Validation with ATC Codes

Employing computational methods (i.e., data mining and machine learning) in drug
repositioning is generally hampered because we do not a have robust ground truth. In-
deed, databases such as DrugBank record positive information about the drugs’ known
properties and functions, yet the absence of evidence is not evidence of absence (some drug
properties may be hidden, and only future experiments can fully reveal them). That is
why performance evaluation and validation of computational drug repositioning models
are still an open issue; therefore, researchers adopt ad hoc, particular strategies, which
are hard to compare [71]. Consequently, we resorted to making predictions with an older
database version and then validating them with the latest version. However, even the latest
database still cannot contain exhaustive information about drug functions. Furthermore,
the negative information on drug functions/effects (stating what properties a drug does not
have) will help prune the vast search space in drug repositioning. Unfortunately, negative
information is scarce and scattered throughout the literature; to the best of our knowledge,
no comprehensive dataset contains such data based on experimental results. As such, the
existing negative information cannot be used algorithmically/automatically. As explained,
one feasible method for filtering the noise and navigating the search space affected by
uncertainty—an approach supported by recent research—is to integrate tools (such as the
one we propose here) in ensemble methods.

Many computational drug repositioning methods based on complex networks rely
on community detection and community labeling. However, labeling can be cumbersome
and subjective; thus, we decided to use ATC codes, since this system is the standard for
classifying medicines accepted by the WHO. Furthermore, the automated approach is
fostered because the ATC code aggregates all information about a drug in a combination of
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letters and numbers, which are easier to process algorithmically. The ATC code classifies
drugs on five levels considering three criteria simultaneously: anatomical (A)—the first
level; therapeutic (T)–levels 2 and 3; and chemical (C)—levels 4 and 5. The anatomical
criterion indicates the anatomical level or the physiological organ systems on which a
specific drug acts. Each anatomical level is indicated in the ATC code by a letter (e.g.,
A–Alimentary tract and metabolism, C–Cardiovascular system, M–Musculoskeletal system, or
R–Respiratory system); the ATC system contains 14 anatomical groups. Level 2 represents
the therapeutic classification criterion and is encoded by two digits. Level 3 (encoded by
a letter) indicates the particular pharmacological group of the drug. Level 4 (encoded
by a letter) indicates the chemical class of the drug. Level 5 is encoded by two digits the
chemical structure of the drug. This paper only used the first-level ATC codes for labeling
and validation of prediction, although drug function is more precisely expressed by levels
1–3; we opted perform this because the sophisticated hierarchical clustering algorithms
entailed by such an approach would have unnecessarily intensified the computational
character of our study.

4.4. Method Application

When the problem at hand is too complex to solve by employing a single model,
machine learning uses an ensemble strategy [72], which trains several models on the same
set of data to operate collectively for solving the problem. This strategy is already used
in bioinformatics to approach complex problems such as motif discovery in ChIP-Seq
data [73]. The problem of drug repositioning is also very complex; however, prediction
accuracy is not the primary indicator of success (the benefit of correctly predicting even a
few drug repositionings is more significant than the cost of experiments entailed by testing
the wrong predictions [74].) As such, very recent literature advances the idea of using
ensemble methods for drug repositioning [69,70].

In this context, considering that—as explained in Section 4.2—our method uses drug–
gene interaction data that partially describes the behavior of drugs, we indicate the ensem-
ble strategy as ta method to use our method. As shown in Figure 11, drug repositioning
prediction based on drug–gene interaction data may be Methodi from the group of machine
learning methods based on distinct models {Method1, Method2, . . . Methodm}. The reposi-
tioning hints list i is aggregated (i.e., via voting, averaging, or other procedures) to produce
a final drug repositioning hints list. The aggregation process may use pharmacological
expertise, e.g., to adjust the weights of a weighted average. However, implementing the en-
semble strategy is beyond the scope of this paper, which aims to analyze and promote—for
the first time—the beneficial role of drug–gene interaction networks for computational
drug repositioning.

Figure 11. Overview of the ensemble strategy in drug repositioning. A group of machine learning and
data mining methods {Method1, Method2, . . . Methodm}, implementing various models and using
distinct features (e.g., drug–drug interactions, drug–target interactions, drug–gene interactions, drug–
adverse reactions relationships, pharmacokinetic properties) from the same comprehensive dataset
and predicting a list of drug repositioning hints. Each method Methodi generates its repositioning
hints list, and an aggregation process assembles all lists in the final repurposing hints list.
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5. Conclusions

In this paper, we propose a new drug repurposing methodology based on algorithmic
complex network analysis. To this end, we introduce an original method of building the
Drug–Drug Similarity Network (DDSN) using drug–gene interactions from DrugBank,
clustering DDSN with modularity classes, and labeling each cluster with the dominant
first level ATC code of drugs within the cluster. The assumption that results in drug
repurposing hints is that drugs in a cluster share the dominant property of the cluster.
We use an automated procedure to tune modularity resolution, to apply our methodology
on a DDSN built with data from DrugBank 5.0.9, to generate the list of drug repurposing
hints (i.e., drugs for which the first level ATC does not match the dominant cluster label),
and to check it against ATC codes in DrugBank 5.1.8.

By running our method on the DrugBank 5.1.8 DDSN, we generated a consistent list
of drug repositioning candidates; we select the top betweenness/degree drugs in each
cluster and perform a preliminary validation with state-of-the-art experimental results
reported in the literature. Due to the fact that we collected many literature confirmations of
our method’s predictions, we argue that our fully automated pipeline, based on Big Data
and unsupervised machine learning, is a practical tool that can substantially narrow the
enormous search space in drug repositioning.

To summarize, the overarching methodological contributions of our paper are listed
as follows:

(i) A new method to build weighted drug–drug similarity networks based on drug–
gene interactions;

(ii) An automated procedure to optimize the modularity resolution such that network
clustering maximizes the number of identified drug repurposings. A known/
confirmed drug repurposing is a drug with more level 1 ATC codes in the latest
drug database, compared with the earlier database—used to generate the drug–
drug similarity network;

(iii) A new drug repurposing list was generated with our pipeline from the latest
DrugBank 5.1.8 by analyzing the three most representative clusters.

In the present context, affected by the COVID-19 pandemic, we believe that the most
promising findings/results presented in our paper are the anti-infective effects of statins,
especially their potential antiviral effects. Indeed, the very recent comprehensive study [6]
also finds, following in vitro screening, that fluvastatin presents what the authors call
“strong effect” against SARS-CoV-2.

Considering all aspects presented in Section 4.2, we will extend our research on drug–
gene interaction networks by implementing hierarchical clustering to predict ATC codes on
levels 1–3, developing a dedicated cluster overlapping algorithm as a drug repositioning
prediction strategy (i.e., one would reasonably expect that drugs in the overlapping zone
would inherit the dominant properties of the respective clusters) and integrating the drug–
gene network method into an ensemble strategy. These future objectives require substantial
reliance on developing bioinformatic tools, entailing algorithm design, machine learning,
and Big Data analytics.
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Appendix A. Repositionings and Statistics for DrugBank 5.0.9 DDSN

Appendix A.1. DDSN Zoomed Details

Figure A1. The zoomed detail of the DDSN network built with drug–gene interaction data from
DrugBank 5.0.9, which shows the relative position of mepolizumab within cluster C0 (brown nodes)
with a red arrow (→). Our repositioning pipeline predicts that mepolizumab—listed as antineoplastic
in DrugBank 5.0.9—also acts as a drug with level 1 ATC code R (Respiratory system), confirmed by the
more recent DrugBank version 5.1.8.
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Figure A2. The zoomed detail of the DrugBank 5.0.9 DDSN network showing the relative position of
naloxone within cluster C0 (brown nodes) with a red arrow (→). Our repositioning pipeline predicts
that naloxone—listed as opioid overdose antidote in DrugBank 5.0.9—also acts as a drug with level 1
ATC code N (Nervous system), confirmed by the more recent DrugBank version 5.1.8.

Figure A3. The DrugBank 5.0.9 DDSN network’s zoomed detail shows the confirmed repositionings
within cluster C2 (green nodes) with red diamonds (�). Our repositioning pipeline predicts that
torasemide and quinetazone (both with ATC level 1 code C–Cardiovascular system in DrugBank
5.0.9), methazolamide, acetazolamide, dorzolamide, and brinzolamide (all with ATC level 1 code
S–Sensory organs in DrugBank 5.0.9) are Genito urinary system and sex hormones drugs (first level ATC
G). Zonisamide (N–Nervous system) is a brown node (cluster C0) but in the close vicinity of cluster C2;
therefore, they are also predicted at level 1 ATC code G.
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Appendix A.2. DDSN Cluster Histograms

Figure A4. Histograms of level 1 ATC codes in the DrugBank 5.0.9 DDSN clusters holding drug
repositionings confirmed by DrugBank 5.1.8: cluster C0 (brown nodes) in the left panel and cluster C2

(green nodes) in the right panel. The dominant property in cluster C0 is N–Nervous system, with many
subcluster drugs with level 1 ATC codes A, R, and C (Alimentary tract and metabolism, Respiratory
system, and Cardiovascular system, respectively). The dominant properties in cluster C2 are G, C, and
D (Genito urinary system and sex hormones, Cardiovascular system, and Dermatologicals, respectively).

Appendix B. Repositionings and Statistics for DrugBank 5.1.8 DDSN

Appendix B.1. DDSN Zoomed Details

Figure A5. The DrugBank 5.1.8 DDSN network’s zoomed detail shows four repositionings within
cluster C1 (green nodes) with a red diamond (�). Our repositioning pipeline predicts that simvastatin,
fluvastatin, lovastatin, and atorvastatin (currently at ATC level 1 codes C–Cardiovascular system) have
properties described by the level 1 ATC code J–Anti infectives for systemic use.
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Figure A6. The DrugBank 5.1.8 DDSN network’s zoomed detail shows a repositionings within cluster
C2 (light blue nodes) with a red diamond (�). Our repositioning pipeline predicts that meloxicam
(currently at ATC level 1 code M–Musculo-skeletal system) has properties described by the level 1 ATC
code L–Antineoplastic and immunomodulating agents.

Figure A7. The DrugBank 5.1.8 DDSN network’s zoomed detail shows a repositioning within cluster
C2 (light blue nodes) with a red diamond (�). Our repositioning pipeline predicts that theophylline
(currently at ATC level 1 code R–Respiratory system) has properties described by the level 1 ATC code
L–Antineoplastic and immunomodulating agents.
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Figure A8. The DrugBank 5.1.8 DDSN network’s zoomed detail shows repositioning within cluster
C2 (light blue nodes) with a red diamond (�). Our repositioning pipeline predicts that chloroquine
(currently at ATC level 1 code P–Antiparasitic products, insecticides and repellents) has properties
described by the level 1 ATC code L–Antineoplastic and immunomodulating agents.

Appendix B.2. DDSN Cluster Histograms

Figure A9. Histograms of level 1 ATC codes in the DrugBank 5.1.8 DDSN clusters holding drug
repositionings confirmed by literature review: cluster C0 (brown nodes), cluster C1 (green nodes),
cluster C2 (light blue nodes), and cluster C4 (pink nodes). The dominant property in cluster C0 is N–
Nervous System, J–Anti-infectives for systemic use in cluster C1, L–Antineoplastic and immunomodulating
agents in cluster C2, and A–Alimentary Tract and Metabolism in cluster C4.
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