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Abstract: In this study, a hybrid modeling framework was developed for predicting size distribution
and content uniformity of granules in a bi-component wet granulation system with components of
differing hydrophobicities. Two bi-component formulations, (1) ibuprofen-USP and micro-crystalline
cellulose and (2) micronized acetaminophen and micro-crystalline cellulose, were used in this study.
First, a random forest method was used for predicting the probability of nucleation mechanism
(immersion and solid spread), depending upon the formulation hydrophobicity. The predicted
nucleation mechanism probability is used to determine the aggregation rate as well as the initial
particle distribution in the population balance model. The aggregation process was modeled as
Type-I: Sticking aggregation and Type-II: Deformation driven aggregation. In Type-I, the capillary
force dominant aggregation mechanism is represented by the particles sticking together without
deformation. In the case of Type-II, the particle deformation causes an increase in the contact area,
representing a viscous force dominant aggregation mechanism. The choice between Type-I and II
aggregation is determined based on the difference in nucleation mechanism that is predicted using the
random forest method. The model was optimized and validated using the granule content uniformity
data and size distribution data obtained from the experimental studies. The proposed framework
predicted content non-uniform behavior for formulations that favored immersion nucleation and
uniform behavior for formulations that favored solid-spreading nucleation.

Keywords: wet granulation; multicomponent; population balance model; content uniformity

1. Introduction

The modeling of wet granulation process provides better insight into its process
dynamics, which then can be used for efficient process control and scale-up if required [1,2].
The simultaneous, interacting mechanisms in the wet granulation process make it a difficult
unit operation to model. Various techniques are used for the modeling of granulation
(based on time scale and length scale). The population balance model (PBM) or PBM
coupled with particle-level models such as discrete element method (DEM) and continuous
fluid dynamics (CFD) are extensively used for this purpose [3–5]. Although PBM captures
multi-dimensional properties of granules such as size, composition, and porosity, the model
predictions are restricted to the experimental design space due to the large number of fitting
parameters involved. DEM is a physics-based model that tracks the particle positions based
on collisions between particles and therefore is not impacted by design space changes.
However, DEM is unable to independently simulate particle property changes resulting
from various mechanisms in the wet granulation process. A coupled or hybrid DEM-
PBM is found to be useful for comprehensively representing wet granulation at all scales
(micro-meso scale using DEM and meso-macro scale using PBM). The macro-scale models
the overall particle property change, the meso-scale represents property change within
a granule ensemble, and the micro-scale represents individual particle or constituent
powder dynamics.
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A significant number of modeling studies have been conducted for the prediction of a
single-component wet granulation process, and this includes both nucleation and growth
kinetics [6–9]. Although most of the wet granulation process involves more than one solid
component, there are not many models reported that consider a multi-component process.
Building a formulation-dependent constitutive equation requires the understanding of the
effects of primary particle properties such as maximum pore saturation, material yield
strength, cohesiveness, and primary particle size, on the final product granule attributes.
Matsoukas et al. [10,11] and Marshall Jr et al. [12] applied a multi-component PBM for
modeling a bi-component aggregation using a composition-dependent aggregation kernel.
In their work, two components, solute and solvent, are considered. The internal coordi-
nates of the granule or particle were determined by the total mass of the granule and the
mass of solute in it. In the Matsoukas et al. [10] model, the solute is soluble in the solvent,
and the bivariate distribution of number density is shown as the product of the size distri-
bution, with a Gaussian compositional distribution. In an insoluble system, the Gaussian
compositional distribution function that is used to represent the relative concentration
of one component to another may not be applicable. Matsoukas et al. [11] represented a
size-dependent aggregation kernel with a composition-dependent multiplicative factor.
They defined an adjustable interaction parameter that describes the attraction or repulsion
between the two components. The model was able to demonstrate the extent of blending
with positive and negative interaction parameters.

The granule growth (aggregation/coalescence), however, is expressed nearly always
as a semi-empirically based [4,13] kernel or as a function of the particle collision information
obtained from DEM modeling [14,15]. Some of the limitations of the existing coalescence
models for representing granule growth are that they neglect capillary force interaction and
use the static yield strength analyses of the powder bed to calculate the granule strength
during the collision. A multi-dimensional population balance [16] that accounts for size,
solid content, surface liquid, and deformability needs to be used to couple “aggregation”
and “layering” granule growth mechanisms.

Another mechanism to consider is the nucleation process at the start of the liquid
addition phase during granulation, that impacts the granule growth mechanism and the
final granule quality attributes. There are two important aspects of nucleation modeling:
the kinetics of nuclei formation and the physical attributes such as size, porosity, and con-
tent uniformity of the nuclei. In the case of immersion nucleation, kinetic models were
developed by Hounslow et al. [17], Hapgood et al. [18]. These kinetic models provide
the nuclei size distribution as model output and which can be used for predicting the
final granule size distribution [19]. The time scale of the nucleation process is relatively
faster than the rest of the granulation rate mechanisms [20], and thus, it is not necessary to
incorporate the dynamics of the nucleation process into the granulation modeling. How-
ever, the internal properties of nuclei such as size, deformability, surface liquid content,
and content uniformity affect the granulation growth kinetics, and the final granule quality
attributes [21,22]. Thus, it is important to have an experimental or modeling framework to
predict the properties of the initial nuclei to simulate granule properties other than size
distribution using PBM.

Physics-based models for simulating nuclei require complicated multi-phase simula-
tions. Washino et al. [23] presented a coupled DEM and constrained interpolation profile
(CIP) for simulating the nuclei during the wet granulation process. The effect of surface
tension on the liquid binder flow was modeled depending on the relative position of
the fluid interfaces to the solid particles, i.e., the model on the outside, inside, or on the
surface of the powder bed corresponds to a free surface, capillary action, and bed surface
wetting. Washino et al. [24] showed the CFD-DEM simulation of nuclei generation in
a dynamic powder bed. These studies consider a particle system with good wettability
or spreading coefficient [25]. In the case of powder mixture with hydrophobic powders,
the nuclei formed are solid-spread nuclei, and the physics-based approach developed for
immersion nuclei is not suitable for such systems. Due to the complexities of nucleation
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mechanisms that can be either an immersion or solid-spread nuclei based on the wettability
of the constituent material on the droplet vicinity during binder addition, the currently
available models fall short of representing the nucleation mechanism and nuclei property
in such systems.

Hybrid modeling has been demonstrated to have various advantages of improving
process understanding with the incorporation of empirically based statistical models with
mechanistic models [26–28]. A hybrid model consisting of both statistical correlations and
physics-based models is often used to simplify the computational efforts and incorporate
complex mechanisms into the model. Such models can overcome the disadvantages of
both purely data-driven and physics-based models [27]. A hybrid model such as PBM
with artificial neural network (ANN) was developed to substitute for the high-fidelity
PBM-DEM model by Barrasso et al. [29].

The objectives of this study are as follows:

1. Incorporate the nuclei particle characteristics in the population balance model based
on the classification model result from Muthancheri et al. [30].

2. Develop a composition-dependent PBM framework for bi-component wet granulation
process with a large binder droplet for predicting the granule quality attributes with
change in percentage formulation.

2. Model Development
2.1. Population Balance Model

The population balance equation as shown in Equations (1) and (3) are used in this
work to predict the particle size distribution, liquid distribution, and component distri-
bution or the content uniformity [31]. In this work, the liquid volume of the granules is
considered to be a lumped parameter under the assumption that all granules of the same
size with the same composition of solids and pore volume have the same average liquid
content. Such a reduced-order model was compared with higher-order models and was
reported to have a significant time saving without compromising much on accuracy in
previous studies [32].

∂F
∂t

+
∂

∂s1

(
F

ds1

dt

)
+

∂

∂s2

(
F

ds2

dt

)
+

∂

∂p

(
F

dp
dt

)
= <nuc +<agg ++<brk (1)

∂Li
∂t

= <nuc,li +<agg,li +<brk,li + F
dli
dt

(2)

∂Le

∂t
= <nuc,le +<agg,le +<brk,le + F

dle
dt

(3)

where F = F(s1, s2, p, t) is the number of particles with API volume s1 and excipient
volume s2, pore volume p at time t. Le = Le(s1, s2, p, t) and Li = Li(s1, s2, p, t) is the
average external liquid volume and average internal liquid volume of particles with API
volume s1 and excipient volume s2, pore volume p at time t, respectively. Table 1 represents
the dependent and independent variables. The rate mechanisms ds1

dt , ds2
dt , dli

dt , dle
dt , <nuc, <agg,

and <brk are detailed in the next section.
The relationship between the variables in Table 1 are summarized in the following

equations. The total granule volume v is obtained by Equation (4).

v = s1 + s2 + le + p (4)

The surface area of the particles can be derived from the granule total volume as
shown in Equation (5)

a = π
1
3 (6v)

2
3 (5)

The porosity and content uniformity can be calculated using Equations (6) and (7),
respectively.
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ε =
p
v

(6)

q = s1/v (7)

Table 1. Variables in the PBM to describe granule.

Description Notation

Independent variables

API solid volume s1
Excipient solid volume s2
External liquid volume le
Internal liquid volume li
Pore volume p

Dependent variables

Total granule volume v
Surface area a
Porosity ε
Content uniformity q

2.2. Mechanisms Involved in the Model

The rate mechanisms during wet granulation determine the final characteristics of a
granule. The following rate mechanisms are considered in the current model:

1. Immersion nucleation
2. Solid-spread nucleation of hydrophobic API
3. Granule surface wetting during liquid addition
4. Granule surface growth due to solid-spread nuclei
5. Hydrophilic excipient layering
6. Particle aggregation
7. Particle breakage
8. Compaction

2.2.1. Immersion Nucleation

Immersion nucleation kinetics are assumed to be instantaneous, with the nuclei being
formed as soon as the drop hits the powder bed. The number of immersion nuclei generated
Nim is calculated by Equation (8).

Nim = Pim
Q̇spray × ∆t

vd
(8)

where Qspray is the volumetric spray rate of binder liquid and vd is the volume of a single
drop calculated from the nozzle opening. Pim is the probability of immersion nucleation
to happen for the given percentage composition of API powder bed (calculated from the
classification model from Muthancheri et al. [30]). All the immersion nuclei is assigned to
the first bin of same percentage composition as that of the powder bed and pore volume
close to the volume of single droplet.

The mass of API (Ms1) and excipient (Ms2) available is calculated at every time step
based on the mass balance of nuclei generated and excipient particle layering. The volume
of immersion nuclei (vim) at the end of nucleation can be estimated from the equation
derived by Hounslow et al. [17] (Equation (9)).

vim = vd

(
1 +

1− φcp

φcp

)
(9)

vim,s = vd

(
1− φcp

φcp

)
(10)
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where φcp is the critical-packing liquid volume fraction, which is kept constant at 0.2 in this
study. vim,s is the solid volume in the nuclei. Total mass of solid component Mim,si, where
i = 1, 2 for API and excipient, respectively, utilized to form immersion nuclei at ∆t can be
calculated as follows:

Mim,si = fi Nimmim,s (11)

= fi Nimρsvim,s (12)

where mim,s is the solid mass in a single immersion nuclei and ρs is the weighted true
density of the solid components. fi is the fraction of solid component present in the powder
bed (i = 1, 2 for API and excipient, respectively).

2.2.2. Solid-Spread Nucleation

In the current model, the hydrophobic API is considered to form solid-spread nuclei,
and the number of solid-spread nuclei (Nss) is calculated as shown in Equation (13).

Nss = (1− Pim)
Q̇spray × ∆t

vd
(13)

Assuming that in the solid-spread nucleation the liquid drop (diameter dd) is sur-
rounded by hydrophobic API particles of diameter (dp) (Figure 1), the approximate solid-
spread nuclei volume (vss) and the volume of API particles in a solid-spread nuclei (vss,s1)
can be calculated as follows:

vss =
π

6
(
dd + 2dp

)3 (14)

vss,s1 =
π

6
(
dd + 2dp

)3 − vd (15)

The total mass of API particles that form solid-spread nuclei at time ∆t can be calcu-
lated as shown in Equation (17).

Mss,s1 = f1Nssmss,s1 (16)

= f1Nssρs1vss,s1 (17)

where mss,s is the solid mass in a single solid-spread nuclei and ρs1 is the weighted true
density of the API.

Figure 1. Solid-spread nuclei schematic.

2.2.3. Granule Surface Wetting during Liquid Addition

Rewetting of the granule surface during granulation is incorporated in the model in
the dle

dt term. The rewetting depends on the volume of granule in comparison with the total
volume of granule present in the system.
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dle
dt

∣∣∣∣
rewetting

=
Q̇spray × v

∑s1 ∑s2 ∑p Fv
(18)

2.2.4. Granule Surface Growth Due to Solid-Spread Nuclei

As the pore volume of solid-spread nuclei are larger than that of the immersion nuclei,
they are not directly added to the PBM equation. Instead the rate of change of number
density of solid-spread nuclei (Fss) is tracked using a differential equation. When two
solid-spread nuclei aggregate, the resulting volume is divided proportionally between the
Fss and F distribution using two class PBM approaches discussed by Jeong and Choi [33].
The depletion of solid-spread nuclei (Fss) due to nuclei–nuclei aggregation and nuclei–
granule surface growth is formulated as shown in Jeong and Choi [33] (Equation (19)).

ds1

dt

∣∣∣∣
sur f acegrowth

= ksgv2/3 (19)

Planchette et al. [34] studied the transition of liquid marble onto solid surfaces. They
studied three mechanisms involved when solid-spread nuclei collide on a surface. The drop
extension of the solid-spread nuclei is related to the impact velocity as (Dmax − D)/D u
0.12

√
(We), where Dmax is the diameter of the disk shape the solid-spread nuclei takes

before rupture, D is the diameter of the solid-spread nuclei (=dd + 2dp), and We is the
Weber number during collision. This equation gives the minimum size (= f (Dmax)) of the
granule upon which, when the solid-spread nuclei collide, the impact results in the surface
growth of s1 particles, as shown in Figure 2.

Figure 2. Solid-spread nuclei interaction with granule resulting in surface growth.

2.2.5. Hydrophilic Excipient Layering

Hydrophilic excipient layering is modeled as an increase in granule size as fine excipi-
ent powder particles adhere to the wet surfaces. The rate of increase in excipient volume of
a granule ( ds2

dt ) is assumed to be proportional to the granule surface area (Equation (5)) and
the total mass of excipient powder left (ms2) in the granulator as shown in the following
equations.

ds2

dt
=

klayer × a×ms2

ρs2
(20)

It is modeled such that only the granules with surface wetness (le 6= 0) experience
layering. As a result, the increase in consolidation has a secondary effect on layering.
The depletion of excipient fines is given by Equation (21).

dms2

dt
= ρs2

∫ s1

0

∫ s2

0

∫ p

p0

F
ds2

dt
ds1ds2dp (21)

2.2.6. Particle Aggregation

Goodson et al. [16] developed a PBM framework for characterizing the granule based
on three properties: (1) size (big or small), (2) liquid content (wet or dry), and (3) strength
(hard or soft). Figure 3 shows the two extremes of granule interactions. Two granules of
high strength, less deformability, and lower capillary number are assumed to conserve
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surface area upon collision (Type I) and two granules of low strength, high deformability,
and higher capillary number are assumed to conserve pore volumes upon collision.

Figure 3. Representation of soft and hard granule growth.

The solid volumes are conserved during the aggregation. The resulting aggregate
solid volume is a sum of the two colliding particle solid volume. The pore volume and
liquid volume undergo a different transformation rule. Depending on the deformability of
the colliding particles, the final granule pore volume is an interpolation of the two extremes
in Figure 3. The resulting pore volume can be written as,

a = ζ(a
3
2
A + a

3
2
B) + (1− ζ)(aA + aB), 0 < ζ < 1 (22)

p =
a

3
2

6
√

π
− s1 − s2 − le (23)

where ζ represents the relative softness or deformability of the granule (a function of
coefficient of restitution, ζ = 1 − ecoag from Equation (36)). This internal coordinate
representation was shown to provide differences in critical properties such as granule
porosity, despite the similar granule size predictions [16].

The rate of particle aggregation is calculated as shown below.

Ragg(s1, s2, p, t) = R f orm
agg (s1, s2, p, t)− Rdep

agg(s1, s2, p, t) (24)

where R f orm
agg and Rdep

agg are the rates of formation of larger particles (Equation (26)) and rate
of depletion of smaller particles (Equation (27)), respectively.

R f orm
agg (s1, s2, p, t) =

1
2

∫ s1

0

∫ s2

0

∫ p

p0

β(s1 − s
′
1, s2 − s

′
2, p− p

′
, s
′
1, s

′
2, p

′
)× (25)

F(s1 − s
′
1, s2 − s

′
2, p− p

′
, t)F(s

′
1, s

′
2, p

′
, t)ds

′
1ds

′
2dp

′

Rdep
agg(s1, s2, p, t) = F(s1, s2, p, t)

∫ s1,max−s1

0

∫ s2,max−s2

0

∫ pmax−p

p0

(26)

β(s1, s
′
1, s2, s

′
2, p, p

′
)× F(s

′
1, s

′
2, p

′
, t)ds1ds2dp

The rate of aggregation Ragg,li and Ragg,le in Equations (2) and (3) are the rates at
which the internal and external liquid volumes are transferred between particles due to
aggregation. Similar to the formation and depletion of what was discussed above, these
rates can be calculated as shown in Equations (28) and (29).
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Ragg,li (s1, s2, p, t) =
1
2

∫ s1

0

∫ s2

0

∫ p

p0

β(s1 − s
′
1, s2 − s

′
2, p− p

′
, s
′
1, s

′
2, p

′
)× (27)

F(s1 − s
′
1, s2 − s

′
2, p− p

′
, t)F(s

′
1, s

′
2, p

′
, t)

(li(s1 − s
′
1, s2 − s

′
2, p− p

′
, t) + li(s

′
1, s

′
2, p

′
, t) + le→i)ds

′
1ds

′
2dp

′

− Li(s1, s2, p, t)
∫ s1,max−s1

0

∫ s2,max−s2

0

∫ pmax−p

p0

β(s1, s
′
1, s2, s

′
2, p, p

′
)× F(s

′
1, s

′
2, p

′
, t)ds1ds2dp

Ragg,le(s1, s2, p, t) =
1
2

∫ s1

0

∫ s2

0

∫ p

p0

β(s1 − s
′
1, s2 − s

′
2, p− p

′
, s
′
1, s

′
2, p

′
)× (28)

F(s1 − s
′
1, s2 − s

′
2, p− p

′
, t)F(s

′
1, s

′
2, p

′
, t)

(le(s1 − s
′
1, s2 − s

′
2, p− p

′
, t) + le(s

′
1, s

′
2, p

′
, t)− le→i)ds

′
1ds

′
2dp

′

− Le(s1, s2, p, t)
∫ s1,max−s1

0

∫ s2,max−s2

0

∫ pmax−p

p0

β(s1, s
′
1, s2, s

′
2, p, p

′
)× F(s

′
1, s

′
2, p

′
, t)ds1ds2dp

The transfer of external liquid volume to internal liquid volume due to aggregation
(represented as le→i in Equations (28) and (29)) can be computed as discussed by Braumann
et al. [31].

le→i =
[
le(s1 − s

′
1, s2 − s

′
2, p− p

′
, t)le(s

′
1, s

′
2, p

′
, t)
] 1

2 (29)

×

1−

√√√√√√1−

 3
√

v(s1 − s′1, s2 − s′2, p− p′ , t)− le(s1 − s′1, s2 − s′2, p− p′ , t)

3
√

v(s1 − s′1, s2 − s′2, p− p′ , t) + 3
√

v(s′1, s′2, p′ , t)

2


1
2

(30)

×

1−

√√√√√√1−

 3
√

v(s′1, s′2, p′ , t)− le(s
′
1, s′2, p′ , t)

3
√

v(s1 − s′1, s2 − s′2, p− p′ , t) + 3
√

v(s′1, s′2, p′ , t)

2


1
2

The aggregation kernel β depends on the properties of the colliding particle A(s1, s2, p)
and B(s

′
1, s

′
2, p

′
) (as shown in Figure 3). β(A, B) = β0β∗A, B. β0 is independent of the

colliding particle properties and is an optimized parameter in this work. β∗ is the efficiency
of particle collision which can be determined based on the following model proposed by
Balakin et al. [35]. The model accounts for both capillary and viscous forces during particle
collision. The efficiency is determined as a ratio of the total work of forces within the liquid
bridge to the kinetic energy of the particle.

β∗ =
Wc + Wd

Ek
Ψ (31)

where Wc and Wd are the work of the capillary and dissipative forces, respectively. Ek is the
kinetic energy calculated from the mean relative velocity (vr), mass (m), and coefficient of
restitution (e, Equation (37)) of particle before collision, as shown in Equation (32). The rel-
ative velocity is calculated from the granular temperature (Θ), as given by Equation (33).
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Ek =
1
2

me2v2
r (32)

vr =
3
2

√
πΘ (33)

Θ =
(5π/96)γ2d2

12φ2
p

(
1−

(
φp

1−φp

)2
) (34)

where φp is the volume fraction of particle in the granulator, γ is the shear rate, and d is the
granule diameter. The work of dissipative force is calculated using the following equation.

Wd =
3πµd̃2ecoagvr

4
ln
(

h
ha

)
(35)

where d̃ is the harmonic mean diameter of the colliding two particles and µ is the viscosity
of the binder. h is the binder layer thickness calculated from the external liquid content
(le) and ha represents the granule surface asperities. The resulting aggregated particle
coefficient of restitution (ecoag) is represented as a function of coefficient of restitution of
the constituent material properties by Braumann et al. [31] by the following equations:

ecoag =
√

eAeB (36)

ei =
∑α eαmα

∑α mα
, i ∈ {A,B} (37)

where α ∈ {s1, s2, p}, m is the mass of colliding granule and e is the ratio of rebound energy
to impact energy. It takes a value between 0 (totally plastic impact) and 1 (totally elastic
impact). e for pore is assumed to be 0.

The work of capillary force (Wc) is experimentally determined from the regime map
analysis carried out Muthancheri and Ramachandran [22]. Figure 4 plots the capillary
number which is the ratio between capillary force and viscous force as a function of API
fraction. The equation determined from the experiment analysis is used to provide a
composition dependent work of capillary force in the model.

(a) (b)
Figure 4. Change in capillary numbers with increase in API fraction. (a) Ibuprofen and MCC101
formulation, (b) Acetaminophen (APAP) and MCC101 formulation.

2.2.7. Compaction

Compaction of granules occur during collision and result in porosity reduction of the
granules.

∆ε =

{
kconU(ε− εmin) if ε− ∆ε ≥ εmin

0 otherwise
(38)
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where kcon is the consolidation rate constant, U is the particle collision velocity, and εmin
is the minimum porosity. Two conditions are modeled in this study. A non-squeeze case:
if no internal liquid is transferred to the external surface. In this case, there is only pore
volume reduction due to consolidation (Equation (39)). The next scenario is a squeeze case.
Some liquid is transferred from internal to external liquid volume (Equation (40)). This
occurs if the porosity after consolidation is smaller than a critical porosity. In this scenario,
the pore volume is completely occupied by internal liquid volume (li = p).

dp
dt

= −
(

1
1− (ε− ∆ε)

(s1 + s2 + le)− v
)

(39)

dp
dt

= −((1 + (ε− ∆ε))(s1 + s2 + le) + (ε− ∆ε)li − v) (40)

2.2.8. Particle Breakage

The particle breakage occurs when a large particle disintegrates into two or more
daughter (or smaller) particles. The net particle breakage rate is modeled using the method
described in Barrasso and Ramachandran [32]. The details of the model are provided in
the Appendix A.

2.3. Hybrid Modeling

Figure 5 depicts the hybrid modeling framework. The data-driven classification model
presented in the previous literature [30] is used to predict the probability of nucleation
(P). Based on that probability, the number of immersion nuclei and solid-spread nuclei is
determined. The porosity and size of the initial nuclei effects the granule growth through
the aggregation kernel and API surface growth discussed in Section 2.2.

Figure 5. Hybrid modeling framework.
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2.4. Numerical Solution

The ordinary differential equations (ODE) obtained after discretization for different
particle size combinations are integrated simultaneously using the first-order explicit Euler
integration technique, which is popularly used to solve PBMs [5,9,36–38]. The numerical
stability of a PBM is complex due to the presence of multiple dimensions and the inherent
possibility of instability involved with the time-step of the integration. The integration
time-step was thus chosen, such that the rate of particles leaving a particular size class
(bin) is not higher than the number of particles in that size class at any time-step based on
the Courant–Friedrichs–Lewy (CFL) condition [8,39]. The partial derivatives with respect
to internal coordinate volume (u ∈ (s1, s2, p)) and time (t) were discretized using a non-
linear grid (ui = u× (4)i−1). Here, i represents the bin number in one dimension, and u
indicates the volume of particle in the smallest bin. The smallest particle size is 31.5 µm,
and the largest particle size is 6000 µm. There is a total of 20 bins or grid points. A cell
average technique discussed by Chaudhury et al. [7] is utilized in this study to distribute
the particles that are formed in the intermediate range of two bins, into the adjacent bins.
The computations were performed in MATLAB 2020a on an Intel(R) Core(TM) i7-8700 CPU
(3.20 GHz) with 16 GB RAM.

2.5. Sensitivity Analysis

A sensitivity study was performed to investigate the effect of adjustable parameters on
the simulation results. The optimized values of parameters were perturbed from −20% to
20% with a step size of 10%, and the results were compared to the base value. The sensitivity
is measured using Equation (41).

Sensitivity =

∣∣∣∣∣Y
j
0(t)−Y j

i (t)

Y j
0(t)

∣∣∣∣∣ (41)

where Y j
i (t) is the value of granule property of interest in the ith perturbation of the jth

parameter and Y j
0(t) is the base value for the jth parameter.

Figure 6 illustrates that the sensitivity of parameters on d10,d50, and d90 simulation. It
shows that growth parameters (klayer and ksg) are much less sensitive than the aggregation
and consolidation parameters when the variables are perturbed ±20%. The average
diameter is found to be highly sensitivity toward the coefficient of restitution of API (es1).
The study shows a decrease in average diameter with an increase in es1. A decrease in
es1 indicates that the API is very deformable, resulting in smaller average granule size.
The aggregation rate constant, β0, has a positive impact on the granule size, showing an
increase in the rate constant increasing the average granule size. The consolidation rate
equation has a negative term (Equations (39) and (40)), which means the increase in kcon
results in a decrease in consolidation rate. In Figure 6c, it can be seen that a decrease in
consolidation rate to 20% results in larger granules.

Similarly, Figure 7 shows the effect of the adjustable parameters on the average
porosity and API content of the granules. The sensitivity of parameters to granule API
content is similar to that of the granule size. Aggregation rate constant, coefficient of
restitution, and consolidate rate were found to be most significant in impacting the granule
API content. A decrease in es1 results in a decrease in aggregation rate and thus results
in granules with less s1 or API content. Average porosity of granule is most impacted by
the consolidation rate. It can be seen that with increase in consolidation (or decrease in
consolidation rate constant) the average granule porosity decreases.
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(a) (b)

(c)
Figure 6. Effect of changes in adjustable parameter values on d10, d50, and d90. Sensitivity to (a) d10,
(b) d50, (b) d90.

(a) (b)
Figure 7. Effect of changes in adjustable parameter values on porosity and API content. (a) Sensitivity
to average API content, (b) Sensitivity to granule average porosity

3. Results and Discussions
3.1. Optimization and Parameter Estimation

Experimental data from Muthancheri and Ramachandran [22] is used to estimate the
unknown parameters in the model. The cumulative granule size fraction and content uni-
formity measurements were used for the estimation. For the multi-objective optimization
for minimizing the error for both size and content uniformity, a Pareto optimal solution tech-
niques was used. The method provides an optimal solution when one objective function
cannot decrease without increasing the other objective function [40].

The tuned parameters are aggregation constant (β0), coefficient of restitution of API
(es1) and excipient (es2), consolidation rate constant (kcon), excipient layering rate constant
(klayer), and rate of surface growth (ksg). Out of the six experimental runs, four were used for
parameter estimation, and two were used to validate the calibrated model. The optimized
values of the variables are provided in the Table 2.
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Table 2. Optimized parameters.

Parameters Notation Value

Aggregation rate constant β0 4.34× 10−10

Ibuprofen coefficient of restitution es1,ibu 0.162
APAP coefficient of restitution es1,apap 0.103
MCC101 coefficient of restitution es2 0.07
Consolidation rate constant kcon 1.67× 10−3

Excipient layering rate constant klayer 2.01× 10−8

Surface growth rate constant ksg 4.59× 10−11

3.2. Model Training and Validation

The model was trained and validated using the experiment data from Muthancheri
and Ramachandran [22]. In the aforementioned study, two formulations were considered
such that there exists a wettability differential between the two components in a formulation.
The two cases were (1) ibuprofen-USP and micro-crystalline cellulose and (2) micronized
acetaminophen (APAP) and micro-crystalline cellulose. The 40% and 60% cumulative size
distributions of formulations were used for model training (Figures 8 and 9). The 50%
cumulative size distributions of formulations were used for model validation (Figure 10).
This validation helps to concur the assumptions and theories considered in the model.
The predicted values had a strong relationship with the experimental values. The overall
accuracy of the model was estimated to be 0.89 (Overall accuracy = 1− sum of square error).

An increase in API percentage composition from 40% to 60% experimentally resulted
in an overall increase in granule size or a shift in the distribution curve to the right for
both case-I and -II formulation. The model was able to accurately predict this increase in
granule size (and distribution) at a high API percentage composition. This dependency
of the API composition was reflected in the model through the composition dependent
aggregation kernel and nucleation probability.

Figure 8. Model prediction for 40% API formulation.
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Figure 9. Model prediction for 60% API formulation.

Figure 10. Model validation using 50% API formulation.

The content uniformity of the granules were evaluated using the demixing potential
(DP) introduced by Thiel and Nguyen [41] to quantify the distribution of a solid component
as a function of particle size. DP can be calculated using the following equation:

DP% =
100

x̄

√
∑ w(x− x̄)2 (42)

where x is the API content in a particular size range, x̄ is the average API content, and w
is the weight fraction of granule in each size range. The quantity is similar to the relative
standard deviation used for non-uniformity in mixing by Oka et al. [42]. The larger the
value of de-mixing potential, the larger the extent of deviation from the mean of the API
across granule size classes. Figure 11 shows the ability of the presented hybrid-modeling
framework to predict the change in de-mixing potential with an increase in percentage API.
The model predicted a decrease in the extend of de-mixing with increase in percentage
API for ibuprofen formulation and an increase in the extent of de-mixing with increase in
percentage API for APAP formulation.
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Figure 11. Comparison between model prediction and experimentally obtained de-mixing potential.

3.3. Model Applications
3.3.1. Effect of Change in Formulation on Dynamic Granule Formation

Muthancheri and Ramachandran [22] studied the effect of increase in hydrophobic API
percentage on the granule size. It was shown that in an insoluble system (all constituent
materials were insoluble in the binder liquid), an increase in hydrophobic component
results in an overall increase in granule size.

Figure 12 shows that when the percentage API is varied from 30% to 60% the average
particle size was found to increase. Here, the liquid-to-solid ratio was kept the same as that
during the model optimization (0.6 liquid-to-solid ratio).

Figure 12. Cumulative volume fraction prediction with change in percentage composition of API
and 0.6 liquid-to-solid ratio.

The effect of formulation or hydrophobicity in the dynamic granule formation can
be observed in Figure 13. At 40% hydrophobic content, the probability of solid-spread
nuclei formation was very low, resulting in a high initial immersion nuclei and consequent
granule formation. At 50% hydrophobic component, the probability of solid-spread nuclei
is modeled to be 0.67 (calculated from the classification model [30]). This resulted in a
small secondary peak at the start of liquid addition (Figure 13b). At a high hydrophobic
content of 60%, the high probability of solid-spread nuclei formation led to an increase in
granule growth and larger final granules (Figure 13c).
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(a) (b)

(c)
Figure 13. Granule size distribution with increase in granulation time at a varying degree of hy-
drophobic content (ibuprofen). (a) Granule size distribution with increase in granulation time at
40% hydrophobic component (ibuprofen), (b) granule size distribution with increase in granulation
time at 50% hydrophobic component (ibuprofen), and (c) granule size distribution with increase in
granulation time at 60% hydrophobic component (ibuprofen).

At 50% composition of ibuprofen in the formulation made of ibuprofen and MCC-101,
the classification model predicted a probability of immersion nucleation to be 0.67. This
scenario is further evaluated in Figure 14 in terms of dynamic evolution of granule size
as granulation progress. It can be seen that due to wet massing, the solid-spread nuclei
combine together to form larger granules and then combine with the immersion nuclei to
form a wider distribution of granules.

3.3.2. Effect of Change in Formulation on Granule API Content

Muthancheri and Ramachandran [22] study showed that as the API content increased
from 40% to 60%, the granule content non-uniformity decreased. Figure 15 shows a similar
trend. As the hydrophobic API content increased from low to high, the ∆q, which is the
difference between the powder blend API content and average granule API content, became
near zero. Smaller granules of high API content were also found during the experiment
study, validating the high API content prediction at the start of granulation process.
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Figure 14. Model predicted granule size distribution with an increase in wet massing time (50% API
content).

Figure 15. Model predicted granule API content with increase in wet massing time.

3.3.3. Effect of Change in Formulation on Average Granule Porosity

Next, the average granule porosity prediction with change in the percentage API is
evaluated. The average porosity prediction is within the porosity range reported previously
in the high shear wet granulation model study [43]. The envelop density of the granules
obtained in the Muthancheri and Ramachandran [22] was carried out to verify the trend of
porosity predicted in Figure 16a.

The envelop density (Figure 16b) was measured using a graphite powder quasi-fluid,
known as Dryflo (Micromeritics, Norcross, GA, USA) [44]. The porosity of granule is
inversely related to the envelop density. Figure 16b shows the influence of increase in API
percentage on the envelop density. Based on the envelop density trend, it is concluded that
the decrease in average porosity predicted using the developed model is fairly accurate.
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(a) (b)
Figure 16. Change in granule micro-structure with increase in API content. (a) Model predicted
average porosity, (b) Experimental envelop density.

3.3.4. Effect of Change in Formulation on Average Liquid Fraction

The change in average liquid fraction with an increase in API percentage is shown
in Figure 17. The range of liquid fraction is similar to that reported in Chaudhury and
Ramachandran [43]. The increase in liquid content is primarily due to increase in solid-
spread nucleation, which results in surface growth. Surface growth of solid-spread nuclei
increases the API content as well as liquid content on the granules. The liquid contant
also increases due to decrease in hydrophilic excipient. Hydrophilic excipient reduced the
available liquid due to the transfer of liquid from the external surface to inside the particles.

Figure 17. Model predicted average liquid fraction.

4. Conclusions

In this study, a hybrid model (Random Forest-PBM) is developed to describe the
bi-component high shear wet granulation process. The model incorporates immersion
and solid-spread nucleation based on the change in percentage API. The probability of
each nucleation mechanism to occur, for a given formulation, is obtained from the random
forest model. The probability is incorporated into the PBM framework such that the rate
equations are impacted by the availability of immersion and solid-spread nuclei. It was
found that the aggregation and consolidation rate are more sensitive to the granule critical
quality attribute predictions. The model predictions are qualitatively in agreement with
profiles obtained in the literature [22,43]. The discussed methodology and presented model
could be used for predicting various aspects of the granulation process and controlling
the transient behavior during the process. As an example, we have provided the average
particle size, porosity, liquid content, and demixing-potential of the granules with change
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in API percentage. The developed model is an improvement to the existing mechanistic
modeling framework, such that it incorporates the effect of hydrophobicity to track the
granule critical quality attributes.
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Appendix A

Equation (A1) represents the breakage rate equation.

Rbrk(s1, s2, p, t) = R f orm
brk (s1, s2, p, t)− Rdep

brk (s1, s2, p, t) (A1)

where R f orm
brk and Rdep

brk are the rates of formation of smaller particles and rate of depletion
of larger particles.

R f orm
brk (s1, s2, p, t) =

∫ s1,max

s1

∫ s2,max

s2

∫ pmax

p
b(s1, s2, p, s

′
1, s

′
2, p

′
)Kbrk(s1, s2, p)× (A2)

F(s
′
1, s

′
2, p

′
, t)ds

′
1ds

′
2dp

′

Rdep
brk (s1, s2, p, t) = Kbrk(s1, s2, p)F(s1, s2, p, t) (A3)

where Kbrk is the breakage rate constant and b is the probability distribution function of
daughter particles. For the purposes of this study, a uniform probability distribution was
assumed for all possible daughter particles [32].
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