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Abstract: In multiple sclerosis (MS), oxidative stress (OS) is implicated in the neurodegenerative 

processes that occur from the beginning of the disease. Unchecked OS initiates a vicious circle 

caused by its crosstalk with inflammation, leading to demyelination, axonal damage and neuronal 

loss. The failure of MS antioxidant therapies relying on the use of endogenous and natural com-

pounds drives the application of novel approaches to assess target relevance to the disease prior to 

preclinical testing of new drug candidates. To identify drugs that can act as regulators of intracel-

lular oxidative homeostasis, we applied an in silico approach that links genome-wide MS associa-

tions and molecular quantitative trait loci (QTLs) to proteins of the OS pathway. We found 10 drugs 

with both central nervous system and oral bioavailability, targeting five out of the 21 top-scoring 

hits, including arginine methyltransferase (CARM1), which was first linked to MS. In particular, the 

direction of brain expression QTLs for CARM1 and protein kinase MAPK1 enabled us to select 

BIIB021 and PEITC drugs with the required target modulation. Our study highlights OS-related 

molecules regulated by functional MS variants that could be targeted by existing drugs as a supple-

ment to the approved disease-modifying treatments. 
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1. Introduction 

Multiple sclerosis (MS) is the most common chronic inflammatory and progressively 

disabling disease of the central nervous system (CNS), affecting young adults and leading 

to demyelination and neuronal degeneration [1]. It is found worldwide, with the highest 

prevalence (>100 cases per hundred thousand) in the populations of Western Europe, 

North America and Australasia, with considerably lower prevalence (<30 cases per hun-

dred thousand) in populations that live nearer to the equator [2]. MS is likely the result of 

an interaction between genetic and environmental factors, but its etiology remains un-

known. Although approved immunomodulatory therapies are effective in the early stages 

of the disease, they have little or no benefit in terms of preventing the transition to a more 

steadily progressive phase, characterized by accumulation of neuronal injury and loss. 

Thus, the search for agents that slow neurodegeneration and disability progression in MS 

is urgent. 

Neuroinflammation is recognized as a key player in MS pathogenesis. It is present in 

all stages of the disease and involves adaptive and innate immune responses. Histopatho-

logical studies of MS indicate that demyelination and neurodegeneration are associated 
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with the production of inflammatory molecules by both blood-derived immune cells re-

cruited to the CNS and activated resident microglia [3]. Prolonged or chronic generation 

of cytokines, chemokines, reactive oxygen species (ROS) and reactive nitrogen species 

(RNS) creates a self-perpetuating loop that provokes CNS damage and is considered to 

play a key role in the onset and progression of the disease [4].  

ROS and RNS, including superoxide ions, hydrogen peroxide, nitric oxide and per-

oxynitrite, are generated by NADPH oxidase and nitric oxide synthase during normal 

cellular metabolism. However, these molecules are deleterious if overproduced because 

they can damage lipids, proteins and nucleic acids, eventually leading to cell death. Sig-

nificant evidence indicates that the sustained inflammatory phase of MS creates an imbal-

ance between ROS/RNS generation and the antioxidant defense systems, causing oxida-

tive/nitrosative stress which has a role in CNS tissue damage [5]. Antioxidant defense is 

normally achieved with enzymes, such as superoxide dismutase, catalases and peroxire-

doxins, as well as systems of antioxidant production, like the thioredoxin and glutathione 

systems. In addition, reactive species directly interact with critical signaling molecules, 

such as the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2) and nu-

clear factor κB (NfkB) and mitogen activated kinases (MAPK) [6–8] which regulate anti-

oxidant gene expression and cell survival. A recent gene expression study of MS brain 

areas adjacent to perivascular inflammatory cell infiltrates showed a significant induction 

of antioxidant genes in actively demyelinating and chronically active white matter lesions 

as part of a counter-regulatory response aimed at containing inflammation and limiting 

tissue damage [9]. Hence, the identification of drugs able to effectively support the 

maintenance of redox homeostasis represents a rational approach to limit MS-associated 

neurodegenerative processes. 

Among current MS drugs, only dimethyl fumarate has been linked to the induction 

of antioxidant pathways, specifically through direct activation of Nrf2, a transcription fac-

tor with a crucial role in the regulation of the antioxidant defense response [10]. In addi-

tion, the clinical efficacy of natalizumab and fingolimod could in part be explained by 

their ability to increase antioxidant molecules and reduce oxidative stress (OS) biomarkers 

in MS patients [11,12], even though the mechanism responsible for these effects has not 

yet been established. Nevertheless, most complementary antioxidant therapies relying on 

endogenous and natural compounds have been previously investigated without over-

coming MS clinical evaluation [13]. A possible explanation of this oversight is that the 

rationale behind the use of small molecules acting as scavengers was based on miscon-

ceptions linked to an incomplete understanding of antioxidant defense processes during 

disease development [14]. Hence, novel approaches should be used to assess the disease 

relevance of antioxidant targets prior to preclinical testing of new drug candidates. 

It is now widely accepted that the selection of targets based on genetics significantly 

increases the success rates of clinical development programs [15,16]. The idea is to identify 

targets involved in disease processes that can be therapeutically modulated [17,18]. Over 

the past fifteen years, genome-wide association studies (GWAS), in increasingly larger 

sample sets, have succeeded in identifying more than 200 susceptibility loci for MS out-

side the major histocompatibility complex (MHC) [19]. In parallel, new functional ge-

nomic techniques assessing molecular quantitative trait loci (QTLs), such as chromatin 

interactions, protein level and gene expression regulation, have proven to be useful for 

the systematic identification of genes through which trait-association variants act, im-

proving the clinical impact of GWAS [20]. Computational searches for existing drugs that 

modulate the molecular targets identified by genetic studies offer the advantage of repo-

sitioning, reducing the costs and timescales of drug development. In addition, in silico 

approaches are currently being used for the prediction of physicochemical properties, 

such as the blood–brain barrier (BBB) permeability and oral bioavailability of drugs, fur-

ther reducing the risk of failure [21].  

Here, we designed and applied an integrated approach that combines MS GWAS, 

molecular QTLs and in silico techniques of drug discovery, providing support for single 
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drug candidates known to act as modulators of genes and/or gene products that are linked 

to OS pathways (Figure 1).  

 

Figure 1. Schematic illustration of the in silico workflow. Multiple sclerosis (MS) genetic variants were collected from the 

Genome-Wide Association Studies (GWAS) Catalog and molecular Quantitative Trait Loci (QTLs) were exploited for each 

hit in the LinDA browser to identify gene targets. In parallel, all proteins from 22 oxidative stress-related pathways were 

retrieved from the Reactome database. The overlap of these data allowed for the identification of 85 common targets which 

were then prioritized through score assignment. Query of public drug databases for the 21 top targets enabled the selection 

of 35 drugs either already approved or in clinical trials that bind to six MS molecular targets. Absorption, Distribution, 

Metabolism, Excretion and Toxicity (ADME-Tox) selection highlighted 10 drugs with CNS localization and oral bioavail-

ability for repurposing in MS. 

2. Materials and Methods 

2.1. Data Collection 

MS GWAS summary statistics were extracted from the GWAS Catalog [22,23]. The 

selected genetic variants represent the most associated signal (top variant) in each ge-

nomic region (locus) given a significance threshold of p-value < 1 × 10−5. All variants have 

been annotated by their rsID in dbSNP154, when available, or by chromosome and ge-

nomic positions encoded in the Genome Assembly GRCh38/hg38. To assign the most re-

liable gene target to each associated variant, molecular QTLs were searched for each hit 

in a large manually curated QTL resource, the LinDA browser [24,25]. Data from protein 

QTLs (pQTLs), expression QTLs (eQTLs), splicing QTLs (sQTLs), polyadenylation QTLs 

(polyQTLs) and methylation QTLs (mQTLs) were collected. The genomic positions in the 

LinDA browser being encoded in the Genome Assembly GRCh37/hg19, genomic coordi-

nates were converted from GRCh38/hg38 to GRCh37/hg19 using the LitfOver tool in the 

UCSC Genome Browser [26,27]. 
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Top variants were searched for molecular QTLs, including all variants showing a 

linkage disequilibrium (LD) r2 > 0.7 with the top variants (proxies) in the European pop-

ulation. LD was calculated using the --ld option in the plink v.1.9 software [28,29] on data 

from the 1000 Genome Project reference panel [30]. 

The functional role of each tested variant was further evaluated by the Variant Effect 

Predictor (VEP) tool [31], and missense or more deleterious variants with a deleterious-

ness score (combined annotation dependent depletion, CADD-Phred) > 15 were priori-

tized [32].  

Genes regulated at the RNA or protein level by a hit variant (or by a variant in strong 

LD with a hit variant) or tagged by a functionally relevant variant were flagged as “gene 

targets”. 

The direction of the effect of each disease risk variant on the target product was cal-

culated to establish the direction of the gene target modulation by therapy. To this end, 

the disease risk alleles available from the GWAS Catalog were coupled with the molecular 

QTLs alleles by applying the Plink --ld option to the European ancestry genotypes en-

coded in the 1000 Genome Project reference panel [30]. The direction of the effect of the 

disease risk allele on the molecular QTL was thus indicated as positive if the coupled mo-

lecular QTL allele showed a positive effect, and negative otherwise. 

In parallel, 22 pathways related to OS were identified by Reactome [33,34], and all 

proteins belonging to the pathways were extracted.  

Genes and/or proteins obtained by the overlapping between the MS-related genes 

and the OS-related proteins were recorded as “targets”. 

For each target, a prioritization score was defined by leveraging the gene-level infor-

mation derived from GWAS and from LD. In particular, for each target, all top variants, 

together with their molecular QTL proxies pointing to the same gene, were collected. A 

score was attributed to the target for each of the following criteria met by at least one 

collected variant: 

Top hit significantly associated with MS (p-value < 5 × 10−8: score = 5, if lying in the 

MHC region (chr6:27–33 mb in GRCh37): score = 2); 

Top hit having a high effect on the disease compared to all top hit effects (odds ratio, 

OR > 1.2), with a decreasing score depending on the LD with gene-level molecular QTLs 

(LD ≥ 0.99: score = 4; LD range (0.95–0.99): score = 3; LD range (0.90–0.95): score = 2; LD 

range (0.80–0.90): score = 1); 

eQTL available (score = 10; if the eQTL acts in the brain: additional score = 5); 

LD level between the top hit and the eQTL (LD ≥ 0.99: score = 5; LD range (0.95–0.99): 

score = 3; LD range (0.90–0.95): score = 2; LD range (0.80–0.90): score = 1);  

QTL (except eQTL) with LD ≥ 0.99 with top hit: score = 3. 

An overall score was calculated as the sum of the partial scores and the top 25% tar-

gets were then prioritized.  

2.2. g:Profiler Analysis 

To perform functional enrichment analysis, g:Profiler e94_eg41_p11_9f195a1 was 

used [35,36]. The parameters for the enrichment analysis were as follows. A specific or-

ganism was chosen: H. sapiens (human). Gene Ontology (GO) analyses, GO molecular 

function (GO:MF), GO cellular component (GO:CC) and GO biological process (GO:BP) 

were carried out sequentially. The biological pathways used were the Kyoto encyclopedia 

of genes and genomes (KEGG), Reactome (REAC) and WikiPathways (WP) databases. 

The protein databases used were the Human Protein Atlas and CORUM databases. The 

statistical domain scope was used only for annotated genes. The significance threshold 

was the g:SCS threshold. The user threshold was 0.05. 
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2.3. Drug Searching  

Four different databases, OpenTarget [37,38], SuperTarget [39], DrugBank [40,41] 

and DGIdb [42,43] were used to search for drugs related to the targets of interest. 

2.4. In Silico Prediction of Physicochemical Properties of Drugs 

The Absorption, Distribution, Metabolism, Excretion and Toxicity (ADME-Tox) pro-

file of the investigated compounds was predicted using the Schrodinger QikProp tool 

(Small-Molecule Drug Discovery Suite 2021–1, Schrodinger, LLC, New York, NY, USA). 

QikProp uses several indicators to estimate the activity in the CNS and thus also the ability 

of a compound to cross the BBB. The three most important are: (i) LogBB, which represents 

the blood–brain partition coefficient; (ii) the Madin–Darby dog kidney cell model (appar-

ent MDCK permeability), which estimates the penetration of the substances through a 

layer of these cells, measured in nm/sec; (iii) the predictor of activity in the CNS. The in-

dicators used to evaluate oral absorption include Human Oral Absorption, Percent Hu-

man Absorption and apparent Caco2 permeability, Caco2 being a human colon carcinoma 

cell line used to predict human intestinal permeability and to investigate drug efflux. 

3. Results 

3.1. Genetic-Driven Identification of Targets Linked to Oxidative Pathways in MS  

We systematically collected GWAS data for MS from the GWAS Catalog (Methods), 

identifying 698 different genetic variants (hits; Table S1, Supplementary Materials). We 

then examined molecular QTLs to identify gene targets by searching each hit or its proxies 

(with r2 > 0.7) in the LinDA browser (Table S2). This LD-based searching strategy allowed 

us to maximize the information collected, considering that differences in the genetic map 

and/or in the sample size used in each study (both on disease and molecular QTLs) could 

lead to the identification of different genetic variants representing the same genetic signal. 

In addition, we evaluated the functional role of each tested variant by VEP, focusing on 

missense or more deleterious variants with a CADD-Phred score >15 (Table S3). Thus, 

each gene regulated at RNA or protein level by a hit variant or tagged by a functionally 

relevant variant, excluding MHC genes, was recorded for a total of 2,085 unique gene 

targets (Table S4). In parallel, we extracted the proteins encoded by 931 unique targets 

included in 22 OS-related pathways from the Reactome database [44] (Tables S5 and S6). 

The overlap between the 2,085 MS-related gene targets and the 931 OS-related proteins 

led to the identification of 85 shared targets (Table S7), including KEAP1 and HDAC1, 

which are both known to be modulated by drugs currently in use for MS (dimethyl 

fumarate and fingolimod, respectively). Among the 85 targets, 18 are supported by mo-

lecular QTLs in the brain (ASF1A, ATP6V1G2, BBC3, BCL2L11, CAPN1, CARM1, 

CHAC1, CRTC3, CSNK2B, DNM2, FOXO3, HSPA1L, KEAP1, MAPK1, NUP85, 

POM121C, PSMB9 and TRMT112). In addition, for each variant whose risk allele effect on 

the gene product was available in the brain, we were able to establish the direction of 

action (up or down) on the transcript/protein level and, consequently, to choose drugs 

with the proper mode of modulation: inhibition or activation (Table S8). In particular, 10 

targets were regulated by MS risk variants at some level in the brain, and among them we 

observed increased expression levels for seven targets (ASF1A, CAPN1, CARM1, CHAC1, 

NUP85, POM121C and TRMT112) and decreased levels for three targets (BBC3, MAPK1 

and PSMB9).  

3.2. Functional Enrichment Analysis of the Identified Targets  

To obtain the enrichment information for the 85 candidate targets showing QTLs, 

g:Profiler analysis was performed [36]. The default analysis implemented in g:Profiler 

searches for pathways whose genes are significantly enriched (i.e., over-represented) in 

the target list of interest and compares them to all genes in the genome. Among the most 

significant pathways detected by REAC, “cellular response to stress” (p-value = 4.2 48 × 
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10−36) and “cellular responses to external stimuli” (p-value = 1. 326 × 10−35) have been 

pointed out, consistent with OS being the investigated disease phenotype (Figure 2). “Pro-

teasome” (p-value = 8. 289 × 10−7) and “proteasome degradation” (p-value = 9. 576 × 10−7) 

have been identified as the most represented pathways by KEGG and WP, respectively. 

The three most significant cellular functions outlined by GO were “transcription factor 

binding” (GO:MF, 1. 942 × 10−6), “cellular response to stress” (GO:BP, 8. 022 × 10−19) and 

“cytosol” (GO:CC, 1. 303 × 10−19). Table S9 gives details of all the individual targets in-

volved in the described analyses.  

 

Figure 2. g:Profiler analysis of 85 targets. (A) Graphic representation of the results. (B) The most significant results for 

Gene Ontology (GO) and pathways enrichment were shown. GO molecular function (GO:MF); GO biological process 

(GO:BP); GO cellular component (GO:CC); Kyoto encyclopedia of genes and genomes (KEGG); Reactome (REAC); Wik-

iPathways (WP). 

3.3. Target Prioritization and Drug Search 

To prioritize the 85 selected targets, we assigned to each of them a genetic-based score 

which considers the strength of association (variant effect magnitude and significance) 

with the disease, the presence of QTLs regulating the gene target at protein expression 

level, particularly in the brain, and the extent of LD supporting all the molecular infor-

mation. 

Based on the score distribution, we then fixed a threshold of score ≥20, which corre-

sponds to the top 25% of the OS-related targets (Figure S1). We prioritized 21 targets (Ta-

ble S10), including seven targets regulated by eQTLs in the brain for which we established 

the required direction of modulation (TRMT112, CAPN1, ASF1A, NUP85 and CARM1, 

suggested to be inhibited, and BBC3 and MAPK1, suggested to be activated). 

In four different databases, we searched for modulators of the 21 top-ranking targets 

(Table S10), selecting only: (i) drugs approved or in clinical trials; (ii) drugs known to act 

directly on the specific target or as transcriptional target modulators based on established 

criteria (DGIdb interaction score >0.50 and published data on experimental validation); 
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(iii) drugs having a mode of action consistent with the direction of the eQTL for the risk 

allele in the brain, if present. This analysis identified 35 modulators of six out of the 21 top 

targets (MAPK1, MAPK3, CARM1, CDK4, STAT3 and FOS), with a substantial number of 

drugs for each target, except for CARM1, which had only one. To increase the modulators 

of CARM1 and to investigate the druggability of the remaining top-ranking targets, we 

also looked for experimental drug trials, finding five CARM1 inhibitors and 11 com-

pounds for two additional targets (NR1D1 and CAPN1). In addition, the presence of at 

least one modulator on Pharos makes the targets ASF1A, HVCN1 and YWHAQ drugga-

ble [45,46]. We then compiled a final list of 50 compounds for the next selection phase. 

3.4. Pharmacokinetic Prioritization of the Selected Drugs  

By QikProp, the ADME-Tox properties of 35 repurposable drugs and 15 experimental 

compounds associated with the eight selected targets were predicted (Table S11). Among 

the selection criteria, we prioritized the expected penetration into the CNS and the oral 

bioavailability, which are essential for maintaining drug function and potency towards 

the respective targets. In addition, physicochemical descriptors and other general proper-

ties related to good overall pharmacokinetics and metabolism profiles were considered. 

In detail, we selected compounds having (i) a value ≥0 for predicted CNS activity; (ii) 

medium–good values of logBB and MDCK apparent permeability; (iii) high values of hu-

man oral absorption and percent human oral absorption; (iv) medium–good values of 

Caco2 apparent permeability (Table S11). Overall, this analysis identified 10 repurposable 

drugs (Table 1) and seven experimental compounds. The selected drugs include: (i) the 

CARM1 inhibitor BIIB021 in clinical trial for breast and gastrointestinal tumors; (ii) the 

MAPK1 activator PEITC in clinical trial for lung and oral cancer; (iii) four CDK4 inhibitors, 

ABEMACICLIB approved for breast cancer, ALVOCIDIB, MILCICLIB and PHA-793887 

in clinical trials for several tumors; (iv) three STAT3 modulators, ERLOTINIB approved 

for lung cancer, ENMD1198 and ATIPRIMOD in trial for neuroendocrine cancer and mul-

tiple myeloma; (v) PILOCARPINE approved for the treatment of presbyopia as an inducer 

of FOS expression. Some of the drugs that are presented in Table 1 do not directly modu-

late the identified targets but may act through indirect mechanisms. The MAPK1-3 inhib-

itors, MK8353 and LY3214996, were removed from the list since they have a mechanism 

of modulation not consistent with the direction of eQTLs that we identified for MAPK1 in 

the brain. The seven experimental compounds that exceeded the pharmacokinetics inves-

tigation comprise three CARM1 inhibitors (MS049, MS023, TP064) and four NR1D1 mod-

ulators (agonists GSK4112, SR9009 and SR9011 and antagonist SR8278) (Table S11). 

Table 1. Repurposable candidates for oxidative-stress phenotype in MS. The table shows drug candidates with their mech-

anism of action and clinical trial status for each target. The queried databases are also reported. 

Target Drug 
Mechanism of 

Action  
Status * Database 

CARM1 BIIB021 
HSP90 and CARM1 

inhibitor 

Phase II for breast cancer  

and gastrointestinal stromal tumors  
DGIdb 

MAPK1 

PHENETHYL 

ISOTHIOCYA-

NATE, 

(PEITC) 

Bioactive compound  

activates ERK signal 

Phase II lung cancer, 

tobacco use disorder and oral cancer  
Super Target 

CDK4 ABEMACICLIB  CDK4/6 inhibitor Approved for breast cancer 

DGIdb, 

DrugBank, 

OpenTarget 

CDK4 ALVOCIDIB  CDKs inhibitor  

Phase II for chronic lymphocytic leuke-

mia; relapsed or refractory  

multiple myeloma;  

DGIdb; 

DrugBank; 

OpenTarget 
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B-cell lymphoma; sarcoma; acute mye-

loid leukemia; prostate cancer; ad-

vanced ovarian epithelial cancer or pri-

mary peritoneal cancer; adenocarci-

noma; kidney cancer; melanoma;  

endometrial cancer  

CDK4 MILCICLIB CDKs inhibitor  
Phase II for malignant thymoma and 

hepatocellular carcinoma 

DGIdb; 

OpenTarget 

CDK4 PHA-793887 CDKs inhibitor 
Phase I for advanced- 

metastatic solid tumors 
DGIdb 

STAT3  ATIPRIMOD 
Blocks STAT3 

activation 

Phase II for neuroendocrine cancer and 

multiple myeloma 
DGIdb 

STAT3 ENMD 1198 

Mitosis inhibitors; 

tubulin modulators; 

STAT3 inhibitor 

Phase I for advanced cancer DrugBank 

STAT3 ERLOTINIB 

EGFR inhibitor; 

stimulated  

phosphorylation 

and 

activation of STAT3 

Approved for lung and pancreatic can-

cer 

SuperTarget; 

DGIdb 

FOS PILOCARPINE 

Muscarinic receptor 

agonist- 

induced c-fos  

expression 

Approved for the treatment of presby-

opia 
DGIdb 

* Only the highest phase is shown. 

4. Discussion 

Advanced genetic analysis in MS has identified variants that clearly influence gene 

expression of CNS-resident immune cells [19], highlighting potential functional conse-

quences for dysregulation of genes involved in the generation of inflammatory and oxi-

dative mediators that trigger neurodegenerative processes. Our purpose was to link ge-

nome-wide MS associations and the correlated molecular QTLs to targets of OS pathways, 

improving the prediction of drug candidates that act as regulators of intracellular oxida-

tive homeostasis. We selected 10 drugs already in use for cancer therapies that are specific 

for five out of the 21 top-scoring targets involved in the interplay between oxidation–

apoptosis–autophagy–inflammation. Of these, MAPK1, STAT3, CDK4 and FOS targets 

have been indicated in previous MS GWAS [19,47–49], while the potential genetic link of 

CARM1 with MS is novel. However, drugs with CNS and oral bioavailability have not 

been predicted for any of these targets. 

GWAS-associated genes have already resulted in candidate targets for drug discov-

ery and repositioning in both complex and monogenic diseases [50]. Concerning MS, sev-

eral studies have outlined the functional consequences of a set of disease variants [47] but 

these findings have not yet been translated into clinical practice. Moreover, the crosstalk 

between OS, neurodegeneration and neuroinflammation has a central role in the patho-

genesis of MS [51]. 

In this study, we correlated MS susceptibility loci to OS pathways, finding those al-

leles (outside the MHC) that influence risk for this relevant disease phenotype. Notably, 

85 shared targets were identified and ranked by assigning a score to each genetic outcome 

available. The reliability of our results is supported by the high score for KEAP1 and 

HDAC1, known targets of two drugs currently in use for MS, the antioxidant dimethyl 

fumarate and the immunomodulator fingolimod, respectively. As expected, our selected 
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targets are linked with OS at different levels, in line with the dynamic outline of this pro-

cess, which accounts for various interrelated events occurring in different cellular com-

partments. Our list includes: NCF4, a component of the NADPH oxidase system, and the 

proton channel HVCN1, which are involved in ROS generation [52]; MAPK1, MAPK3, 

STAT3 and FOS, inflammatory signaling molecules directly activated by ROS [53,54]; the 

arginine methyltransferase CARM1, a transcriptional co-activator known to regulate 

NFkB-dependent gene expression [55] and to be involved in cellular processes, such as 

autophagy, control of the cell cycle and differentiation [56]; the kinase CDK4, which pro-

motes cellular growth by stimulation of mitochondrial biogenesis and concomitantly in-

creases ROS generation [57]; the circadian gene NR1D1, which improves cellular bioener-

getics and is regulated by OS and inflammation [58,59]. Interestingly, targets involved in 

complex regulatory mechanisms have recently attracted interest in the treatment of mul-

tifactorial diseases, such as neurodegenerative diseases, in which several biochemical 

events and molecular targets operate simultaneously [60]. 

Our approach of genetic-driven target identification is based on the integration of 

GWAS with eQTLs, especially those measured in brain tissues, to assess genes whose ex-

pression levels are modulated by non-coding disease-related variants [49]. The fact that 

80% of the genetic variants identified by GWAS map in non-coding regions highlights the 

potential of functional genomic tools [50,61]. The use in this pipeline of different MS 

GWAS datasets, including those not containing complete whole-genome results, in-

creased the number of potential candidate targets. Moreover, when the correspondence 

between a disease-risk variant and an eQTL allele has been derived, we were able to ob-

tain important information about the direction of drug target modulation to be consid-

ered. 

Query of public databases, combined with in silico pharmacokinetics, allowed for the 

selection of 10 drugs acting as modulators of five targets associated with oxidative path-

ways in MS. The direction of brain eQTLs for CARM1 and MAPK1 enabled us to identify 

two drugs with the required target modulation, prioritizing BIIB021 and PEITC over mod-

ulators of targets without the direction of their allelic effect. In particular, BIIB021 is a 

CARM1 and HSP90 inhibitor currently in clinical trials for treating hematopoietic malig-

nancies and solid tumors (NCT01004081, NCT00618319 and NCT00344786) which easily 

crosses the BBB and can be administered orally. The drug mechanism responsible for 

CARM1 inhibition has not yet been defined, and there is the possibility that it acts indi-

rectly via the inhibition of HSP90, which was identified as a CARM1 interactor (EP 3 208 

615 B1). In addition, we also indicated highly selective inhibitors of CARM1, recently de-

veloped and tested in experimental models [62–64]. PEITC is an organosulfur bioactive 

compound, known as an MAPK1 activator, that is currently in trial for lung cancer and 

leukemia treatment (NCT00691132 and NCT00968461). Notably, the anti-inflammatory 

and antioxidant activity of PEITC has been extensively demonstrated in both in vitro and 

in vivo models. [65,66]. Of note, our in silico ADME analysis confirmed previous data on 

the BBB permeability of this drug [67].  

Lack of data on the direction of the effects of MS risk variants in the modulation of 

STAT3, CDK4 and FOS in the brain does not allow the selection of drugs with adequate 

therapeutic modulation (activation or inhibition). Previous studies based on genetic vari-

ants and QTLs have suggested drugs for repurposing without exploiting the direction of 

effects [49,68], further supporting the potential relevance of our results. 

In our study, we exclusively selected drugs that had passed clinical phase I and 

which therefore should be free of serious side effects regardless of their selectivity. Nev-

ertheless, some drugs, including the CDKs inhibitor Alvocidib, present dose-dependent 

adverse effects that might be evaluated in the disease of interest by a risk–benefit analysis. 

As shown for CARM1, small molecules with a higher selectivity can be found among com-

pounds active in preclinical studies but, by definition, these are not currently repurposa-

ble compounds. 
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The knowledge about targets relevant to OS in MS for which no approved modula-

tors are currently available could be exploited in future drug discovery studies. Our 

search for experimental modulators of these targets led to the identification of NR1D1 

agonists and antagonists [69], thus proving the druggability of an additional target. 

A major limitation of our in silico approach concerns the finding that only about 22% 

of protein-coding genes are druggable [70], which is consistent with the low proportion 

of top-identified targets engaged by approved or in clinical trial drugs. A more stringent 

selection of genes strongly associated with disease may result in the loss of relevant targets 

showing small effect sizes [71]. In addition, the smaller number of QTLs assessed in the 

brain compared to other tissues and the lack of protein-QTLs significantly reduce the 

number of candidate genes to be matched with the selected disease phenotype. It should 

also be kept in mind that public databases for GWAS, drug targets and pathways make 

available data that are usually not uniform, often incomplete and frequently not up-to-

date, and these represent important constraints for the achievement of a comprehensive 

analysis. 

5. Conclusions 

This study highlights the support of genetics in identifying targets which can poten-

tially result in an unbalance of OS-related pathways in MS and existing drugs that can be 

repositioned to aim at these targets. We showed for the first time an increased expression 

of CARM1 genetically linked to MS. This finding agrees with the emerging dysregulation 

of methylation pathways in MS, which may impact immune and neurological processes 

[72]. Notably, several links between arginine methylation and neurodegenerative dis-

eases, such as amyotrophic lateral sclerosis, Alzheimer’s and Huntington’s disease, have 

been established over the last few years [73]. However, preclinical studies will be neces-

sary to validate the best drug candidates in cellular or animal models before their thera-

peutic application. A network pharmacology analysis could be helpful in identifying com-

binations of drugs targeting different unbalanced signaling pathways consistent with om-

ics data integration and a multitarget drug development approach [74]. 
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