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Abstract: The aim of the work was to analyze the influence of process parameters of high shear
granulation on the process yield and on the morphology of granules on the basis of dynamic
image analysis. The amount of added granulation liquid had a significant effect on all monitored
granulometric parameters and caused significant changes in the yield of the process. In regard of
the shape, the most spherical granules with the smoothest surface were formed at a liquid to solid
ratio of ≈1. The smallest granules were formed at an impeller speed of 700 rpm, but the granules
formed at 500 rpm showed both the most desirable shape and the highest process yield. Variation in
the shape factors relied not only on the process parameters, but also on the area equivalent diameter
of the individual granules in the batch. A linear relationship was found between the amount of
granulation liquid and the compressibility of the granules. Using response surface methodology,
models for predicting the size of granules and process yield related to the amount of added liquid
and the impeller speed were generated, on the basis of which the size of granules and yield can be
determined with great accuracy.

Keywords: dynamic image analysis; high shear granulation; liquid to solid ratio; granules

Highlights:

• Dynamic image analysis was used to analyze the morphology of high shear granules;
• The granules were investigated for size, shape, and surface roughness;
• A small change in liquid content caused changes in granule shape and process yield;
• The amount of granulation liquid had a significant effect on all parameters;
• A model for predicting the granule size was created from the experimental data.

1. Introduction

A wet granulation process is predominantly used in the pharmaceutical industry to
manufacture tablets, which are the most widely used dosage form. The high shear wet
granulation (HSWG) represents the most common method, however, fluid bed granulation
(FBG) process is recently also frequent [1]. HSWG is a process of size enlargement of
primary particles joined together by agitation and a liquid binder. Major advantages
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of this technique include: a shorter processing time, a greater densification of granules,
a narrow range of operating conditions, a lower granulating fluid requirement, better
predictability of the granulation end-point and better reproducibility [2]. Other benefits
of HSWG include: reduced dustiness which minimizes losses, inhalation and explosion
risks, improved flow and handling, controlled dissolution rates and co-mixing of particles
which would otherwise segregate during handling [3]. HSWG is considered a complicated
and multivariate pharmaceutical process that is influenced by a large number of variables
derived from equipment, formulations, and processes [4]. The process parameters of HSWG
are impeller speed, chopper speed, liquid-to-solid ratio, liquid addition rate, massing time,
drying time, and drying temperature [5]. Wet massing time can also influence content
uniformity in HSWG [6].

HSWG has three rate processes: wetting and nucleation, consolidation and growth,
and attrition and breakage [7]. When liquid is added by spraying, the spray droplets land
on the powder surface and penetrate into the pores, forming a nucleus granule [8]. During
the wetting process, four states of saturation of powder by liquid may occur: pendular,
funicular, capillary, and droplet state [9]. High-speed granulators are used extensively
in the pharmaceutical industry because they are capable of producing granules that are
small and dense, making them ideal for blending and tableting [10]. Granules formed by
HSWG have a smoother and denser surface because they are subjected to an intensive
consolidation process [11]. They have a narrower particle size distribution than twin-screw
granules [12]. Regular particles with a smooth surface have generally better flow properties
because of the fewer contact points between the particles [13].

Particle morphology refers to the size, shape, and surface roughness of particles [14].
There are several methods for determining the shape and size of granules based on the
principle of image analysis. One such method is dynamic image analysis (DIA), in which
particles are captured in motion. DIA offers numerous advantages because it does not need
the density of materials for particle size distribution (PSD), it provides a continuous PSD
curve, and it is fast and easy to perform. DIA, unlike other techniques, can report different
size parameters as it processes the image of particles [15]. Several authors have experience
with the use of DIA for different types of materials: pharmaceutical excipients [16–19],
minitablets [20], tailings [21], talc [22], concrete aggregates [23], sediments [24], volcanic
ash [25], calcite [26], and coal [27,28]. DIA data on particle shape, size, and distribution
can be used to predict the flow and packing behavior of granular materials [29]. De
Simone et al. [30] optimized the low shear granulation process of hydroxypropyl methyl-
cellulose using DIA. Kumar et al. [31] and Madarász et al. [32] used DIA to analyze the
size and shape of granules in the twin screw granulation process.

In our work, we focused on the processing of the commonly used pharmaceutical
excipient microcrystalline cellulose (MCC) by HSWG, in a wide range of liquid to solid
(L/S) ratios at different impeller speeds. A formulation containing MCC requires a greater
amount of water for granulation because MCC is a water-insoluble excipient having a high
water-holding capacity [33]. Shi et al. [34] found that when MCC powders were processed
with 35% or less water, the predominant process was wetting. Nucleation processes
commenced between 35% and 45% of granulation water. Osei-Yeboah et al. [35] set the
upper limit of water-holding capacity of Avicel PH101 at 135% without forming slurry.
Methods of adding granulation liquid [36], its viscosity [37], but also the nozzle type [38]
affect the shape of the granules formed. Nalleso et al. [39] studied the kinetic of HSWG
of MCC by texture analysis during the addition of granulating liquid with different flow
rates. They found that the early stages of the process (nucleation and growth) were strongly
influenced by the binder flow rate. In addition, the initial moisture content can significantly
affect the manufacturability of MCC granules by HSWG [40]. Impeller speed affects the
size distribution and the granule size, but it also has an influence on the granules’ structure
and shape. This affects the end-use properties of the granules such as the dissolution rate,
compaction, and hardness during handling [41].
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Several authors have investigated various morphological parameters for the char-
acterization of particle shape [42–47]. Xiu et al. [48] pointed out that the flow properties
of different types of MCC are directly influenced by fractal dimension and circularity.
However, Almeida-Prieto et al. [49] have shown that the shape of the granules cannot be
characterized correctly with only one shape factor. To fill the literature gap, the aim of our
work is to systematically analyze the influence of selected HSWG process parameters on
the granule morphology and process yield. Using the DIA method on a PartAn 3D device,
the shape parameters sphericity, aspect ratio, roundness, and concavity will be monitored
at different L/S ratios and impeller speeds; selected samples of granules will be analyzed
using an electron microscope. Employing response surface methodology, the possibility to
reach an acceptable model for prediction of the size of the granules will be investigated.

2. Material and Methods

All measurements and manipulations were carried out at a controlled ambient tem-
perature of 24.0 ± 2.0 ◦C and relative air humidity 40.0 ± 12.0% analyzed by hygrometer
E5005 (Emos, Prerov, Czech Republic).

2.1. Experimental Material

Avicel® PH 101—microcrystalline cellulose (FMC Biopolymer, Cork, Ireland), a com-
mon pharmaceutical excipient obtained from the IMCD Czech Republic, was used in the
experiments. This material is regularly used in the pharmaceutical industry as a filler or
binder in oral dosage forms. Information about the true density (1580 kg/m3) and the
bulk density (333 kg/m3) was provided by the manufacturer. An aqueous solution of
polyvinylpyrrolidone powder K30 (BioChemica, Billingham, UK) was used as a granu-
lation binder. The polyvinylpyrrolidone was prepared as a 2% w/w aqueous solution in
distilled water at a temperature of 38 ◦C by a Stuart 162 magnetic stirrer (Stuart Equipment,
Staffordshire, UK) until the powder particles were completely until the powder particles
were completely dissolved.

2.2. Particle Size Analysis

The particle size and size distribution were analyzed using a Malvern Mastersizer
3000 Laser Diffraction Analyzer (Malvern Panalytical, Malvern, UK). Characteristic di-
mensions of the experimental material were assessed volumetrically, and samples were
analyzed by the dry cell method. The experiment was repeated three times. The results
were then interpreted as an average from three measurements. Measurements were per-
formed using an Aero S dry powder dispersion unit. The polystyrene latex standard was
used for calibration according to ISO 13320:2009. The particle refractive index and the
particle absorption index were 1.5 and 0.1, respectively.

2.3. Water Sorption Analysis

The sorption and desorption kinetics of water vapor applied to a sample of the
investigated material were measured using a gravimetric fully automated Aquadyne DVS
dynamic vapor sorption device (Quantachrome Instrumens, Hartley Wintney, UK). The
measurements were performed at a constant temperature of 22.5 ◦C. Microcrystalline
cellulose CRM 302 MCC was used as a standard for the device calibration. A sample
of a defined weight of 45 mg was placed on analytical balance in the instrument, then
a re-testing process was started, where the sample was cyclically exposed to changes in
relative humidity and the dependence of the change in weight of the examined material
on ambient humidity was measured. When the humidity limit is reached, the humidity
increase cycle stops and the desorption process begins. The output of the measurement is
the dependence between the change in the weight of the examined sample and the relative
humidity for the adsorption and desorption process. The actual moisture of the powder
was analyzed using a moisture analyzer MB 60 (VWR, Lutterworth, UK).
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2.4. High Shear Granulation

Avicel PH101 was granulated by high shear wet granulation (HSWG) with a vertical,
three- bladed bottom driven granulator of our own production [50]. The amount of
Avicel per batch was 500 mL, i.e., 167 g. As the granular material was pure Avicel, it was
not necessary to mix the material before the HSWG process. At the set chopper speed
(1000 rpm) and impeller speeds (300, 500, and 700 rpm), granulation liquid was sprayed
into the granulator at a flow rate of 22.5 mL/min. After the addition of the granulation
liquid was completed, the whole wet mass was mixed for another 5 min, at the same
impeller and chopper speeds. An appropriately set combination of impeller and chopper
speeds ensures a balance, allowing establishment of good toroidal flow to promote granule
growth [51]. The experiment was repeated twice, for the same duration of the granulation
liquid adding.

2.5. Classification of Franules

The wet granules from the HSWG process were weighed using a Nimbus NBL 254i
(Adam Equipment, Kingstone, UK). After weighing, the wet granules were dried at 60 ◦C
for 24 h. The dried granules were weighed again. The liquid to solid ratio (L/S ratio) pa-
rameter was determined as the difference between the weight of the wet and dry granulate
divided by the weight of the dry granulate to accurately express the liquid content of the
granules. The dried granules were classified as fine (<0.4 mm), yield (product) (0.4 up to
3 mm) and coarse (>3 mm) using sieve analysis by a Vibratory Shaker (Fritsch, Oberstein,
Germany, with sieves of 0.4 mm and 3 mm. The individual fractions of the classified
granules were weighed again.

2.6. Measurement of Granule Size and Shape

The size distribution and shape of the granules were analyzed using a PartAn 3D
device (Microtrac MRB, Haan, Germany). The measurements were performed according
to ISO 13322-2 and 9276-6 standards for dynamic image analysis [52]. Dynamic image
analysis (DIA) is a technique that characterizes granules in motion by digitalizing photos
of each granule from a CCD (charge-coupled device) camera (100 photos per second) and
storing them in an image file. The particles tumble and rotate and are illuminated by
stroboscopic light. The images are used to calculate morphological parameters based on
the known size and location of the pixels in each image. The principle of measurement is
shown in the figure (Figure 1).
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Both the granules and the powdered Avicel were evaluated volumetrically. The de-
scription of the size parameters is in Table 1. The characteristic dimension for determining
the size of a granule was the Area Equivalent Diameter Da Equation (1) obtained from
multiple photos of individual granules.

Da =
√

4 A/π , (1)

where A is the area of the projected particle. Mean granule size was calculated according to
the relationship in Equation (2).

dmean =
∑ % in class×mid.class size

number o f classes
/100. (2)

Table 1. Description of size parameters used in 3D Dynamic image analysis.

Parameter Symbol Description Scheme

Area A
Area of projected particle. Calculated as

an average area of the sequence of
3D images.
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the particle length expressed by Feret parallel tangent dimensions. The value AR = 1 cor-
responds to a perfect sphere. 

𝐴𝐴𝐴𝐴 =
𝐹𝐹𝑇𝑇
𝐹𝐹𝐿𝐿

, (5) 

where FT is the Feret thickness. The largest Feret size measured in a series of individual 
particle images was assigned as the 3D length FL and the smallest Feret size was assigned 
as the thickness FT of that particle [52]. The last parameter describing the shape of the 
particles was concavity c Equation (6). The value c = 1 describes an extremely rough, 
spikey surface. 

𝑐𝑐 = 𝐶𝐶𝐶𝐶𝐴𝐴 −
𝐴𝐴
𝐶𝐶𝐶𝐶𝐴𝐴

, (6) 

where CHA is convex Hull area. In the same way as dmean, mean sphericity, roundness, 
aspect ratio and concavity were also determined as mean values from all granules classi-
fied as product in the whole batch. 

Table 1. Description of size parameters used in 3D Dynamic image analysis. 

Parameter Symbol Description Scheme 

Area A 
Area of projected particle. Calcu-
lated as an average area of the se-

quence of 3D images. 
 

Perimeter P 
Perimeter of the projected image. 

Calculated as an average perimeter 
of the sequence of 3D images. 

 

Convex Hull 
Area 

CHA 
The convex outline of a projected 

shape having concavities.  

Area Equivalent
diameter Da

Spheres of equal area to the original
particle. Average area in the sequence of

3D images.
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Equivalent
Perimeter diameter Dp

Spheres of equal perimeter to the original
particle. Average area in the sequence of

3D images.
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Feret length FL
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Feret thickness FT

Minimum distance between parallel
tangents. Measured as minimum particle

width in the sequence of 3D images.
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the granulate Equation (3). Sphericity value ϕ = 1 corresponds to a perfect sphere.

ϕ =
Da

Dp
, (3)
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where Dp is the equivalent perimeter diameter calculated as (p/π). Another parameter is
roundness r Equation (4). Value r = 1, corresponds to a perfectly circular particle.

r = 4× A
π
× F2

L , (4)

where FL is the Feret length. The aspect ratio AR Equation (5) was defined as thickness
to the particle length expressed by Feret parallel tangent dimensions. The value AR = 1
corresponds to a perfect sphere.

AR =
FT
FL

, (5)

where FT is the Feret thickness. The largest Feret size measured in a series of individual
particle images was assigned as the 3D length FL and the smallest Feret size was assigned
as the thickness FT of that particle [52]. The last parameter describing the shape of the
particles was concavity c Equation (6). The value c = 1 describes an extremely rough,
spikey surface.

c = CHA −
A

CHA
, (6)

where CHA is convex Hull area. In the same way as dmean, mean sphericity, roundness,
aspect ratio and concavity were also determined as mean values from all granules classified
as product in the whole batch.

2.7. Microscopic Analysis

The surface of the granules was analyzed using a JSM electron microscope (JEOL Ltd.,
Tokyo, Japan). The examined sample was sprayed with a layer of platinum nanoparticles
before measurement in order to obtain a conductive surface. Next, the sample was placed
in the working chamber of the microscope, where a vacuum was created. By the action of a
beam with voltage 10.0 kV, the material was irradiated and the subsequent application of
the secondary electron detector method (SED) revealed electrons reflected from the surface
of the sample.

2.8. Compressibility of Granules

A FT4 powder rheometer (Freeman Technology, Tewkesbury, UK) was used to deter-
mine the compressibility of Avicel powder and granules in accordance with ASTM-D7891-
15 (2015) standard [53]. The batch of experimental material for one measurement was 60 g
for Avicel powder and 80 g for granules. Compressibility measurements were performed in
two vessels with a diameter of 50 mm and a volume of 85 mL. Prior to the compressibility
measurement itself, the sample was subjected to three conditioning cycles, using a blade, in
order to obtain a homogeneously packed powder bed. Excess material was split to achieve
a defined bottom vessel volume 85 mL. Normal stress in a range of 0.5–15 kPa was applied
to the pretreated sample. Based on the position of the piston, the height occupied by the test
material before and after the compression test was determined and the volume of material
was calculated using the vessel geometry and the measured heights. Compressibility (CPS)
is calculated from the change in volume of the tested sample after compression, expressed
as a percentage [54]. Despite the fact that compressibility is not a direct indicator of flow
properties, it is related to several operations such as storage in hoppers or the behavior of
bulk materials during roller compaction [55].

2.9. Data Processing

OriginPro 9.0 software (OriginLab Corporation, Northampton, MA, USA) was used to
process the experimental data and box charts. Design Expert 13 (StatEase Inc., Minneapolis,
MN, USA) was used for the creation of models. Response surface methodology with a
quadratic model was used to correlate responses and factors (independent variables). The
process parameters impeller speed and L/S ratio were chosen as independent variables.
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Parameters dmean and process yield were chosen as the response (dependent variable). A
general polynomial equation was used to create the model Equation (7)

Y = β0 + β1X1 + β2X2 + β11X2
1 + β22X2

2 + β12X1X2, (7)

where Y is a dependent variable (response), β0 is a constant, β1 and β2 are linear coefficients,
β11 and β22 are quadratic coefficients, β12 is the interaction coefficient. X1 and X2 are the
coded values of independent variables. Multilinear analysis and analysis of variance
(ANOVA) were performed to established statistical significance [56].

3. Results and Discussion
3.1. Evaluation of Particle Size of Avicel PH 101

Values d10 (23.9 µm), d50 (64.2 µm) and d90 (140 µm) were determined by the dry cell
method. These are the particle sizes corresponding to 10%, 50%, and 90% of the cumulative
volume distribution curve. The distribution curve of the particles was unimodal (Figure 2).
The span value of 1.807 calculated as (d90 − d10)/d50 and Sauter volume/surface diameter
d32 of 46 µm were detected. The particle shape will be discussed later.
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Figure 2. Particle size distribution of Avicel PH101 analyzed by Mastersizer 3000.

3.2. Evaluation of Water Sorption of Avicel PH 101

Avicel PH101 particles tend to increase in volume with increasing liquid content, which
is desirable when tablets disintegrate. However, due to changes in relative humidity, Avicel
PH101 particles can absorb significant amounts of moisture. Figure 3 shows the adsorption
and desorption isotherms analyzed by Aquadyne DVS. At 95% relative humidity, the
increase in the weight of the analyzed sample was up by 15.8%, meaning that the weight of
the sample increased to 71.1 mg compared to the original 45 mg. The desorption cycle was
able to dry the sample at a relative humidity of 12.6% to a value where the weight gain
was 0.17%. Sun [57] pointed out that moisture trapped in Avicel particles can significantly
influence its behavior during the compaction process. The moisture of our Avicel PH101
powder, analyzed by a MB 60 moisture analyzer, was 4.0 ± 0.2%.
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3.3. Evaluation of Granule Size

Graphical dependence of dmean on the L/S ratio parameter is illustrated in Figure 4a
for all impeller speeds. With increasing L/S, the dmean of the formed granules increased
almost linearly, up to the value L/S = 1.0. Within the L/S ratio 0.9–1.0, a “stagnant zone”
(or the mild decrease in size) in the value of dmean was noted. After exceeding the L/S ratio
1.0, the size of the granules increased exponentially, which indicates that the saturation
point has been achieved and surpassed. The excess binder solution is then available for
extensive granule growth by coalescence.
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A similar trend can be found in the work by Shi et al. [58] during granulation of Avicel
PH101 using distilled water and also in the work by Chitu et al. [59] during granulation
of MCC with lactose. Osei-Yeboah et al. [60] found that at more than 45% water content,
MCC–PVP granules flow well but cannot be compressed into intact tablets. Such changes
in powder performance correspond to the rapid growth into large and dense spheres with
a smooth surface.

A significant effect of impeller speed on the mean granule sizes for all experiments
is summarized in Figure 4b in a visual form of box charts. For better clarity, the points in
the graph relating to individual experiments are included. In order to maintain a uniform
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range of L/S ratio, three experiments were excluded from the analyzes at L/S < 0.70 and
impeller speed 500 rpm. In a numerical form, data of dmean for different impeller speeds
are presented in Table 2.

Table 2. Results of box charts analysis of individual investigated granulometric parameters and process yield.

Impeller
Speed (rpm)

Mean
Value STDEV 5th

Percentile
25th

Percentile Median 75th
Percentile

95th
Percentile

dmean (mm)
300 1.244 0.392 0.89 0.97 1.06 1.59 1.94
500 0.946 0.192 0.78 0.83 0.88 0.99 1.35
700 0.826 0.139 0.67 0.735 0.78 0.875 1.15

Yield (%)
300 58.9 26.2 18.3 38.8 61.6 82.8 91.8
500 67.6 25.9 19.4 46.1 84.6 86.8 93.1
700 62.0 29.2 12.8 32.9 79.8 86.2 91.0

ϕ (-)
300 0.875 0.049 0.79 0.83 0.91 0.91 0.93
500 0.923 0.019 0.88 0.91 0.93 0.94 0.94
700 0.908 0.043 0.8 0.9 0.93 0.93 0.94

AR (-)
300 0.507 0.054 0.42 0.46 0.515 0.55 0.58
500 0.531 0.009 0.51 0.53 0.53 0.54 0.54
700 0.505 0.026 0.43 0.5 0.51 0.52 0.53

r (-)
300 0.471 0.072 0.36 0.4 0.495 0.53 0.56
500 0.522 0.023 0.47 0.52 0.53 0.54 0.55
700 0.492 0.046 0.37 0.485 0.51 0.52 0.52

c (-)
300 0.042 0.013 0.032 0.034 0.039 0.043 0.074
500 0.029 0.006 0.021 0.023 0.028 0.033 0.041
700 0.029 0.008 0.021 0.024 0.028 0.035 0.05

The granules obtained at higher impeller speeds have a smaller particle size due
to more pronounced dynamic stresses followed by subsequent breakage and attrition.
The granules at an impeller speed of 300 rpm ranged in size from 0.89 to 2.02 mm. At
an impeller speed of 500 rpm, the granules had a size of 0.72–1.6 mm, while the size of
0.66–1.23 mm was detected at 700 rpm. Rahmanian et al. [61] proved that granules formed
at higher impeller speeds also have higher crushing strength due to lower porosity.

The width of the granule size distribution decreased as the impeller speed increased;
it was the narrowest at a speed of 700 rpm (Figure 4b). Mean granule size from all
experiments, analyzed by box charts at an impeller speed 700 rpm was dmean = 0.826 mm.
At an impeller speed of 300 rpm it was up to 1.244 mm. Since some of the experiments are
located in the area of L/S < 1, where the growth of the granules was not so significantly
affected by the amount of added liquid, the median of the distribution curve was 1.06 mm
(300 rpm), 0.88 mm (500 rpm), and 0.78 mm (700 rpm).

3.4. Evaluation of Process Yield

A graphical dependence between the process yield and the L/S ratio is shown in
Figure 5a. With an increasing L/S ratio, the proportion of required granule fraction marked
as yield (0.4 up to 3 mm) increased, however, the results were influenced by impeller
speed as well. At an impeller speed of 300 rpm, the increase in yield is slower than at
higher speeds and reached the value of 80% at the high L/S ratio of 1.12. With a further
increase in L/S, the yield fraction increased to above 90%. The decrease in the curve at
L/S > 1.25 shown in Figure 4a at 300 rpm was due to the removal of larger granules, which
were classified as coarse. At impeller speeds of 500 and 700 rpm, contrarily, the content of
yield granule portion raised sharply when exceeding the L/S ratio of 0.87 and significant
changes in the process yield were observed particularly in the L/S range from 0.9 to 1.0.
The 80% limit was achieved at a L/S ratio of approximately 0.97 at both speeds. After
exceeding this value, the yield continued to grow slowly, achieving process yield >90% at a
L/S ratio of 1.2 The graph shows that the highest process yields were achieved at higher
L/S ratio values and higher impeller speeds.
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In Figure 5b, a summary box chart of the yield fraction distribution for each impeller
speed are shown; in a numerical form, data are summarized in Table 2. The highest yield
with the narrowest distribution was detected at an impeller speed of 500 rpm with the
mean yield 67.6%. However, most experiments had a process yield above 80%, which was
reflected in a median size yield of 84.6% at 500 rpm. At 700 rpm, the median was 79.8%.
On the other hand, the lowest median yield value of 61.6% was noted in experiments at
300 rpm impeller speed.

3.5. Evaluation of Sphericity

Spherical shape is a significant advantage for good flowability [62]. The relationship
of mean sphericity ϕ of the formed granules on the L/S ratio and impeller speeds used
was investigated and is illustrated in Figure 6a. At an impeller speed of 300 rpm, sphericity
firstly decreased with increasing L/S ratio up to 1.0; then started to rise again. At L/S
ratios > 1.0, almost all granule samples showed a sphericity value ϕ > 0.9. At the highest
impeller speed of 700 rpm, a similar sphericity decrease at low L/S ratios was detected
with the values of ϕ < 0.9 in the L/S ratio range of 0.7–0.85. Then, the granules showed
higher values of ϕ (around 0.94) within the L/S ratio range of 0.92–1.04, decreasing mildly
at higher L/S ratios, but still remaining above 0.9. The best results were noted at 500 rpm.
The granules sphericity near to 0.9 (ϕ = 0.87) occurred even at low L/S. The value raised
above 0.9 at L/S ratios higher than 0.87. Bouwman et al. [63] found that spherical and
regularly shaped granules in the formulation containing MCC were formed particularly
with a L/S ratio = 1.0. Our results at higher impeller speeds are in a good agreement with
this observation.

In Figure 6b, a box chart of mean sphericity distributions for each impeller speed is
presented; a numerical form is summarized in Table 2. The graph confirms the narrowest
distribution of sphericity at 500 rpm. Mean sphericity values of 0.875± 0.049, 0.923± 0.019,
and 0.908 ± 0.043 were noted at 300, 500, and 700 rpm, respectively. The median value
of ϕ = 0.91 was observed at 300 rpm; at 500 and 700 rpm, the same value 0.93 was found.
These median values from box chart analysis values were not so significantly affected
by sphericity values at lower L/S ratios. Thus, it can be concluded that more spherical
granules were formed at higher impeller speeds.

On the basis of sphericity, Maroof et al. [64] classified the particles as follows ϕ = 0.45
to 0.6—medium sphericity, ϕ = 0.6 to 0.8—spherical and ϕ = 0.8 to 1.0—high sphericity.
According to this classification, most granules prepared in this work were categorized as
highly spherical.
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3.6. Evaluation of Aspect Ratio

Similarly to sphericity, the Aspect ratio AR parameter showed higher values with an
increasing L/S ratio. The dependence between AR and L/S ratios is shown in Figure 7a. Out of
all experimental runs, the granules formed at an impeller speed 300 rpm reached the highest
values of AR as well as the highest data variability. The AR firstly decreased (minimum
AR = 0.4 at L/S = 0.92), then it rose sharply with an increasing content of the liquid used to
form the granules. The highest values were noted at L/S > 1.1 (maximum AR = 0.58). At
the highest impeller speed 700 rpm, a decrease in AR values was observed at low L/S ratios
(minimum 0.42 at L/S = 0.84) following with the AR increase to approximately 0.50–0.51
if the L/S ratio increased up to 1.05. Then, a further slight increasing trend of AR values
at higher L/S was noted. At an impeller speed of 500 rpm, the most consistent data were
detected; all granules had the AR values of at least 0.51 regardless of the L/S ratio used.
The higher AR values indicate better flow properties [65].
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Again, an AR distribution box chart for each impeller speed can be seen in Figure 7b
and in numerical form in Table 2. The graph clearly documents that the narrowest AR
distribution was noted at 500 rpm impeller speed. The mean value of AR was 0.507 ± 0.054
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(300 rpm), 0.531 ± 0.009 (500 rpm) and 0.505 ± 0.026 at 700 rpm. At 500 rpm, the median
value (0.53) of the AR distribution was almost identical to the mean value. The median
value of 0.515 at 300 rpm was almost identical to that of 0.51 at 700 rpm.

Based on the sphericity and AR values, it can be concluded that most of the granules
prepared in all experimental runs had an elongated rounded shape.

3.7. Evaluation of Roundness

Roundness r represents another granulometric parameter. When analyzing the experi-
mental data, a similar trend to that described above for sphericity was found in relationship
to the L/S ratio and impeller speed. The linear relationship between mean r and mean ϕ
illustrated in Figure 8a for all experimental data can be described by a linear regression
r = 1.187 × ϕ − 0.576 with the coefficient of determination R2 = 0.909 (p < 0.005).
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In a box chart of roundness distribution at each impeller speed (Figure 8b), the
narrowest r distribution with the rounded granules at 500 rpm is demonstrated. Similarly
to the evaluation of ϕ and AR, the highest values of r = 0.57 to 0.58 (L/S = 1.12 to 1.17) as
well as the widest distribution were obtained at 300 rpm impeller speed; low values of r
were found up to L/S = 1. Finally, the lowest r values were noted for four granules batches
formed at lower L/S values at 700 rpm.

According to the classification by Maroof et al. [64], values r = 0.35 to 0.49 represent
sub-rounded particles, r = 0.49 to 0.7 belong to rounded particles, and r = 0.7 to 1.0 belong
to well-rounded particles. The median values of r = 0.495 (300 rpm), 0.53 (500 rpm), and
0.51 (700 rpm) were registered in this work. Mean values from box chart for each impeller
speed were 0.471 ± 0.072 (300 rpm), 0.522 ± 0.023 (500 rpm), and 0.492 ± 0.046 (700 rpm).
Based on the abovementioned classification, most prepared granules can be characterized
as rounded particles. In a numerical form, data are also summarized in Table 2.

3.8. Evaluation of Roughness

The roughness of the granules was described by concavity c. A graphical dependence
of mean c on the L/S ratio in Figure 9a shows that the roughest granules were formed at
the lowest impeller speed of 300 rpm. In a range of L/S ratio 0.9–1.0, the values of c were
even larger than 0.07. In opposite, the most homogeneous data were noted at 500 rpm
again. At higher impeller speeds, there was first a rising roughness trend at L/S = 0.7 to 0.8,
which then descended at L/S = 0.8–0.95. Starting at an L/S ratio of approximately 0.95, a
linear increase in c value in regard to the increase in L/S value was visible at both 500 rpm
and 700 rpm. Lower values of roughness have a positive effect on the flow properties of
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powder materials and granules [66]. Based on the results, the smoothest granules were
formed at higher impeller speeds in the L/S range of 0.9 to 1.05.
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A summary of the mean concavity for all experiments in a visual form of box charts of
c for all impeller speeds is in Figure 9b and in numerical form in Table 2. At an impeller
speed of 300 rpm, the highest mean concavity was observed (0.042± 0.013; median = 0.039).
The mean concavity values as well as the median values were comparable (0.029 and 0.028,
respectively) at an impeller speed of 500 rpm and 700 rpm. However, the graph confirms
the narrowest distribution of c in the investigated range of the L/S ratio at an impeller
speed of 500 rpm.

3.9. Effect of Granule Size on Shape Factors

As discussed above, granulometric parameters of the produced granules were influ-
enced by the L/S ratio and the impeller speed used. Apart from these process parameters,
the actual values of shape factors depended also on the actual size of the individual gran-
ules in the batch. The graphical dependence of investigated shape factors on the area
equivalent diameter Da at the L/S ratio = 1.0 is summarized in Figure 10.
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The graph shows that sphericityϕ reaches the smallest value for granules up to 0.1 mm.
The highest values of ϕ = 0.94 were detected for granules in the range of 0.3–0.5 mm at 500
and 700 rpm. When the area equivalent diameter Da increased further, a slight decrease in
the values of ϕ regardless of the impeller speed was noted. The lowest values of aspect
ratio AR were also detected for the smallest granules, but they increased quickly with the
increase in the Da up to 0.3 mm at all impeller speeds used. Then at the impeller speed of
300 rpm, AR remained near to 0.5 up to approximately 2.5 mm granules and decreased
with larger granules. At impeller speeds of 500 and 700 rpm, slightly higher invariable
values of AR (around 0.55) were noted, up to approximately 1.0 mm granules, which then
increased with the area equivalent diameter Da. The highest AR values were reached at
the 500-rpm impeller speed. As clearly illustrated in Figure 10, roundness r is narrowly
associated with the AR showing the same trend. The exclusion is observable only with the
granules larger than 2 mm at higher impeller speeds.

Even though the higher values of concavity c were particularly registered for the
smallest granules at 300 rpm, the low oscillating values were noted later up to the granule
size 1.5 mm regardless of impeller speed. Then, they increased with the further increase in
Da, achieving the highest value c = 0.1 at granule size 2.0 mm at 500 rpm.

The raw particles of Avicel PH101 were analyzed by electron microscopy using the
SED method at 500× magnification; the rod-shaped particles are shown in Figure 11a.
In order to illustrate granulometric parameters of the prepared granules, those formed
at L/S ratio = 1.0 and an impeller speed of 700 rpm are chosen. Figure 11b shows the
smooth surface, rounded spherically shaped (ϕ = 0.94) granules. It can be seen that the
characteristic dimensions of the granules are not the same in all directions, which confirms
the lower AR values. A more detailed view of the granule from this batch can be found in
Figure 11c, where asperities (c = 0.022) on the surface at 250×magnification are visible. In
detail, the raw rod-shaped particles of Avicel PH101 can be recognized on the surface of
the granules in Figure 11d. A similar morphology of granules can be found in the work
of Mahdi et al. [67]. Shi et al. [68] proved that the final shape of the granules can also be
influenced by the process time of wet massing.
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Figure 11. SED images of granules from electron microscope: (a) raw particles of Avicel PH101 at
500×magnification, (b) granules produced at L/S≈ 1.0 and 700 rpm impeller speed at 50×magnifica-
tion, (c) surface of granule at 250×magnification, (d) detail of granule surface at 1000×magnification.
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3.10. Evaluation of Granules Compressibility

Particles with lower compressibility are generally advantageous for the tableting pro-
cess due to more uniform filling of the die and less frequent troubles during transport [69].
The compressibility value (CPS) obtained from the FT4 rheometer for Avicel powder was
high (15.69 ± 0.48%), showing its poor flow properties. Contrary, all granules produced
within the wide range of L/S ratio at three different impeller speeds showed lower values
of CPS.

The effect of L/S ratio on the compressibility of granules manufactured at 300 rpm
impeller speed is present in Figure 12. As discussed above, these granules were the biggest,
having the lowest sphericity and high concavity. A decrease in the compressibility value
with an increase in L/S ratio was observed; with a higher liquid content, the formed
granules had the higher density, which was reflected in the CPS value. CPS could be
analyzed up to the L/S ratio 1.07 when the value of CPS = 3.33%. For granules formed at
the higher L/S ratio, the device showed an overload at 15 kPa and automatically terminated
the measurement.
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granules manufactured at 300 rpm impeller speed.

The relationship between CPS (%) and L/S ratio for 300 rpm impeller speed was
described by linear regression of the experimental data: CPS = 25.319 − 20.954 × L/S, with
the coefficient of determination R2 = 0.948. This clearly demonstrates that CPS value can
be efficiently predicted by L/S ratio.

3.11. Application of Surface Response Methodology to Predict Granule Size and Process Yield

A general polynomial equation Equation (7) was used. Based on experimental data,
models for determining dmean and process yield (dependent variables), were created
using Design Expert 13 software depending on the impeller speed (IS) and the L/S ratio
(independent variables). The relationship was described by equations Equations (8) and (9).

dmean = 3.22765− 6.10009(L/S) + 0.000907(IS)− 0.002795(L/S× IS)
+4.41496(L/S)2 + 1.0458× 10−6(IS)2 (8)
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Yield = 425.81688(L/S) + 0.228893(IS) + 0.056508(L/S× IS)− 146.81044(L/S)2

−0.000257(IS)2 − 286.33147
(9)

A contour plot model for prediction of dmean in relationship to the L/S ratio and the
impeller speed is shown in Figure 13. A significant area with dmean = 0.8 mm (blue), which
occupies more than half of the graph was detected. The increase in L/S ratio and the
associated increase in the size of the granules formed is shown by the change in color. At
lower impeller speeds, an orange to red area shows the largest formed granules depending
on the L/S ratio. Based on the graph, the process parameters can be optimally set in
order to obtain granules of a defined size. Using this, the prediction of dmean value with a
standard deviation of 0.077 mm is possible.
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Similarly, the experimental data was processed in order to predict the process yield;
the model is shown in Figure 14. In this graph, the transition between the individual
areas of the process yield is significantly smoother. A significant part of the graph is the
area with a yield of more than 80% shown in orange to red color. As a result, the process
parameters of the impeller speed and L/S ratio can be optimally set in order to obtain a
defined process yield.

The parameters of the analysis of variance (ANOVA) for both models can be found in
Tables 3 and 4. Values of p < 0.05 indicate that the parameters evaluated are statistically
significant (>95% probability that the hypothesis is true). The highest p value of 0.0169 in
dmean model was detected with the independent variable IS2, which indicates its lowest
significance. The model determination coefficient was R2 = 0.9436 with p < 0.0001.
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Table 3. Analysis of variance for the dmean model and individual variables.

Sum of Squares df Mean Square F-Value p-Value

Model 8.49 5 1.70 284.41 <0.0001
L/S 2.17 1 2.17 363.35 <0.0001
IS 1.16 1 1.16 194.55 <0.0001

L/S × IS 0.4514 1 0.4514 75.60 <0.0001
L/S2 1.31 1 1.31 218.61 <0.0001
IS2 0.0354 1 0.0354 5.93 0.0169

Table 4. Analysis of variance for the process yield model and individual variables.

Sum of Squares df Mean Square F-Value p-Value

Model 63,398.24 5 12,679.65 138.32 <0.0001
L/S 61,713.25 1 61,713.25 673.21 <0.0001
IS 1435.83 1 1435.83 15.66 0.0002

L/S × IS 184.50 1 184.50 2.01 0.1596
L/S2 1443.32 1 1443.32 15.74 0.0002
IS2 2144.73 1 2144.73 23.40 0.0169

In the yield model, the highest p value of 0.1596 was detected with the independent
variable L/S × IS. Similarly to dmean model, the value of 0.0169 was noted for IS2. The
determination coefficient for yield model was slightly lower R2 = 0.8905 with p < 0.0001.

The comparison between the experimental and predicted data for both models can be
found in Figure 15a,b. The better prediction efficiency was obtained for mean granule size.
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4. Conclusions

The morphology of the granules based on microcrystalline cellulose and the yield of
the process were analyzed in this systematic study with respect to the process parameters
of high shear wet granulation. The granulometric parameters of the formed granules
were analyzed by the dynamic image analysis by PartAn 3D as well as by the electron
microscopy. The amount of added granulation liquid expressed by the liquid to solid ratio
(L/S) in a range of 0.7 to 1.27 had a significant effect on all the monitored parameters:
sphericity, roundness, aspect ratio, and concavity. Three different impeller speeds, 300 rpm,
500 rpm, and 700 rpm, were used. For the comparison reason, the same time of wet massing
was employed.

Even a small change in the liquid content caused a significant change in the shape
of the granules. At higher impeller speeds and with a L/S ratio ≈1, the most spherical
granules with the smoothest surface were formed. In opposite, the higher dynamic stress
at the highest impeller speed caused mechanical breakage and attrition, which led to the
formation of granules of the smallest particle size. In terms of process yield and particle
shape, the best granules were formed at an impeller speed of 500 rpm. The highest process
yields were achieved at higher L/S ratio values and higher impeller speeds. Moreover, the
values of the granulometric factors observed experimentally were influenced also by the
size (area equivalent diameter) of the individual granules in the batch. Additionally, the
linear relationship with the coefficient of determination R2 = 0.948 was detected between
the amount of added granulation liquid and the compressibility of the granules (FT4
rheometer), allowing the efficient prediction of CPS by L/S ratio. By using response surface
methodology, two separate models predicting either the size of granules or the process
yield were obtained based on experimental data from more than 90 experiments. According
to the amount of liquid added and the impeller speed, both proposed models allow the
determination of the granule size or process yield with a high level of accuracy expressed
by the coefficient of determination values R2 = 0.9436 and R2 = 0.8905, respectively.
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