
pharmaceutics

Article

Eudragit-Coated Sporopollenin Exine Microcapsules (SEMC)
of Phoenix dactylifera L. of 5-Fluorouracil for Colon-Specific
Drug Delivery

Mohammad Raish 1,* , Mohd Abul Kalam 1,2 , Ajaz Ahmad 3, Mudassar Shahid 1 , Mushtaq Ahmad Ansari 4 ,
Abdul Ahad 1 , Raisuddin Ali 1, Yousef A. Bin Jardan 1, Aws Alshamsan 1,2 , Musaed Alkholief 1,2,
Khalid M. Alkharfy 2, Ibrahim Abdelsalam Abdelrahman 1 and Fahad I. Al-Jenoobi 1

����������
�������

Citation: Raish, M.; Kalam, M.A.;

Ahmad, A.; Shahid, M.; Ansari, M.A.;

Ahad, A.; Ali, R.; Bin Jardan, Y.A.;

Alshamsan, A.; Alkholief, M.; et al.

Eudragit-Coated Sporopollenin Exine

Microcapsules (SEMC) of Phoenix

dactylifera L. of 5-Fluorouracil for

Colon-Specific Drug Delivery.

Pharmaceutics 2021, 13, 1921. https://

doi.org/10.3390/pharmaceutics13111921

Academic Editors: Ester

Caffarel-Salvador and Jinyao Liu

Received: 29 August 2021

Accepted: 5 November 2021

Published: 12 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457,
Riyadh 11451, Saudi Arabia; makalam@ksu.edu.sa (M.A.K.); mahmad@ksu.edu.sa (M.S.);
aahad@ksu.edu.sa (A.A.); ramohammad@ksu.edu.sa (R.A.); ybinjardan@ksu.edu.sa (Y.A.B.J.);
aalshamsan@ksu.edu.sa (A.A.); malkholief@ksu.edu.sa (M.A.); ph.ibrahimabdalsalam@gmail.com (I.A.A.);
aljenobi@ksu.edu.sa (F.I.A.-J.)

2 Nanobiotechnolgy Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University,
P.O. Box 2457, Riyadh 11451, Saudi Arabia; alkharfy@ksu.edu.sa

3 Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457,
Riyadh 11451, Saudi Arabia; aajaz@ksu.edu.sa

4 Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457,
Riyadh 11451, Saudi Arabia; muansari@ksu.edu.sa

* Correspondence: mraish@ksu.edu.sa

Abstract: In this study, 5-fluorouracil (5-FU)-loaded pollens of Phoenix dactylifera and their coating
with ERS was done and evaluated for the colon-targeted delivery of 5-FU to treat colon cancer.
Sporopollenin exine microcapsules (SEMC) from the pollens of Phoenix dactylifera were extracted by
the reflux method and 5-FU into SEMC was encapsulated by the vacuum-assisted loading method.
5-FU loaded SEMC was coated with Eudragit® RS-100 (ERS) by the organic solvent-evaporation tech-
nique under vacuum to avoid the discharge of 5-FU in the stomach and small intestine. Morphological
and physicochemical characterization of drug-loaded SEMC (coated/uncoated) was performed by
scanning electron microscopy (SEM), FTIR, XRD, and DSC. The encapsulation and drug loading
were determined by the direct method, and an in vitro release study was performed in simulated
gastric and intestinal fluids (SGF/SIF). The colon-specific delivery of 5-FU from the SEMC was
assessed in terms of pharmacokinetics and gastrointestinal tract distribution after oral administration
in rats. The successful encapsulation and loading of 5-FU into SEMC by a vacuum-assisted loading
technique and its coating with ERS by a solvent-evaporation technique were achieved. SEM images
of uncoated SEMC have shown porous structures, and coating with ERS reserved their morphology
with a smooth surface and discrete microstructures and the 5% w/v ERS acetone solution. ERS-coated
SEMC sustained the release of 5-FU until 24 h in SIF, while it was up to 12 h only from uncoated
SEMC. The maximum plasma concentration (Cmax) of 5-FU from uncoated SEMC was 102.82 µg/mL
after 1 h, indicating a rapid release of 5-FU in the upper gastrointestinal tract. This concentration
decreased quickly with a half-life of 4 h, AUC0-t was 264.1 µg/mL.h, and MRT0-inf was 5.2 h. The
Cmax of 5-FU from ERS-coated SEMC was 19.47 µg/mL at 16 h. The Cmax of 5-FU in small intestines
was 406.2 µg/g at 1 h from uncoated SEMC and 1271.5 µg/g at 12 h from coated SEMC. Conclusively,
a 249.9-fold higher relative bioavailability of 5-FU was achieved with the ERS-coated SEMC in colon
tissues than that from uncoated SEMC.
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1. Introduction

5-Fluorouracil (5-FU) is commonly used for chemotherapy to treat various solid tu-
mors of colorectal, breast, stomach, intestine, and colon metastatic carcinomas [1–4]. 5-FU
infusions are the common mode of treatment; however, infusions are often troublesome,
expensive, and repetitive, and high doses are required due to the short half-life of 5-FU
(15 to 20 min) [5]. Furthermore, 5-FU is absorbed via blood capillaries in systemic circu-
lation, leading to a reduction in drug level at the tumor site, loss of anticancer efficacy,
and systemic toxicity in the clinic due to multidrug resistance The development of con-
trolled oral delivery of 5-FU formulations would be vastly advantageous; several overtures
to develop controlled release oral formulations of 5-FU have been described for colon
targeting [6–8]. The multiparticulate drug delivery system (MDDS) is widely used due
to the dose distribution to small subunits, and release of the drug can be customized to
therapeutic requirements [9,10]. Controlled-release MDDS for 5-FU has been reported
by encapsulating the 5-FU into various polymeric microspheres, but these are highly ex-
pensive [7,11]. Plants spores (phoenix dactylifera) and pollen grains as MDDS have been
used due to high structural uniformity, porosity, adsorptive surface, and micro-scale size
distribution [12,13]. Phoenix dactylifera spores are economical and can be easily processed
on an industrial scale. The combination therapy is extensively used for the management of
cancer to circumvent the poor response of chemotherapy and multidrug resistance [14].
Several reports established that co-encapsulation enhances the efficacy of chemotherapy
and reduced the multidrug resistance of chemotherapy using MDDS [15–18]. Sporopol-
lenin consists of natural microcapsules obtained from pollen grains of plants and is a
highly stable natural biocompatible biopolymer that has an edge over synthetic natural
polymers. Sporopollenin exine microcapsules (SEMC) have a large internal cavity con-
sisting of interlinked pores of uniform size. Such uniformity is tough and costly to attain
by man-made material, and the microcapsules are capable of encapsulating a wide range
of polar and non-polar drugs [19–21]. The size, structure, surface properties, and porous
morphology make them suitable for controlled drug release, loading, and delivery vehi-
cle [12,22]. The combination of sinapic acid (SA) and 5-FU exhibit a synergetic anticancer
effect with minimal side effects [23]. Piperine is a chemopreventive agent that inhibits
P-glycoprotein and/or CYP3A4; therefore, it increases the bioavailability of drugs that
are the substrate for PGP/CYP3A as well as increasing the sensitivity of cancer cells at
the site of tumors [24]. The inhibitory effect on PGP/CYP3A can enhance the sensitiv-
ity, reverse multidrug resistance, and act as a bioavailability-increasing agent for several
chemotherapeutic agents [24,25]. Herein, we report the encapsulation of 5-FU into SEMC
obtained from Phoenix dactylifera by the vacuum-loading technique and their coating with
Eudragit®-RS100 (E-RS) for the colon-targeted delivery of 5-FU. A colon-specific delivery
system has great potential to deliver many therapeutic agents, proteins, and peptides to
treat the local colonic ailments because of the less aggressive environmental condition of
the colon to deliver the drugs [26]. The less aggressive environmental condition of the colon
exerts less multiplicity and intensity of enzymatic actions at the near-neutral pH of the
colon [26–29]. Eudragit-RS100 (E-RS) is a copolymer of ethyl acrylate, methylmethacrylate,
and methacrylic acid esterified with quaternary ammonium groups [30]. It is used as a
coating material for a pH-dependent colon-targeted oral drug delivery system [31]. Due
to their unique physicochemical characteristics and diverse usage, Eudragits have been
employed to develop enteric-coated, sustained-release, and colon-specific drug delivery
carriers [32]. Moreover, ERS is less hydrophilic than E-RL; hence, the slow release of most
of the drugs is expected when E-RS is used for coating purposes [26]. Thus, we have chosen
ERS as a coating material for 5-FU-loaded SEMC to achieve prolonged release of 5-FU in
the colonic environment.
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2. Materials and Methods
2.1. Materials

Phoenix dactylifera L. (date palm) pollens were procured from indigenous farms in
March from Riyadh, Saudi Arabia. Eudragit® RS-100 (C19H34ClNO6), mol wt. 32,000 g/mol
was a kind gift of Evonik Corporation (Former Evonik Degussa GmbH). 5-Fluoro-2,4
(1H, 3H)-pyrimidinedione (C4H3FN2O2), ammonium hydroxide solution (NH4OH), and
ethanol were purchased from Sigma-Aldrich (St. Louis, MO, USA). Phosphate buffer (pH
6.8) was prepared as per the European Pharmacopoeia. Water was obtained by Milli-Q®

water purifier (Millipore, Paris, France). All other used chemicals were of analytical grade,
and the solvents were of HPLC grade.

2.2. Methods
2.2.1. Pollen Collection

The obtained Phoenix dactylifera (date palm) pollens were passed through a sieve using
10–50 µm, and the identification of the pollens was confirmed by light microscopy. Pollen
grains were stored at −20 ◦C in sealed glass bottles. Phoenix dactylifera pollen is monocolpate,
symmetric, oval-elliptic, and oblong; mean values of the polar axis and equatorial diameter of
the pollen grains were measured as 15–26 µm and 22–25 µm, respectively.

2.2.2. Extraction of Sporopollenin Exine Microcapsules (SEMC)

The extraction of sporopollenin exine microcapsules was performed by a reported
method [33]. Briefly, 50 g of Phoenix dactylifera (date palm) pollens were treated with
150 mL of acetone under reflux for 6 h. The defatted spore powder (DFS) was obtained
after filtrations [33,34]. DFS was treated with 10% acetic acid and then with 10% sodium
hydroxide followed by washing in hot water to get hydrolyzed sporopollenin powder
(HSP) [35]. The HSP was treated with 15% potassium hydroxide and refluxed for 10 h.
Then, we filtered the solution followed by washing with hot water and ethanol several
times to get base hydrolyzed sporopollenin (BHS). The dried BHS was treated with 100 mL
of orthophosphoric acid and refluxed with stirring for 72 h. The resulting mixer was filtered
and washed several times with water, acetone, and ethanol and filtered dried at 60 ◦C to
get SEMC [12].

2.2.3. Encapsulation of 5-FU into SEMC

The encapsulation of 5-FU into SEMC was performed by a vacuum-assisted loading
technique [22]. Accurately weighed amounts (50, 100, and 150 mg) of 5-FU were dissolved in
2 mL of 1:1 (v/v) mixture of 1N NH4OH: ethanol. Around 200 mg of SEMC was suspended
into the 5-FU solution. The obtained suspension was vortexed for 5 min. Then, the suspension
was placed in a freeze dryer (FreeZone 4.5 Freeze Dry System, Labconco Corporation, Kansas
City, MO, USA) at −20 ◦C temperature and 1 mBar vacuum. After 3 h, freeze drying was
stopped and 5-FU-loaded SEMC was washed thrice with Milli-Q water (5 mL in each cycle) by
centrifugation (at 15,000 rpm for 15 min at 4 ◦C by using ultracentrifuge (PRISM-R, Labnet
International Inc. Edison, NJ, USA) to remove the unbounded or surface-bonded 5-FU. The
SEMC was kept at −80 ◦C for 3 h and lyophilized for 24 h (coded as 5-FU-SEMC). The drug-
containing SEMC was further coated with ERS, and so the obtained spores (SEMC) were stored
at the dry place in Falcon tubes for further characterization.

2.2.4. Formulation of Eudragit® RS-100 (E-RS) Coated SEMC

The optimized drug-loaded spores were coated by 2.5%, 5%, and 10%, w/v organic
solution of E-RS. The coating solution was prepared by dissolving ERS in 5 mL of ace-
tone [22]. For the coating process, 100 mg of drug-loaded SEMC were added to the 5 mL of
ERS solution. The dried SEMC was obtained by evaporating the acetone under vacuum
at 40 ◦C for 2 h using a rotary evaporator (Buchi™ Rotavapor® 210, Switzerland). Then,
the obtained dried SEMC were gently powdered using a mortar and pestle and stored in
Falcon tubes at the dry place for further studies.
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2.2.5. Morphological Characterization of SEMC and Size Analysis

The morphological characterization of ERS-coated (F2-ERS) and uncoated (F2) drug-
loaded SEMC was performed by scanning electron microscopy (SEM) (Zeiss EVO LS10;
Cambridge, UK) using the gold sputter technique. The products were coated with gold in
the “Q150R Sputter unit” from Quorum Technologies Ltd. (East Sussex, UK) in an argon
atmosphere at 20 mA current for 2 min. Scanning electron microscopy was performed at
an accelerating voltage of 15 kV, 6.5–7 mm working distance, and at varying 5000, 10,000,
and 15,000 times of magnification. Binning analysis was performed to investigate the
average size of the SEMC using the software ImageJ (V-1.53a, National Institutes of Health,
Bethesda, MD, USA). The size distributions of the SEMC were investigated by utilizing
the size data obtained during the binning analysis (by ImageJ) through the “ORIGIN® 8.5
Data Analysis and Graphing Software” (OriginLab Corporation, Northampton, MA, USA).

2.2.6. Porosity Determination of SEMC

The specific surface volumes, porosity, and pore size distribution of the ERS-coated
SEMC-FU (F2-ERS) and uncoated SEMC-FU (F2) and SEMC alone were determined by
nitrogen (N2) adsorption–desorption isotherms measurements following the reported
method [13]. The measurements were performed on a TriStar-3000 Instrument (Micromet-
rics Inc., Norcross, GA, USA).

2.2.7. FTIR Spectra

The FTIR spectra of pure drug 5 FU, Eudragit RS-100, macroporous SEMC, drug-loaded
uncoated SEMC-FU (F2), and the ERS-coated SEMC-FU (F2-ERS) were recorded in the range
of 4000–450 cm−1 by a Bruker Tensor-27 spectrophotometer (USA) using KBr pellets.

2.2.8. Powder X-ray Diffraction

The powder X-ray diffractions of the samples were carried out by Ultima-IV Goniome-
ter (Rigaku, Inc., Tokyo, Japan) over the 2θ (deg) range from 3.0 to 70.0 deg at 1.0 deg/min
of scan speed to examine the crystalline nature of the samples (5-FU-loaded SEMC, 5-FU-
loaded and ERS-coated SEMC in comparison to the pure 5-FU). The X-ray tube (anode
material) was Cu with Ka2 elimination, where the Ka2/Ka1 intensity ratio was 0.10 nm,
and it was monochromatized with the graphite crystal. The diffractograms were obtained
at 40 kV of tube voltage and 40 mA of the generator with the given specifications (DivSlit:
1/2 deg, DivH.L. Slit: 10 mm SctSlit: 1/2 deg and RecSlit: 0.3 mm) where the step scan
mode of step size 0.02◦ and counting time was 1 sec per step.

2.2.9. Differential Scanning Calorimetry

Thermal analysis of pure drug 5-FU, Eudragit RS-100, macroporous SEMC, drug-
loaded uncoated SEMC-FU (F2), and the ERS-coated SEMC-FU (F2-ERS) were conducted
using a differential scanning calorimeter (Netzsch, DSC 200F3, Selb, Germany). The sample
cells were purged by nitrogen at a flow rate of 50 mL/min. An aliquot of approximately
5 mg was weighed and sealed in an aluminum pan, and an empty pan was used as a
reference. The thermal behaviors of all samples were scanned from −10 to 240 ◦C at a
heating rate of 10 K/min.

2.3. Chromatographic Analysis of 5-FU

The HPLC-UV method was used for the routine analysis of 5-FU. Previously re-
ported HPLC-UV methods [36–38] were used to analyze 5-FU in the samples obtained
from encapsulation, drug loading, and in vitro drug release experiments. The HPLC sys-
tem (Waters-1500 series controller, USA), comprised of a UV-detector (Waters-2489, dual
absorbance detector), binary pump (Waters-1525), and an automated sampling system
(Waters-2707 plus autosampler) was used for the assay of 5-FU. The HPLC system was
controlled and monitored by “Breeze-software”. 5-FU was analyzed by injecting 30 µL
of the supernatant into the column (MACHERY-NAGEL, EC150/4.6 NUCLEODUR C18,
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Gravity, 5 µm) maintained at 30 ◦C (38). The mobile phase (40 mM KH2PO4 buffer, pH was
adjusted to 7 by 2%, w/v KOH) was pumped with a flow rate of 1 mL·min−1. The volume
of injection was 30 µL, the run-time was 10 min, and UV detection of 5-FU was done at
260 nm [39].

The standard stock solution of 5-FU (1000 µg·mL−1) was prepared in methanol; from
this solution, 0.25–100 µg·mL−1 concentration ranges were prepared by serial dilutions
with the mobile phase. The calibration curve was obtained by plotting the known con-
centrations of 5-FU (µg·mL−1) versus the corresponding peak area. The calibration curve
was linear in the mentioned concentration range with the 0.9999 value of coefficient of
determinations (R2). The obtained regressed equation was successfully employed for
the quantitative analysis of 5-FU during encapsulation, drug loading, and in vitro drug
release experiments. The same HPLC-UV method was used to analyze 5-FU in plasma
samples and tissue homogenates with slight modification [40]. The standard stock solution
of 5-FU (1000 µg·mL−1) was prepared in methanol. The stock solution of thymine as
internal standard (IS) was prepared in methanol at 1000 µg·mL−1 concentration [41]. The
calibration curve was prepared by spiking 5-FU solution into 400 µL of rat plasma to get
0.25–100 µg·mL−1 concentration ranges; then, 50 µL of IS (50 µg) was added to each sample.
Acetonitrile (250 µL) was added to the spiked samples for protein precipitation. Then, a
2 mL mixture of isopropanol and diethyl ether (16: 84, v/v) was added to each sample,
vortexed for 30 s, and centrifuged at 5000 rpm for 5 min. The organic layer was dried under
a nitrogen stream, the obtained residue was dissolved in 1000 µL of mobile phase, and
30 µL of this sample was injected into the HPLC system for the analysis [42]. The peaks
of 5-FU and IS appeared separately at the retention times of 4.25 and 6.35 min, respectively.
Similarly, tissue homogenates 400 µL (0.1 g tissue/mL) were transferred to 1.5 mL Eppendorf
tubes. The samples were spiked with 50 µL of IS (50 µg) and mixed by vortexing. Afterward,
the rest of the process was followed as mentioned for plasma samples.

2.4. Encapsulation Efficiency (%EE) and Drug Loading (%DL)

The encapsulation of 5-FU into SEMC was determined by the direct method. For
this, 10 mg of 5-FU-loaded SEMC were suspended in 10 mL of phosphate-buffered saline
(PBS, pH 7.4) and vortexed for 5 min; then, the mixture was pulse sonicated by probe
sonication (Sonics & Materials, Inc. Newtown, CT, USA) at 40% power for 45 sec on ice
bath (3 cycles 15 s each). The suspension was centrifuged (at 6000 rpm for 5 min), the
supernatant was collected, and the concentration of 5-FU was measured by the HPLC-UV
method as described above. The encapsulation efficiency (%EE) and drug loading (%DL)
were calculated by the following equations:

%EE =

(
Amount o f drug loaded/determined (mg)

Initial amount o f drug (mg)

)
× 100 (1)

%DL =

(
Amount o f drug loaded/determined (mg)
Total amount o f drug loaded SEMC (mg)

)
× 100 (2)

2.5. In Vitro Drug Release Study

In vitro release of 5-FU was performed in aqueous HCl solution as simulated gastric
fluid (SGF, pH 1.2) for 2 h followed by phosphate buffer solution (PBS, pH 6.8) to simulate
the conditions of gastrointestinal tract up to 36 h. Accurately weighed 10 mg of drug-loaded
SEMC (both the uncoated and E-RS coated) were added in release media (50 mL) in 100 mL
capacity beakers and allowed to be shaken (at 50 rpm) in a shaking water bath maintained
at 37 ± 0.5 ◦C. At different time intervals, 1 mL of aliquots was taken out from the beakers,
and the same volume of fresh release media was put into the beakers to maintain the sink
condition. The obtained samples were centrifuged at 5000 rpm for 5 min. The supernatant
was collected, and the drug concentrations were measured by the HPLC-UV method as
described above. Both the coated and uncoated formulations were used in triplicate for
this experiment.
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2.6. Stability of 5-FU-Loaded Uncoated and ERS-Coated SEMC

A short-term stability of 5-FU-loaded SEMC (F2 and F2-ERS) was conducted by
following the methods [43,44]. Approximately 10 mg of 5-FU-loaded freeze-dried SEMC
(F2 and F2-ERS) were packed separately into tightly closed glass containers and stored at
30 ± 1 ◦C for 30 days (as per the climatic zone of Saudi Arabia (IVa)). Time-dependent
changes in the size, %EE, and %DL were determined on the 15th and 30th days to realize
the stability of the optimized F2 and ERS coated F2.

2.7. In Vivo Study
2.7.1. Animals

Male Wister rats (≈12 weeks old) weighing 185–203 g were acquired from the Central
Animal House Facility of King Saud University. The rats were kept in the cages with 12 h
light and dark cycle at 25 ± 2 ºC. The animals were fed on standard rat chow and provided
water ad libitum. The Research Ethics Committee of College of Pharmacy, King Saud
University approved the study (Ethical Reference No: KSU-SE-21–59). All animals used in
the experiments received care in compliance with the NIH Guideline for the Care and Use
of Laboratory Animals.

2.7.2. Pharmacokinetics and Gastrointestinal Distribution Study

The efficiency of 5-FU-loaded SEMC for the colon-specific delivery of the drug was
evaluated for the pharmacokinetic and GI-tract distribution in rats. Animals were fasted
overnight before the experiments, but water was provided ad libitum during the experi-
ments. The animals were divided into two groups (Group I and Group II) each consisting
of 33 animals. The animals of Group I and Group II were given an equivalent amount of
coated SEMC (F2-ERS) and uncoated SEMC (F2), respectively, each containing 8.05 mg
of 5-FU by oral gavage. The administered dose of 5-FU was calculated according to the
following Equation (3), as reported previously [45,46].

Sur f ace area =
Colon area

(
cm2)× Dose

(
500 mg·m−2)× Km rat f or 250 g

Colon length (cm)
(3)

The calculated dose was found to be 8.05 mg. After dosing, three rats from each group
were euthanized at predetermined time points by carbon dioxide (CO2) inhalation. Around
3 mL of blood samples were collected by cardiac puncture into heparinized vacutainers and
centrifuged at 5000 rpm for 10 min; then, plasma was collected and stored at −20 ◦C until
the analysis of 5-FU was performed by UPLC-UV. Directly after euthanization, rats were
placed on ice packs and opened by bilateral thoracotomy. The full GI tract was detached,
and the mesenteric and fatty tissues were separated. The GI tract was segmented into the
stomach, small intestine, caecum, and colon. The contents of the lumen were removed by
gentle pressure with wet scissors, and organs were cut longitudinally and washed with
normal saline to remove the remaining luminal contents. The colon was weighed and cut
into small pieces and homogenized at 4 ◦C with an Ultra-turrex (type T 25) homogenizer
(IKA-Werke, Staufen, Germany). Then, the homogenate was centrifuged at 5000 rpm for
10 min at 4 ◦C. The fatty layer was discarded, and the amount of 5-FU in the supernatant
was quantified by HPLC-UV. The pharmacokinetic data were analyzed by fitting to a
non-compartmental model using PK-Solver, V-1.0 [47].

2.8. Statistical Analysis

Statistical analysis was performed using one-way analysis of variance (ANOVA)
with a Kruskal–Wallis comparisons test for non-parametric data. The p-value < 0.05 was
considered as statistically significant. The encapsulation of 5-FU with natural spores and
in vitro release experiments was performed in triplicate, and all the data were expressed as
mean ± SD, n = 3.
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3. Results and Discussion
3.1. Formulation of 5-FU-Loaded SEMC and Its Coating by ERS

We tried varying amounts of 5-FU (50, 100, and 150 mg) to encapsulate and load into
the SEMC by keeping a constant amount of SEMC (200 mg) in each case (Table 1). To
improve the encapsulation of 5-FU into SEMC, initially, an increased amount of 5-FU was
solubilized in a 1:1 (v/v) mixture of NH4OH: Ethanol. SEMC were suspended into the
hydro-alcoholic solution of 5-FU and subjected to vacuum-assisted (at −20 ◦C and 1 mBar)
drug loading, which causes the entrance of the drug into the internal cavities of the spores
through the nanoscale channels present on the surfaces of SEMC [48]. The use of a higher
amount of drug did not facilitate the highest amount of drug encapsulation and loading;
rather, an optimum amount (100 mg) of 5-FU has shown a sufficient encapsulation and
loading into SEMC, which might be due to the saturation solubility of the drug into the used
aqueous phase [49]. Employing ammonia (NH4OH) could prevent possible complications
that might occur during the use of amines. Since ammonia is a small molecule, it could
provide maximum access to the available functional groups on SEMC. Moreover, ammonia
is highly water soluble and volatile, so any unreacted ammonia would not contaminate
the 5-FU-loaded SEMC, which was also reported in previous studies [12,22,50]. Successful
encapsulation and loading, to prevent the oxidation of proteins [20] and enzymes [33] into
Phoenix dactylifera spores, were obtained by a vacuum-assisted technique. Therefore, the
loading and optimization of 5-FU into SEMC in the present study by a vacuum-assisted
technique offered superior acumen to obtain an improved encapsulation of low aqueous
soluble drug. Of the varying concentrations (2.5%, 5%, and 10%, w/v) of ERS organic
solution, 5% solution was found to be best for the surface coating of 5-FU-loaded SEMC, as
the Scanning Electron Microscope (SEM) image of the coated SEMC has shown a discrete
structure with smooth surfaces.

Table 1. Formulation, encapsulation, and loading of 5-FU into SEMC.

Formulations (Ratio of 5-FU/SEMC)
Amount (mg) %EE

(Mean ± SD)
%DL

(Mean ± SD)
Size (µ)

(Mean ± SD)5-FU SEMC

F1 (1:4) 50 200 47.66 ± 2.34 9.53 ± 0.46 12.42 ± 2.94
F2 (1:2) 100 200 59.81 ± 4.19 19.94 ± 1.41 13.68 ± 3.91
F3 (3:4) 150 200 58.86 ± 4.04 25.23 ± 1.73 17.02 ± 2.94

F2-ERS coated (with 5 mL of 5% ERS) 100 200 56.23 ± 5.48 10.22 ± 0.99 15.47 ± 3.68

5-FU (5-Fluorouracil) and SEMC = Sporopollenin exine microcapsules.

3.2. Structural Morphology and Size Analysis of SEMC

The morphological structure of 5-FU-loaded SEMC before and after ERS coating
was evaluated by SEM. The scanned images are represented in Figure 1. Figure 1a,b
represent the SEM images of the uncoated SEMC and ERS-coated SEMC, respectively,
at low magnifications and large scale (10 µ), while Figure 1c and d are the SEM images
of the uncoated SEMC and ERS-coated SEMC, respectively at higher magnifications and
small scale (1 µ). The surface of SEMC before coating (Figure 1c) clearly shows prominent
reticular and porous structures as previously reported [22,51]. In the case of coating with
ERS, the microstructure of the spores remained unchanged (Figure 1d) and reserved its
morphology [49]. There were no damaging effects or cracking observed even after the
application of external factors such as the application of vacuum at −20 ◦C and evaporation
of organic solvent at 40 ◦C for ERS coating [22].

The surface of the ERS-coated and 5-FU-loaded SEMC was smooth and discrete,
indicating that the microchannels were partially covered due to the polymer coating.
Thus, we conclude that the SEM images substantiate that the method of polymer coating
provided a well-defined surface structure with a uniform size distribution of the spores.
Moreover, the smoothness of the surface of drug-loaded ERS-coated SEMC indicated that
the 5-FU were predominantly encapsulated into the internal cavities of the SEMC [52]. The
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average sizes of the 5-FU-loaded SEMC (F1–F3) are summarized in Table 1. The sizes of
uncoated SEMC (F2) and ERS-coated (F2-ERS) were found in the range of 4.89–20.28 µm
and 8.14–23.71 µm, respectively using ImageJ analysis. The size distribution plots of the
uncoated (F2) and polymer-coated F2 are represented in Figure 2. The size distribution
analysis of the optimized formulations (F2 and F2-ERS) demonstrated a direct relationship
between the polymer concentration and size of the SEMC, which could also be observed
visually in the SEM images (Figure 2).
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3.3. Porosity and Surface Volume Measurement

The adsorption analysis by N2 gas is frequently used for the measurement of porosity
and surface area. Here, we exposed the porous and solid SEMC to N2 at liquid nitrogen
conditions (i.e., 77 K) as probe molecule at different conditions and evaluated the weight
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uptake/the volume of N2 adsorbed by macroporous SEMC, 5-FU-loaded SEMC (F2) and the
ERS-coated SEMC (F2-ERS). Here, the software of the instrument (TriStar-3000) employed
the BET technique/equation to the portion of the isotherm to examine the surface area of
the porous SEMC [53]. The pore size distribution of the macroporous SEMC, 5-FU-loaded
SEMC (F2), and the ERS-coated (F2-ERS) was examined using Langmuir N2 adsorption–
desorption isotherms, as illustrated in Figure 3. Macroporous SEMC, drug-loaded SEMC
(F2), and (F2-ERS) displayed a type-II adsorption–desorption isotherm, corresponding to
the macrospore materials [54]. In the cases of F2 and F2-ERS, the adsorbed amount of
N2 was reduced, but the shape of the hysteresis loop remained similar. The surface pore
volume and average pore diameter of SEMC were 90.72 cm3/g and 27.84 Å, respectively.
After being adsorbed with FU and coated with ERS, these parameters were further reduced
to 71.63 cm3/g and 24.86 Å for F2 and 50.54 cm3/g and 22.09 Å for F2-ERS, respectively.
These results revealed that after polymer coating on the surface of SEMC, the pore shape
did not change significantly because the polymer distributed predominantly on the exterior
surface of SEMC, suggesting that drug-loaded SEMC (F2) and the F2-ERS was the highly
stable macroporous material. A rapid adsorption transition in the P/P0 range of 0.99–1.0
for macroporous SEMC, F2, and the F2-ERS (Figure 3) suggested a unimodal surface pore
size and the nonexistence of hysteresis, indicating the presence of macropores and the
existence of mesoporosity (17.0 to 3000.0 Å) concerning the connectivity of the porous
network due to the occurrence of unrestricted monolayer–multilayer adsorption at high
P/P0 (1.0), which was also reported previously [55].

3.4. Fourier Transform Infrared (FTIR) Spectroscopy

The FTIR spectra of pure drug 5-FU, Eudragit RS-100, macroporous SEMC, drug-
loaded SEMC (F2), and the F2-ERS were recorded in the range of 4000–400 cm−1 wavenum-
ber by a Bruker Tensor-27 spectrophotometer (USA) using KBr pellets. The FTIR spectra
bands at 1661, 1449, 3136, 1430, and 1246 cm−1 indicated the presence of C=O, C=C, N-H,
C-F, and C-N stretching vibrations corresponding to 5-FU, while the peak at 1349.35 cm−1

refers to pyrimidine compound vibration, confirming 5-FU (Figure 4a) [56,57]). Eudragit
RS 100 showed O-H stretching of the hydrate band at 3487.20 cm−1, C=O stretching of sat-
urated aldehyde at 1701.88 cm−1, N-R stretching of quaternary amine salt at 1440.08 cm−1,
and C-O-C stretching of a strong ester band at 11,411,296 cm−1, as shown in Figure 4b. [58].
The FTIR spectrum exhibits SEMC stretching: 3450–3550 cm−1 O-H stretch of -OH groups,
3042.46 cm−1 stretch (-CH2-), C-H stretch 2693 cm−1 (-CH2-), C-H (va) stretch 2840 cm−1

(-CH2-), C-H (va) stretch 2840 cm−1 (-CH2-), C-H (va) stretch 2840 cm−1, -CH2- (shoulder)
C=O stretch of -CO2H 1650 cm−1, C=C stretch 1428–1520 cm−1, (-CH2-) 1196 cm−1, and
(-C-O-C-) stretch 670–846 cm−1 (-CH2-) rocking (Figure 4c) [59,60]. Drug-loaded uncoated
SEMC-FU (F2) displayed the matches of spectra of 5-FU and SEMC for various functional
groups such as stretch 1670.68, 1510.48, 3021.37, 1429.44, and 1242.81 cm−1, indicating the
presence of C=O, C=C, N-H, C-F, and C-N stretching vibrations corresponding to 5-FU
1342.21 cm−1, which refers to pyrimidine compound vibration (Figure 4d). The formula-
tion F2-ERS displayed matches between the spectra of 5-FU, ERS, and SEMC that were
found for different functional groups. Symmetric C-H stretching bands at 2884.88 cm−1,
3042.11 cm−1, and 1321.66 cm−1 for 5-FU, ERS stretching of the hydrate band at 3399.41
cm−1, C=O stretching at saturated aldehyde at 1685.61 cm−1, N-R stretching of quaternary
amine salt at 1427.26 cm−1, and C-O-C stretching of a strong band of ester at 1141,1206
cm−1 and SEMC displaying stretching: 3348.17–3399.41 cm−1 O-H stretch of -OH groups,
3042.42 cm−1 (-CH2-) C-H (νa) stretch, 2884.88 cm−1 (-CH2-) C-H (νb) stretch, 2551.63 cm−1

(shoulder) O-H stretch of H bonded -CO2H, 1685.63 C=O stretch of -CO2H, 1650 cm−1 C=C
stretch—1427–1516 cm−1 (-CH2-), 1196 cm−1 (-C-O-C-) stretch, and 706.63–857.96 cm−1

(-CH2-) rocking were observed. The comparable FTIR for the spectra of 5-FU, ERS, and
SEMC was recorded (Figure 4e). From the studies, it could be concluded that 5-FU was
compatible with the excipients used in the present study. However, the broadening and
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decrease in peak intensity were observed in the spectrum of F2-ERS, which indicated there
was no chemical interaction between drug and the polymer.

Pharmaceutics 2021, 13, x  10  of  27 
 

 

 

Figure 3. Nitrogen  (N2) adsorption–desorption  isotherm of macroporous SEMC  (a), 5‐FU‐loaded 

SEMC (F2) (b) and ERS‐coated 5‐FU‐loaded SEMC (F2‐ERS) (c). All measurements were performed 

at 77 K. 

3.4. Fourier Transform Infrared (FTIR) Spectroscopy 

The FTIR spectra of pure drug 5‐FU, Eudragit RS‐100, macroporous SEMC, drug‐

loaded SEMC (F2), and the F2‐ERS were recorded in the range of 4000–400 cm−1 wave‐

number by  a Bruker Tensor‐27  spectrophotometer  (USA) using KBr pellets. The FTIR 

spectra bands at 1661, 1449, 3136, 1430, and 1246 cm−1 indicated the presence of C=O, C=C, 

N‐H, C‐F, and C‐N stretching vibrations corresponding to 5‐FU, while the peak at 1349.35 

cm−1 refers to pyrimidine compound vibration, confirming 5‐FU (Figure 4a) [56,57]). Eu‐

dragit RS 100 showed O‐H stretching of the hydrate band at 3487.20 cm−1, C=O stretching 

of saturated aldehyde at 1701.88 cm−1, N‐R stretching of quaternary amine salt at 1440.08 

cm−1, and C‐O‐C stretching of a strong ester band at 11,411,296 cm−1, as shown in Figure 

4b. [58]. The FTIR spectrum exhibits SEMC stretching: 3450–3550 cm−1 O‐H stretch of ‐OH 

groups, 3042.46 cm−1 stretch (‐CH2‐), C‐H stretch 2693 cm−1 (‐CH2‐), C‐H (va) stretch 2840 

Figure 3. Nitrogen (N2) adsorption–desorption isotherm of macroporous SEMC (a), 5-FU-loaded
SEMC (F2) (b) and ERS-coated 5-FU-loaded SEMC (F2-ERS) (c). All measurements were performed
at 77 K.



Pharmaceutics 2021, 13, 1921 11 of 24
Pharmaceutics 2021, 13, x  12  of  27 
 

 

 

Figure 4. FTIR spectrum of pure drug 5‐FU (a), Eudragit RS‐100 (ERS) (b), SEMC alone (c), 5‐FU‐

loaded SEMC (F2) (d), and 5‐FU‐loaded ERS‐coated (F2‐ERS) ©. 

Figure 4. FTIR spectrum of pure drug 5-FU (a), Eudragit RS-100 (ERS) (b), SEMC alone (c), 5-FU-
loaded SEMC (F2) (d), and 5-FU-loaded ERS-coated (F2-ERS) © (e).



Pharmaceutics 2021, 13, 1921 12 of 24

3.5. Powdered X-ray Diffraction (PXRD)

The XRD spectra of the samples in comparison to the pure drug (5-FU) were illustrated
in Figure 5. The spectrum of 5-FU (Figure 5a) clearly showed the highest peak with an
intensity of 2701 cps at the 2θ of 28.6 deg with a Bragg’s (d-value) of 3.11, and I/I0 was
100. In addition, the second highest peak with 2594 cps intensity at 2θ of 16.2 deg, with
the d-value 5.46 and I/I0 of 97, which could define the crystallinity of the pure 5-FU. The
presence of a broad peak with low intensity (44 cps) at 2θ of 16.2 deg with the d-value
5.82 and I/I0 of 83 in case of ERS (Figure 5b) indicated the amorphous nature of Eudragit
RS-100. Similarly, two characteristic high-intensity peaks (3018 and 1394 cps) at 2θ (38.0
and 44.3 deg) with d-values (2.36 and 2.04) and I/I0 (100 and 44) that respectively appeared
in case of SEMC alone (Figure 5c). When 5-FU was loaded in SEMC (F2), the characteristic
crystalline peaks of 5-FU were almost disappeared, but the characteristic peaks of SEMC
were obvious (Figure 5d), indicating that the 5-FU was loaded inside the pores of the SEMC
in the amorphous form. In addition, the characteristic crystalline peaks of 5-FU were not
seen after ERS coating on 5-FU-loaded SEMC (Figure 5e), but only the characteristic peaks
of SEMC were found with low intensities (1193 and 484 cps) at 2θ (38.1 and 44.3 deg) with
d-values (2.36 and 2.04) and I/I0 values of 100 and 41, respectively in F2-ERS. The above
findings are in agreement with a previous report of 5-FU-loaded PCL and PLGA-NPs [61]
as well as 5-FU-loaded chitosan-NPs [62,63]. Conclusively, the absence or disappearance
of the characteristic crystalline peaks of 5-FU in F2 and F2-ERS indicate the existence of
5-FU in an amorphous state in the pores and matrix of the SEMC. Moreover, XRD analysis
suggested that most of the 5-FU molecules were entrapped within the SEMC-matrix rather
than adsorbed onto the surfaces of SEMC. These findings were further confirmed by the
FTIR analysis (as mentioned in Section 3.4) of all five samples.

3.6. Differential Scanning Calorimetry

The overlay DSC thermograms of pure 5-FU, Eudragit RS-100 (ERS), SEMC alone, 5-
FU-loaded SEMC (F2), and 5-FU-loaded ERS-coated (F2-ERS) are presented in Figure 6. The
DSC curve of 5-FU has shown a single endothermic peak at 286.5 ◦C (Figure 6a). The DSC
thermogram of the pure 5-FU also showed a sharp melting endotherm peak at ≈286.9 ◦C
followed by decomposition, which was in agreement with those reported previously [64],
while the endothermic peak of pure ERS appeared around 193 ◦C (Figure 6b), and no
specific peak was found in case of blank SEMC in the present investigation (Figure 6c). The
5-FU-loaded SEMC (F2) formulation exhibited an endothermic peak, although it was not
sharp at around 272.5 ◦C (Figure 6d), suggesting that 5-FU was in amorphous form and
the majority of the drug was adsorbed into the porous structure of the SEMC. Moreover, a
slight decrease in the melting temperature for 5-FU was noted in case of F2, which might be
attributed to the loss of crystallinity of the drug, whereas a shifted small broad endothermic
peak at 200 to 260 ◦C suggested that the drug was either totally or partially converted
into amorphous form and furthermore, no characteristic peak of 5-FU was observed. The
reduction of height and sharpness of the endotherm peak may be due to the presence
of polymers in the 5-FU-loaded SEMC (F2-ERS); the downward shift indicated the loss
of mass (due to solvent evaporation, loss of moisture, and degradation) upon heating.
This indicated that the adsorbed drug into the porous structure of the SEMC–matrix was
further and well coated by Figure 6e. Conclusively, the DSC results of drug-loaded SEMC
and its coating with ERS suggested that the 5-FU molecules were adsorbed in the porous
exterior surfaces of the SEMC in an amorphous state. These results corroborate the previous
studies [65,66].
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3.7. Effect of 5-FU Concentration on Encapsulation and Its Loading into SEMC

To encapsulate 5-FU into SEMC, the solubility of 5-FU was enhanced up to 150 mg by
dissolving the drug in each mL 1:1 (v/v) mixture of 1N NH4OH and ethyl alcohol, because
the higher solubility of 5-FU accelerates the improved encapsulation and loading into SEMC
because the encapsulation and loading of any drug into SEMC depends upon the solubility
of the drug in a hydro-alcoholic or aqueous medium [22,49]. The vacuum-assisted method
for encapsulation and loading enables the SEMC to encapsulate a high amount of drug
into its channels and internal cavities, which might be due to the enforced passage of drugs
and the elastic nature of SEMC surfaces as well as the physical and chemical features of the
nano-sized channels and internal cavities of SEMC [20,33]. Based on the previous reports,
the encapsulation of 5-FU greatly depends upon the ratios of drugs and carriers used for the
development of controlled-release formulations [22]. Therefore, we tried to optimize the
encapsulation and loading of 5-FU into SEMC by considering three different ratios of drug–
SEMC to get maximum encapsulation and loading of 5-FU through the vacuum-assisted
method. A direct method was applied for the determination of encapsulation efficiency
(%EE) and drug-loading capacity (%DL). An optimum encapsulation and loading of 59.81%
and 19.94%, respectively (in case of F2, p < 0.05) was found when 100 mg of 5-FU and
200 mg of SEMC was used, while it was lower (47.66% and 9.53%, respectively) at 50 mg
of 5-FU and when 200 mg of SEMC was used (in case of F1). By increasing the amount of
5-FU (150 mg, in case of F3) further, there was no significant increase in the encapsulation
(58.86% only) as compared to F2, while the drug loading was increased significantly (i.e.,
25.53%). No significant improvement in %EE in the case of F3 indicated that the higher
drug amount could increase the encapsulation efficiency of SEMC [67]. This was attributed
to the fact that the encapsulation and loading greatly depend upon the physicochemical
properties of the drug and carrier as well when the above-mentioned method was used to
prepare the SEMC-based formulations [67,68]. An obvious improvement in %DL in the
case of F3 (25.23%) was noted, which was due to the presence of the highest amount of
5-FU in F3 that influenced the calculation. It was contrary to the prior study of Alshehri
et al., 2016 [13]. They reported a decreased loading (94.6 to 82.8%) of ibuprofen when the
concentration of the drug was increased (50 to 400 mg/L), which might be attributed to the
limited site availability for drug loading [13,69]. Based on the optimum encapsulation and
drug loading as well as optimum size, F2 was chosen for further experiments and also only
F2 was subjected to ERS coating. When the amount of 5-FU was highest (150 mg, in F3)
among all, the %DL was highest (25.23%). Contrary to this, the %EE and %DL were 56.23%
and 10.22%, respectively in the case of ERS-coated F2 formulation, which was due to the
higher amount of total excipients (including 5 mL of 5% ERS) as compared to uncoated F2.

3.8. In Vitro Release of 5-FU

The in vitro drug release profiles of 5-FU loaded spores (uncoated (F2) and E-RS coated
(F2-ERS)) in SGF (pH 1.2) and SIF (pH 6.8) is presented in Figure 7a and c, respectively.
Around 34% of the drug was released within 0.5 h from F2 (uncoated spores) in the SGF
release medium, while it was around 25% from the F2-ERS in the same release medium
(SGF), and the cumulative amount of drug released at 2 h was noted around 47% and 39%
from F2 and F2-ERS, respectively. Similarly, the higher release of 5-FU (around 54% from F2
and 42% from F2-ERS at 3 h) was observed in SIF release media. At 24 h, around 73.6% and
79.9% of 5-FU were released from F2 and F2-ERS, respectively in SIF. The prolonged-release
pattern of 5-FU from F2-ERS was attributed to the Eudragit® RS-100 coating. The ERS has
quaternary ammonium groups in its structure, but it has pH-independent solubility and
remains almost insoluble in aqueous media, but they are swellable and permeable [32].
The swelling behavior of ERS might be the reason for the higher drug released from the
F2-ERS. Meanwhile, increased drug release from the uncoated spores might be attributed
to the increased dissolution rate of the drug present on the surface of the spores as well as
the rapid exit of the drug from the nano-channels present in the spore’s wall [48].
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A prolonged and controlled release of 5-FU was observed from the F2-ERS in SIF
up to 24 h, which might be attributed to the increased diffusion pathway and tortuosity
of the spores due to the ERS coating [26]. The present delivery system comprised of 5-
FU-encapsulated SEMC and its coating with ERS (pH-independent polymer) revealed its
probability for the colonic delivery of 5-FU at 6.8 pH, which was well demonstrated by the
successful sustained release of 5-FU until 24 h in SIF. The results obtained in the present
study were also supported by the previous study conducted for the colonic delivery of
5-aminosalicylic acid for 12 h at 6.5 pH [70]. The release of 5-FU from the F2-ERS was found
to be more sustained, which might be controlled due to the ERS coating on F2, and there
was no lag time in the release of 5-FU, which might be associated with the pH-independent
dissolution of Eudragit® RS-100. The sustained release of 5-FU from F2-ERS was further
substantiated by plotting the log time versus log fraction of 5-FU released (Korsmeyer–
Peppas release model), as represented in Figure 7b. The regressed line of this plot generated
the coefficient of correlation (R2) value of 0.961. From the slope of this curve, the diffusion
exponent (n-value) was calculated and found to be 0.131. The n-value suggested that the
mechanism of drug release principally followed the Fickian-diffusion type. A sustained
but slightly higher 5-FU release (79.9% at 24 h) was found in the case of F2-ERS, which
might be due to the polymer erosion in SIF. The release data obtained in 2 h study (in SGF)
were also fitted into different kinetic models. The release of 5-FU from uncoated SEMC
was higher (47.7% at 2 h) as compared to the ERS-coated SEMC in SGF. This was due to the
acidic pH of SGF that could not properly solubilize the ERS coating at pH 1.2. The log time
versus log fraction of 5-FU released (Korsmeyer–Peppas release model) is represented in
Figure 7d. The regressed line of this plot generated the coefficient of correlation (R2) values
0.955 and 0.938 (for F2-ERS and F2 uncoated, respectively). From the slope of the curves,
n-values (0.143 and 0.230) were obtained that suggested that the release of 5-FU primarily
followed the Fickian-diffusion mechanism.
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Figure 7. In vitro release profiles of 5-FU-loaded spores (uncoated and ERS-coated) in SGF (a);
Korsmeyer–Peppas plots in SGF (b); release profiles of 5-FU-loaded spores (uncoated and ERS-
coated) in SIF (c); and release kinetics model (Korsmeyer–Peppas) plots in SIF (d).

Thus, we could postulate that the release of 5-FU from F2-ERS was the combina-
tion of dissolution, diffusion, and polymer–erosion, which was similar to the previous
reports [13,22,71]. The in vitro drug release data from F2-ERS has shown the prolonged
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release of 5-FU and could be controlled at pH conditions of GIT due to the polymer coating,
which can be very much advantageous to treat the cancers of the colon, stomach, breast,
etc. with reduced dosing frequency.

3.9. Stability of 5-FU Loaded SEMC (Uncoated and ERS-Coated)

Due to the excellent biocompatibility, low toxicity, consistency in size, resistance to
even tough chemical conditions, and high-temperature stability, SEMC obtained from
pollens of different species have been used as green carriers for many drugs [72]. There
are numerous reports available regarding the stable shelf-life of pollens and their ex-
tracts [73–75]. Thus, in the present investigation, only a few parameters including the size,
encapsulation (%EE), and drug-loading capacity (%DL) of SEMC were determined after
storage of 5-FU-loaded uncoated and ERS-coated formulations. The measured values for
size, %EE and %DL of F2 and F2-ERS at different time points are presented in Table 2. The
results indicated no significant changes in the measured parameters (size, %EE, and %DL)
at 30 ºC for 1 month. A significant (p < 0.05) change is assumed if the measured values
show a 5% increase in size or decrease in %EE and %DL as compared to the initial (0 days)
values of a batch [76]. A non-significant (p < 0.05) increase in the size was observed in the
case of F2 and F2-ERS on the 15th day and 30th day (Table 2), which might be due to the
moisture adsorption and swelling property of SEMC. A slight decrease in %EE and %DL
of 5-FU was noticed in F2 and F2-ERS on the 15th and 30th day (3.04% and 4.79% in F2
and 2.18% and 2.87% in F2-ERS). Comparatively, the more reduced %EE and %DL in the
case of uncoated SEMC might be due to the moisture adsorption phenomenon of uncoated
SEMC. Meanwhile, the ERS coating hindered the moisture adsorption by SEMC in the case
of F2-ERS; therefore, here, only a very small percentage of reduction in %EE and %DL were
found. The almost negligible findings, especially the %EE and %DL, indicated that the
entrapped drug was found to be stable at the mentioned storage temperature during the
short-term stability testing for one month.

Table 2. Time-dependent evaluation of size, encapsulation efficiency, and drug-loading capacity of F2 and F2-ERS stored at
30 ◦C for 30 days.

Stipulated Time Points F2 Uncoated (Mean ± SD) F2-ERS (Mean ± SD)

Size (µ) %EE %DL Size (µ) %EE %DL

Initially 13.68 ± 3.91 59.81 ± 4.19 19.94 ± 1.39 15.47 ± 3.68 56.23 ± 5.48 10.22 ± 0.99
At 15th day 13.86 ± 3.85 58.04 ± 3.48 19.34 ± 1.16 15.72 ± 3.75 55.03 ± 5.04 10.01 ± 0.92
At 30th day 13.98 ± 3.81 56.95 ± 3.05 18.98 ± 1.02 15.87 ± 3.78 54.61 ± 5.24 9.93 ± 0.95

3.10. In Vivo Pharmacokinetics

The efficiency of drug-loaded ERS-coated SEMC (F2-ERS) for colon-directed delivery
of 5-FU was evaluated for pharmacokinetics and GI tract distributions in rats in comparison
to the control treatment (F2). Equivalent amounts of the two formulations were dispersed
in normal saline to achieve the dose of 5-FU (8.05 mg/kg b.wt). The concentration versus
time profiles of 5-FU are presented in Figure 8a–c, and the pharmacokinetic parameters
are summarized in Table 3. The oral administration of F2 displayed a rapid release of
5-FU in plasma (Figure 8a). The Cmax of 5-FU was 102.82 ± 3.85 µg/mL after 1 h. Sub-
sequently, the plasma concentration decreased quickly with a half-life (t1/2) of around
4.04 h, AUC0-t was 264.1 ± 9.8 µg/mL.h, MRT0-inf was 5.2 h, and the observed Cl/F was
0.03 (mg)/(µg/mL)/h. Most of the drugs become absorbed in the upper gastrointestinal
tract; therefore, it seems that F2 was rapidly released in the gastric cavity [77]. In contrast,
the observed Cmax of 5-FU from F2-ERS (19.47 ± 0.61µg/mL) was 80.45% lower than that
of the F2 (102.82 ± 3.85 µg/mL). The Tmax after the administration of F2 was 1 h, which
was significantly different (p < 0.05) from the Tmax (16 h) obtained with F2-ERS (Table 3).
This longer Tmax indicated that the F2-ERS effectively prevented drug release in the upper
part of the GI tract. The further pharmacokinetic parameters endorsed the slow release
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of drug as MRT0-inf, and the observed volume of distribution (Vz/F) increased 269.14%
from 5.19 h (for F2) to 20.57 h (for F2-ERS) and 41.17% from 0.18 (mg)/(µg/mL) for F2 to
0.24 (mg)/(µg/mL) for F2-ERS, respectively; however, the rate of clearance decreases from
0.03 to 0.02 ((mg)/(µg/mL)/h), which is 25.06% as compared to F2. The pharmacokinetics
parameters indicated that the enzyme-mediated degradation of polysaccharides of SEMC
and ERS in the colon was a slow process [78]. The pharmacokinetic data have shown
that the MRT of F2-ERS was longer than that of the F2. The prolonged MRT of the drug
in the colon was supplemented with sustained drug release property of the F2-ERS at
the target site, which was noticed from the plasma concentration profile of 5-FU. These
results were in agreement with the previous report by Wei He et al. 2008 [79]. The colon, a
homogeneous reservoir, elicits slow and constant release into systemic circulation similar to
continuous infusion, which is highly recommended in the chemotherapy of cancer patients
with a short half-life 5-FU [46,80]. The elimination (Kel) of F2-ERS was about 47.05% more
reduced than that of the F2, displaying slower clearance of the drug from the body, which
might be due to the encapsulation of the drug inside the cages of the carrier (SEMC). The
slow and decreased clearance of encapsulated drug increased the half-life (T1/2) by 83.12%
from 0.09 to 0.17 per hour as compared to F2 uncoated. The relative bioavailability of the
5-FU from F2-ERS was found to increase by 4.35% as compared to F2. These results were in
agreement with the previous report [46,77,79,81].
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Figure 8. Concentrations versus time profiles of 5-FU in plasma (a); gastric tissue homogenates (b);
and colonic tissue homogenates (c), after oral administration of 5-FU-loaded SEMC (F2 uncoated)
and colon-directed Eudragit RS-100-coated F2. The data are represented as mean ± SD, (n = 3).
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Table 3. Pharmacokinetic parameters of 5-FU from drug-loaded SEMC (F2-uncoated) and Eudragit RS-100-coated F2 (F2-ERS). Data were represented as mean SD, n = 3. All values
represent mean ± SD. $ p < 0.05 (F2-Uncoated); ANOVA, followed by Dunnett’s test.

Pharmacokinetic
Parameters

Plasma Colon Gastric
F2-ERS $ F2 (Uncoated) $ Change in %

Control
F2-ERS $ F2 (Uncoated) $ Change in %

Control
F2-ERS $ F2 (Uncoated) $ Change in %

ControlMean ± SD, n = 3 Mean ± SD, n = 3 Mean ± SD, n = 3 Mean ± SD, n = 3 Mean ± SD, n = 3 Mean ± SD, n = 3

Ke (1/h) 0.09 ± 0.002 0.17 ± 0.0009 47.06 0.30 ± 0.0001 0.10 ± 0.000 −200.00 0.06 ± 0.000 0.28 ± 0.028 785.71
t1/2 (h) 7.38 ± 0.1875 4.03 ± 0.02 −83.13 2.31 ± 0.0001 6.79 ± 0.0001 65.98 11.04 ± 0.0001 2.43 ± 0.23 −354.32

Tmax (h) 16.0 ± 0.0 1.0 ± 0.0 −1500.00 12.0 ± 0.0 12.0 ± 0.0 0.00 3.0 ± 0.0 1.0 ± 0.0 −200.00
Cmax (µg/mL) 19.48 ± 0.61 102.82 ± 3.84 80.45 1271.53 ± 47.09 4.71 ± 0.06 −26,896.39 23.55 ± 0.41 406.23 ± 15.04 94.20

AUC0-t (µg/mL·h) 252.60 ± 6.24 264.09 ± 9.84 4.35 16,209.05 ± 600.34 64.86 ± 0.91 −24,890.83 116.05 ± 2.01 1649.27 ± 71.14 92.96
AUC0-inf

(µg/mL·h) 350.54 ± 12.14 267.19 ± 9.83 −31.20 16,509.59 ± 611.46 79.16 ± 1.11 −20,755.98 129.98 ± 2.25 1651.17 ± 71.48 92.13

AUMC0-inf
(µg/mL·h2) 7212.19 ± 337.23 1387.17 ± 47.14 −419.92 223,020.8 ± 8260.02 1218.264 ± 17.16 −18,206.44 1322.44 ± 22.92 6941.41 ± 445.61 80.95

MRT0-inf (h) 20.56 ± 0.29 5.19 ± 0.02 −296.15 13.51 ± 0.001 15.38 ± 0.001 12.16 10.17 ± 0.001 4.20 ± 0.09 −142.14
Vz/F

{(mg)/(µg/mL)} 0.24 ± 0.005 0.17 ± 0.007 −41.18 0.002 ± 0.001 0.99 ± 0.01 99.80 0.99 ± 0.02 0.017 ± 0.001 −5723.53

Cl/F
{(mg)/(µg/mL)/h} 0.023 ± 0.001 0.031 ± 0.001 25.81 0.001 ± 0.0001 0.102 ± 0.001 99.02 0.062 ± 0.001 0.005 ± 0.001 −1140.00
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3.11. Tissue Distribution of 5-FU in Stomach and Small Intestine

The distribution of 5-FU into the stomach and small intestine after the administration
of colon-directed F2-ERS and F2 is represented in Figure 5b. The mean peak concentrations
of 5-FU in the tissues of the stomach and small intestine from F2 were 406.2 ± 15.04 µg/g at
1 h, 198.6 ± 6.9 µg/g at 3 h, 163.5 ± 5.6 µg/g at 4 h, and 16.9 ± 1.7 µg/g at 12 h. These data
indicated that F2 was an immediate release formulation where a large quantity of 5-FU gets
released in the upper part of the GI tract and small intestine. The pharmacokinetic data of
gastric tissue and small intestine of F2-ERS exhibit a reduction in Cmax (µg/mL), AUC0-t
(µg/mL*h), and Ke (1/h) that is 94.20%, 92.96%, and 785.71%, respectively as compared to
the F2 uncoated formulation and increased in half-life (t1/2), Tmax (h), MRT0-inf (h), Vz/F
(mg)/(µg/mL), and Cl/F {(mg)/(µg/mL)/h} that is 352.71%, 200%, 142.14%, 5732.52%,
and 1140%m respectively as compared to the F2 (uncoated) formulation indicating that
a negligible amount of 5-FU was released in gastric tissues and small intestine from the
colon-directed F2-ERS and that the ERS coating remained intact during the transit of the
SEMC through the stomach and small intestine. A sharp decrease in the concentration of
5-FU was found with F2, which might be attributed to the processes of absorption, systemic
distribution, and further movement toward the region of the small intestine.

3.12. Tissue Distribution of 5 FU in Colon Tissues

The distribution of 5-FU into the colon tissues after administration of the F2 and
F2-ERS are represented in Figure 5c. Significant differences in 5-FU concentrations in
colon tissues were observed after administration of the two formulations (p < 0.005).
Pharmacokinetic parameters of F2-ERS display a significant drastic increase in Cmax
(µg/mL), AUC0-t (µg/mL*h), and Ke (1/h), that is 26,896.39%, 24,890.82%, and 200%
respectively and decreased in half-life (t1/2), MRT0-inf (h), Vz/F (mg)/(µg/mL), and Cl/F
{(mg)/(µg/mL)/h} that is 65.97%, 12.15%, 99.79%, and 99.01%, respectively as compared
to F2 (uncoated) formulation. The maximum 5-FU concentration (Cmax) from F2-ERS in
colon tissues was 1271.5 ± 47.09 µg/g at 12 h, following 1001.5 ± 37.09 µg/g at 16 h,
650.4 ± 24.08 µg/g at 20 h, and 90.4 ± 3.34 µg/g at 24 h, respectively. Meanwhile, F2
releases a negligible amount of 5-FU i.e., 4.7 ± 0.06 µg/g at 12 h, 2.55 ± 0.04 µg/g at 16 h,
and 1.46 ± 0.02 µg/g at 24 h, respectively. A higher 5-FU concentration was achieved
with the F2-ERS at all time points, and its relative bioavailability was 249.9 times more
in colon tissues as compared to F2. The high concentration of 5-FU in the colon could be
attributed to the protection of the SEMC from the environment of the stomach and small
intestine due to ERS coating, thereby preventing drug release in the upper part of the GI
tract. These results are in agreement with previous reports [46,77,78]. The recommended
dose of 5-FU for colorectal cancer patients with adequate hematopoietic function and the
average weight is 12 mg/kg intravenously once daily for 4 consecutive days. If there is
no toxicity, the dosage is reduced to 6 mg/kg on days 6, 8, 10, and 12, after which therapy
is discontinued. Intravenous administration (10–15 mg/kg per week as a single dose)
continues maintenance therapy by either repeating the first course every 30 days after
the last day of the previous course of therapy or when toxic signs arising from the initial
course of treatment have subsided. This could take nine to 45 therapy courses over 12 to
60 months [82]. The daily intravenous dose is 500 mg/m2 body surface area as per this
dose regimen, the adult dose 5-FU to be administered intravenously is 600 mg (mean body
surface area = 1.2 m2). Thus, the dose of 5-FU to be administered specifically to the human
colon would be 100 mg as per the mean surface area of the human colon (0.20 m2) [83].
Therefore, targeting the delivery of 5-FU to the colon reduces the dose and therefore the
side effects of 5-FU therapy.

4. Conclusions

The present investigation concludes that the ERS-coated 5-FU-loaded SEMC can be
explored for the effective colon-specific delivery of 5-FU. Moreover, the release of the
encapsulated drug from the SEMC was found to be available for a longer duration. The
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pharmacokinetics and organ distribution studies revealed that the drug concentration was
found higher in the colon tissue, with a little systemic exposure to the drug. The proposed
system could be able to reduce the side effects of 5-FU due to its absorption from the upper
part of the GI tract.
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