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Abstract: For many vaccines, multiple injections are required to confer protective immunity against
targeted pathogens. These injections often consist of a primer administration followed by a booster
administration of the vaccine a few weeks or months later. A single-injection vaccine formulation that
provides for both administrations could greatly improve the convenience and vaccinee’s compliance.
In this study, we developed parenterally injectable core-shell microspheres with a delayed pulsatile
release profile that could serve as the booster in such a vaccine formulation. These microspheres con-
tained bovine serum albumin (BSA) as the model antigen and poly(DL-lactide-co-glycolide) (PLGA)
with various DL-lactide:glycolide monomer ratios as the shell material. Highly monodisperse parti-
cles with different particle characteristics were obtained using a microfluidic setup. All formulations
exhibited a pulsatile in vitro release of BSA after an adjustable lag time. This lag time increased
with the increasing lactide content of the polymer and ranged from 3 to 7 weeks. Shell thickness
and bovine serum albumin loading had no effect on the release behavior, which could be ascribed
to the degradation mechanism of the polymer, with bulk degradation being the main pathway.
Co-injection of the core-shell microspheres together with a solution of the antigen that serves as the
primer would allow for the desired biphasic release profile. Altogether, these findings show that
injectable core-shell microspheres combined with a primer are a promising alternative for the current
multiple-injection vaccines.

Keywords: controlled release; core-shell microspheres; delayed pulsatile release; microfluidics;
poly(DL-lactide-co-glycolide); single-injection vaccine

1. Introduction

Immunization is widely recognized as one of the greatest and most successful medical
advances of the past centuries, saving two to three million lives every year by preventing or
even eliminating infectious diseases [1]. However, the global coverage for many vaccines
is still too low, especially in low-income countries [2–4]. One of the reasons for this low
coverage is the limited access to routine immunization services, which is mainly a problem
when multiple injections are required to obtain protective immunity against the targeted
pathogens [3,4]. A multiple-injection schedule generally consists of a first immunization
(primer) followed by a second or even third immunization (booster) after a certain period
of time [5]. Such a prime-boost schedule does not only cause logistical problems and high
costs, it is also very uncomfortable and thus jeopardizes the compliance of the vaccinee [5,6].
An example of a prime-boost vaccine is the diphtheria-tetanus-pertussis (DTP) vaccine of
which, in 2020, 17.1 million infants did not receive a primer dose, and an additional 5.6
million were only partially vaccinated [2]. The latter could be prevented by developing
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a single-injection vaccine formulation that exhibits a pulsatile release profile and thus
includes both the primer and the booster doses [5–8]. Such a pulsatile release formulation
could provide for a prolonged immunological response, hence circumventing the need
for multiple injections. The administration of the primer dose can easily be achieved by
co-injection of a solution of the antigen or by the addition of a separate immediate-release
formulation of the antigen. However, the development of the booster part of such a
formulation, characterized by a pulsatile release after a predefined lag time, is challenging.
Therefore, the development of a formulation providing a delayed pulsatile release is the
focus of this study.

In a previous proof of concept study, the feasibility of a single-injection vaccine using
a polymeric core-shell implant (oblong: ≈ 9 × 5 × 5 mm) was investigated [8]. This
implant contained ovalbumin as a model antigen in a core that was surrounded by a non-
porous shell of the biocompatible and biodegradable polymer poly(DL-lactide-co-glycolide)
(PLGA). Initially, the polymeric shell formed an impermeable barrier to the in vitro release
of the antigen, thereby resulting in a lag phase during which no antigen was released. Once
the shell had sufficiently degraded, it lost its barrier function, which caused the antigen
to diffuse out of the implant [9]. This ultimately resulted in a delayed pulsatile release
profile [8]. The implant was also subcutaneously inserted in mice, and after a specified lag
time, an ovalbumin-specific IgG1 antibody response was induced as expected. Moreover,
it was shown that the lag time of the formulation could be tailored from 3 to 6 weeks by
simply adjusting the DL-lactide:glycolide ratio of PLGA, as the monomer ratio directly
influenced the degradation rate of the polymer [10–12]. However, such an implant has
to be surgically inserted, which is obviously not ideal and therefore cannot be developed
into a commercially viable vaccine product [8]. Thus, a formulation that is suitable for
subcutaneous or intramuscular injection would be an interesting alternative.

To this end, we incorporated a model antigen into PLGA-based core-shell micro-
spheres. Core-shell microspheres are vesicular particles consisting of a single core contain-
ing the therapeutic agent, which is surrounded by a polymer shell [13]. In order to prevent
premature uptake by immune cells or other cells, the core-shell microspheres should be
larger than approximately 20 µm but smaller than approximately 100 µm to enable par-
enteral administration [14,15]. Furthermore, we hypothesize that the shell thickness of the
microspheres does not influence the in vitro release profile as the degradation of PLGA
occurs mainly through bulk erosion [11,16]. This means that the release profile is only
dependent on the polymer composition. However, there is controversy over the influence
of the shell thickness, as some studies did demonstrate an increase in lag time with an
increasing shell thickness [17–19]. In that case, a narrow particle size distribution and
uniform shell thickness are necessary for obtaining a pulsatile release instead of a sustained
release after the lag time. To test both hypotheses, monodisperse core-shell microspheres
with shells of uniform thickness are desired. For this reason, we used droplet microfluidics
as a production method, as it enables the generation of highly monodisperse particles in
the micrometer range by providing great control over the size of the droplets [20,21]. In
addition, the emulsion that ultimately forms the microspheres is produced drop by drop,
which is in contrast to the conventional emulsion solvent evaporation method where the
microspheres are produced in bulk [21]. By placing two microfluidic chips in series, a
water-in-oil-in-water (W/O/W) emulsion could be produced. In the first microfluidic chip,
a primary water-in-oil (W/O) emulsion of aqueous droplets containing a model antigen in
an organic polymer phase was formed. In the second microfluidic chip, the W/O emulsion
was encapsulated into another aqueous phase, which enabled the generation of a W/O/W
double emulsion that formed the basis for the core-shell microspheres. Hence, the aim of
this study was to develop core-shell microspheres containing bovine serum albumin (BSA)
as a model antigen using a microfluidic setup. In previous studies, PLGA-based core-shell
microspheres were produced using microfluidics but, in all cases, no therapeutic agent was
incorporated [22–26]. To the best of our knowledge, this is the first time that microfluidics
was used to produce core-shell microspheres with a PLGA shell and a core containing a
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(model) antigen. To assess the potential of these microspheres for application as the booster
part of a single-injection vaccine formulation, in vitro release studies were conducted, and
the influence of the polymer composition on the lag time was investigated by using PLGA
copolymers with various monomer ratios. In a study by Sanchez et al., this relationship
was already investigated using tetanus toxoid-containing core-shell microspheres, but here,
both the PLGA monomer ratio and the molecular weight were varied at the same time [27].
Therefore, in this study, solely the monomer ratio was varied to determine the influence on
the lag time.

2. Materials and Methods
2.1. Materials

PLGA with an inherent viscosity of 0.2 dL/g and DL-lactide:glycolide molar ratios of
50:50 (PDLG5002) and 72:25 (PDLG7502) were obtained from Corbion Purac Biomaterials
(Gorinchem, The Netherlands). Polyglycerol polyricinoleate (PGPR) was a generous gift
from TER Ingredients GmbH & CO. KG (Hamburg, Germany). Polyvinyl alcohol (PVA, Mw
9–10 kDa, 80% hydrolyzed), BSA, and fluorescein isothiocyanate (FITC) were purchased
from Sigma-Aldrich Co. (St. Louis, MO, USA). Dichloromethane (DCM) and phosphate-
buffered saline (PBS; 155 mM NaCl, 1.06 mM KH2PO4, 2.97 mM Na2HPO4·7H2O, pH 7.4)
were obtained from Fisher Scientific (Leicestershire, UK). For the in vitro release medium,
potassium dihydrogen phosphate, disodium hydrogen phosphate, and sodium azide
were purchased from Fisher Scientific (Leicestershire, UK) and Tween 80 from Merck
(Darmstadt, Germany). Trifluoroacetic acid (TFA) was obtained from VWR International
Ltd. (Amsterdam, The Netherlands) and acetonitrile from Actu-All Chemicals B.V. (Oss,
The Netherlands). Ultrapure water with a resistivity of 18.2 MΩ was obtained using a
Millipore Milli-Q Integral 3 (A10) purification system and used for all experiments.

2.2. FITC-BSA Synthesis and Analysis

For the synthesis of FITC-labeled BSA (FITC–BSA), 3.2 mL of 1 mg/mL FITC in
absolute ethanol was added to 20 mL of BSA solution (10 mg/mL in PBS adjusted to pH
9.4 with 1 M NaOH), after which the reaction mixture was kept under magnetic stirring
for 45 min at room temperature. This resulted in a fluorophore-to-protein molar ratio
of approximately 3:1. Subsequently, the mixture was dialyzed (Slide-A-Lyzer™ Dialysis
Cassettes (Extra Strength), 10 K MWCO, 12–30 mL Capacity, Thermo Scientific, Waltham,
MA, USA) against ultrapure water for 3 days at 8 ◦C to remove any uncoupled FITC. The
final product was obtained by freeze drying of the resulting solution.

The labeling of BSA with FITC was assessed by thin-layer chromatography (TLC). In
short, 10 µL aliquots of 1 mg/mL FITC, 10 mg/mL FITC–BSA, and 10 mg/mL BSA were
applied on a TLC Silica gel 60 F254 plate (Merck, Darmstadt, Germany). The plate was run
with a mixture of acetonitrile, DCM, and glacial acetic acid (volumetric ratio 90:10:1) as
eluent and subsequently air-dried. The spots on the plate were detected at two different
wavelengths (254 nm for BSA and 366 nm for FITC) with a UV lamp (Universal, CAMAG,
Muttenz, Switzerland).

2.3. Production of Core-Shell Microspheres

Monodisperse core-shell microspheres with different particle characteristics were
produced by a W/O/W double emulsion solvent evaporation method using a capillary
microfluidic setup (Dolomite Ltd., Royston, UK), as shown in Figure 1. For the primary
water-in-oil emulsion, a microfluidic glass chip with a flow-focusing geometry, a channel
diameter of 14 µm at the junction, and a hydrophobic coating was used. This coating
enabled the formation of water droplets containing the model antigen dispersed in an
organic polymer phase. For the secondary W/O/W emulsion, a similar glass chip was used
with a channel diameter of 100 µm. This chip did not have a coating, thereby rendering
the channel surface naturally hydrophilic. This hydrophilic surface enabled the formation
of W/O emulsion droplets in an outer water phase, resulting in such a W/O/W double
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emulsion. The inner water phase (W1) was an aqueous 200 mg/mL BSA or 40 mg/mL
FITC–BSA solution. A solution of PLGA (7.5 wt % or 10 wt %) and PGPR (0.75 wt %
or 1 wt %, respectively) in DCM was used as oil phase (O). To investigate the effect of
the PLGA monomer ratio on the release characteristics of the microspheres, PDLG5002,
PDLG7502, and a blend of PDLG5002 and PDLG7502 (mass ratio 1:1) were evaluated. A
2 wt % aqueous solution of PVA served as the outer water phase (W2). All liquids were
injected at independently adjustable flow rates using pressure pumps (Mitos P-Pump,
Dolomite Ltd., Royston, UK). Flow and pressure were monitored using flow rate sensors
(Mitos Flow Rate Sensor, Dolomite Ltd., Royston, UK). Various flow rates were used for
the injection of the different phases (Table 1) in order to adjust the droplet size and thus the
particle dimensions. In the first chip, the inner water phase was hydrodynamically focused
by the oil phase, resulting in the continuous production of W/O emulsion droplets at the
junction of the microchannels. In the second chip, the oil phase containing the inner water
droplets was hydrodynamically flow focused by the outer water phase, thereby generating
a W/O/W double emulsion. In both emulsification steps, the controlled break-up of
the dispersed phase jet immediately at the junction of the chip ensured the formation of
highly monodisperse single- and double-emulsion droplets. The obtained double-emulsion
droplets were collected in an excess of PVA solution at room temperature to extract and
evaporate the DCM overnight by magnetic stirring. As a result, solid microspheres were
obtained that were washed three times with 0.05 wt % Tween 80 solution and three
times with ultrapure water. Then, the washed microspheres were freeze-dried using a
Christ Alpha 2–4 LSC plus freeze-dryer (Martin Christ Gefriertrocknungsanlagen GmbH,
Osterode am Harz, Germany) of which the shelf was pre-cooled to a temperature of −45 ◦C.
Subsequently, the pressure was gradually reduced to 2 mBar, after which the particles were
dried for 3 h at a shelf temperature of −10 ◦C and then for 8 h at 20 ◦C. During this primary
drying phase, ice is removed by sublimation. Eventually, the pressure was further reduced
to 1 mBar during 2 h, which was followed by a final drying step of 2 h at approximately
0.05 mBar and 20 ◦C. During this secondary drying phase, unfrozen water molecules are
removed by desorption. The settings of several process and formulation parameters were
altered to obtain core-shell microspheres with varying dimensions and BSA loading. The
experimental parameters and settings are summarized in Table 1. The theoretical BSA
loading was calculated using Equation (1).

Theoretical loading =
W1 flow rate × W1 conc.

W1 flow rate × W1 conc. + O flow rate × O conc.
× 100% (1)

where the W1 flow rate is the flow rate of the inner water phase; W1 conc. is the mass
concentration of the inner water phase; the O flow rate is the flow rate of the oil phase; and
O conc. is the mass concentration of the oil phase.

Table 1. Experimental parameters and settings of different bovine serum albumin (BSA)-loaded microsphere formulations.

Formulation Model
Compound Polymer

Polymer
Concentration

(wt.%)

Flow Rates
(W1–O–W2,
µL/min)

Theoretical
Loading (wt.%)

A BSA PDLG5002 10 0.58–7.8–50 9.3
B BSA PDLG5002 10 0.47–7.8–50 7.7
C BSA PDLG5002 10 0.40–7.8–50 6.7
D BSA PDLG5002 10 0.35–7.8–50 5.9

E BSA PDLG5002 + PDLG7502
(1:1) 7.5 0.28–7.8–30 6.4

F BSA PDLG7502 7.5 0.28–7.8–30 6.4
G FITC-BSA PDLG5002 10 0.20–5.4–40 1.0
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Figure 1. Schematic representation of the microfluidic setup used for the production of core-shell microspheres.

2.4. Characterization of Particle Size and Morphology

All microsphere batches were examined before washing and freeze drying with an
ME.2665 Euromex optical microscope (Arnhem, The Netherlands), and images were taken
at 100×, 200×, and 400× magnification. Images of the dried microspheres were acquired
with a NeoScope JCM-5000 scanning electron microscope (SEM; JEOL Ltd., Tokyo, Japan)
under high vacuum at an acceleration voltage of 10 kV. For all recordings, the probe current
was set to standard, and the filament setting was set to long life. The particles were mounted
onto metal stubs using double-sided adhesive carbon tape and sputter-coated with gold
prior to examination. The surface morphology of the microspheres was investigated at
different magnifications ranging from 50× to 1500×. For each batch, ImageJ software
(National Institutes of Health, Bethesda, MD, USA) was used to measure the diameter
(dy) of the whole particle and the core of fifty randomly selected particles from several
representative optical microscopy images. The volume median diameter (d50, Equation (2))
± the standard deviation (SD, Equation (3)) and the coefficient of variation (CV, Equation
(4)) of the whole microspheres and the cores were calculated to determine the particle
size and particle size distribution of the different microsphere batches (Table 2). Average
shell thickness was also calculated using Equation (5). The d50 ± SD and CV of the dried
microspheres were determined as well, but as the differences from the wet microspheres
were minimal, these values were not listed. The internal morphology was examined by first
embedding the freeze-dried particles in an organic solvent-free adhesive (UHU® Twist &
Glue Renature, Bühl, Germany). Then, the samples were air-dried for 2 days, subsequently
cooled for 30 min at −70 ◦C, and cut into five equal pieces using a razor blade. Finally, the
cross-sectioned microspheres were examined with SEM.

d50 = ∑ V%y × dy (2)

where V%y =
Vy

Vtotal
; Vy = 4

3 × π ×
(

dy
2

)3
and Vtotal = ∑ Vy. where Vy is the volume of

the measured particle; Vtotal is the total volume of the measured particles; and V%y is the
percentage Vy of Vtotal.

SD =

√
∑ 100 × V%y × (dy − d50)2

N
(3)
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where N is the total number of particles measured; N = 100%.

CV =
SD
d50

× 100% (4)

Shell thickness =
∑

dy,particle−dy,core
2

N
(5)

where N = 50.

Table 2. Characteristics of BSA-loaded core-shell microspheres of different grades of poly(DL-lactide-co-glycolide) (PLGA)
and theoretical loading.

Formulation Actual Loading
(wt.%) EE (%) d50particle

(µm)
CVparticle

(%)
d50core
(µm)

CVcore
(%)

Shell Thickness
(µm)

A 8.46 1 90.56 1 48.2 ± 1.8 3.8 41.3 ± 1.7 4.2 3.5 ± 0.6
B 6.91 ± 0.01 89.87 ± 0.17 43.4 ± 0.8 1.8 33.0 ± 1.2 3.6 5.2 ± 0.5
C 6.60 ± 0.06 98.48 ± 0.94 40.8 ± 1.2 2.9 29.5 ± 1.5 5.0 5.7 ± 0.6
D 1.37 ± 0.02 23.01 ± 0.41 38.1 ± 0.7 1.7 23.1 ± 0.6 2.6 7.4 ± 0.2
E 4.95 ± 0.43 77.74 ± 6.68 37.1 ± 2.8 7.6 28.5 ± 2.8 9.9 4.6 ± 1.2
F 5.73 ± 0.07 90.07 ± 1.03 46.0 ± 1.9 4.2 34.9 ± 3.9 11.2 6.3 ± 1.5
G 0.87 ± 0.04 86.72 ± 3.95 46.1 ± 2.8 6.1 35.0 ± 4.5 12.7 5.8 ± 0.9

1 For the determination of the actual loading, only one sample was analyzed so no standard deviation is given.

2.5. FITC-BSA Localization Analysis

FITC–BSA was incorporated into the microspheres at a theoretical loading of 1 wt %, as
described in Section 2.3, to determine the localization of the protein in the microspheres. To
this end, FITC–BSA was dissolved in ultrapure water at a concentration of 40 mg/mL, and
the obtained solution was used as the inner water phase. The obtained microspheres were
examined after freeze drying on a glass slide using a Leica TCS SP8 confocal laser scanning
microscope (CLSM, Leica Microsystems GmbH, Wetzlar, Germany). Both fluorescence and
transmitted light images were obtained using a plan-apochromat CS2 63x oil-immersion
objective with 1.4 numerical aperture. FITC was excited with a 488 nm argon laser, and
green fluorescence emission was collected with a 489–549 nm band-pass filter. The pinhole
diameter was set at 0.7 AU (67.3 µm). To determine the protein distribution at the center of
the microspheres, multiple optical cross-sections were collected at different points along
the z-axis.

2.6. BSA Loading Assay

The actual BSA loading of the microspheres was determined by measuring the total
nitrogen content of the microspheres using a Vario MICRO Cube elemental analyzer
(Elementar, Ronkonkoma, NY, USA) in CHNS mode. The analysis was carried out at a
combustion temperature of 1150 ◦C. The actual BSA loading was used to calculate the
encapsulation efficiency (EE) according to Equation (6).

EE =
Actual loading

Theoretical loading
× 100% (6)

2.7. BSA In Vitro Release Assay

All BSA-loaded core-shell microsphere batches were analyzed for their in vitro release
profiles by suspending 20 mg particles in 2 mL vials containing 1 mL of 100 mM phosphate
buffer (pH 7.4) supplemented with 0.05 v/v% Tween 80 and 0.02 wt % sodium azide.
The vials were placed on a roller mixer (40 rpm) in an oven to maintain the release
medium at 37 ◦C. At predetermined time points, the vials were centrifuged for 5 min
at 1500 rpm, and 0.5 mL of the supernatant was taken and replaced with 0.5 mL of fresh
release medium to keep the volume constant. The concentration of BSA in the release
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samples was determined by reverse phase ultra-performance liquid chromatography (RP-
UPLC) with an ACQUITY UPLC Protein BEH C4 column (300 Å, 2.1 × 50 mm, 1.7 µm
particle size, Waters, Milford, MA, USA) and fluorescence detection at λex = 276 nm and
λem = 345 nm. The mobile phase was a mixture of ultrapure water with 0.1 v/v% TFA and
acetonitrile with 0.1 v/v% TFA in the volumetric ratio of 75:25 from t = 0 − 1 min and
t = 1.1 − 2 min, and 50:50 from t = 1 − 1.1 min. The liquid flow rate of this mobile phase
was 0.8 mL/min. The peak areas were integrated at a retention time of 1.1 min for the
quantification of BSA. BSA concentrations were calculated using an 8-point calibration
curve. Of some microsphere formulations, optical microscopy and SEM images were taken
(see Section 2.4) both before and after 2 h, 14 days, and 25 days of in vitro release. For SEM
examination of the microspheres during in vitro release, the particles were first washed
and freeze-dried as described in Section 2.3. For the optical microscopy image at t = 0 days,
washed and freeze-dried microspheres were suspended in in vitro release medium, after
which they were immediately examined under the microscope.

2.8. Statistics

All core-shell microsphere formulations (A to G, Table 1) were produced once (n = 1).
All measurements were performed in triplicate (n = 3), and data were expressed as mean ±
SD, unless otherwise stated.

3. Results and Discussion
3.1. Production and Characterization of Monodisperse BSA-Loaded Core-Shell Microspheres

Several BSA-loaded core-shell microsphere batches with a PLGA shell and varying
particle characteristics, such as particle dimensions, BSA loading, and PLGA monomer
ratio, were produced using microfluidics. This allowed for the generation of particles in a
highly controlled manner as the emulsion was produced drop by drop instead of in bulk.
As a result, all formulations had a very narrow particle size distribution with CV values
of < 10% (Table 2). The variation in core diameter was somewhat larger, although the
CV values were generally still less than 10%. The average particle size of the different
formulations ranged from 37.1 ± 2.8 to 48.2 ± 1.8 µm, which makes the microspheres ideal
for parenteral administration through a small-gauge hypodermic needle and prevents
premature endocytosis by immune cells and other cells [14,15].

Furthermore, all microspheres were highly spherical, had a smooth and non-porous
surface, and presented a distinct core-shell structure. Representative optical microscopy
and SEM images of BSA-loaded core-shell microspheres composed of PDLG7502 are
depicted in Figure 2. Before freeze drying, the cores of the particles are composed of
multiple small inner water droplets (Figure 2a), as the encapsulation of one large inner
water droplet posed a problem. Small fluctuations in flow are inevitable, which makes it
difficult to encapsulate exactly one inner water droplet in an outer droplet. The impact
of these fluctuations on the internal morphology of the microspheres will be smaller for
particles with multiple inner water droplets, as these fluctuations will only alter the core
diameter slightly. The inner water droplets became close-packed upon collection in PVA
solution, thereby forming a distinct core, although this core still consisted of multiple
separate droplets. Water was removed from the cores by freeze drying, yielding hollow
single-core particles containing BSA, as shown in Figure 2b, which presumably shows the
presence of BSA inside the core of a fractured particle. This indicates that the inner water
droplets coalesced upon freeze drying.
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Figure 2. Representative images of BSA-loaded core-shell microspheres: (a) Optical microscopy image at 400× magnification;
(b) Scanning electron microscopy (SEM) image at 1000× magnification. The shell of the microspheres was composed of
PDLG7502, and the actual BSA loading was 5.7 wt % (Formulation F).

The EE of the model antigen was consistently high with typical values of 80–100%,
except for one formulation that had a significantly lower EE of only 23.01% (Table 2). These
microspheres had slightly thicker shells than the other formulations due to the lower inner
phase flow rate that was used. These thicker shells probably caused the particles to solidify
slower, giving BSA the possibility to diffuse out of the cores. However, the EE seemed to be
unaffected by the polymer composition, polymer concentration, BSA loading, and particle
size.

Moreover, formulation G, which contained FITC–BSA, was produced to further elu-
cidate the spatial distribution of BSA within the core-shell microspheres. The FITC–BSA
loading was only 0.9 wt %, as the concentration and flow rate of the inner water phase were
lower than for the other formulations. However, the EE was as high as 87.0%, and both
the particles and the cores showed high monodispersity, which indicates that the coupling
of FITC to the model antigen did not have any impact on the particle characteristics. The
internal structure of the microspheres containing FITC–BSA is demonstrated in Figure 3a,
and the surface morphology is demonstrated in Figure 3b. A core-shell structure is clearly
visible, although before freeze drying, the separate inner water droplets are still to be seen
as well (Figure 3a). A SEM image of cross-sectioned microspheres (Figure 3c) shows that
the particles had obtained a single-core structure after freeze drying. The cores are virtually
hollow, but some FITC–BSA seems to be present on the inner surface of the microsphere
shells. This assumption is confirmed by a CLSM image (Figure 3d) that shows that the
green fluorescent FITC–BSA tended to be concentrated near the inner surface of the shells
and that the inner part of the cores is completely protein-free. This could be attributed to
the hydrophobicity of FITC, which caused the labeled model antigen to migrate toward the
polymer layer. Due to the relatively low FITC–BSA loading (0.9 wt %), only the periphery
of the core was filled with the labeled model antigen. However, its fluorescence was clearly
confined to the core area, and the shells of the microspheres appear to be completely free of
the labeled model antigen. This indicates no or only limited diffusion of FITC–BSA into the
polymer phase during microsphere formation and, thus, a clear distinction between the
polymer phase and the protein phase. In turn, this might enable a delayed pulsatile release
profile. A movie that visualizes the 3D structure of FITC–BSA fluorescence in core-shell
microspheres can be found in the Supplementary Information (Movie S1).
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Figure 3. Representative microscopy images of PDLG5002-based core-shell microspheres loaded
with 0.9 wt % fluorescein isothiocyanate (FITC) labeled–BSA (Formulation G): (a) Optical microscopy
image at 400× magnification; (b) SEM image at 600× magnification; (c) SEM image of cross-sectioned
microspheres at 1100× magnification; (d) overlay of an optical microscopy image and a confocal laser
scanning microscopy (CLSM) image showing the distribution of the green fluorescent FITC–BSA.

3.2. Effect of Production Process and Formulation Parameters on Particle Characteristics

Different inner phase flow rates were used for the production of BSA-loaded core-
shell microspheres to obtain microsphere formulations with varying shell thicknesses and
BSA loadings. As expected, an increased inner phase flow rate generally resulted in an
increased BSA loading and a decreased shell thickness (Tables 1 and 2). In addition, the
particle size somewhat increased upon increasing the inner phase flow rate. The PLGA
monomer ratio was varied as well to determine its influence on the in vitro release profile.
In the case of PDLG7502, the polymer concentration was reduced to 7.5 wt % to enable
the production of core-shell microspheres as with 10 wt %, no primary emulsion droplets
could be formed in the first chip. Therefore, the inner and outer phase flow rate were
reduced as well to obtain microspheres with a similar BSA loading and shell thickness as
the PDLG5002-based microspheres. Changing the polymer composition did not seem to
affect the particle characteristics, as the EE was still sufficiently high, and the d50 of the
particles was within the desired size range.

3.3. Effect of BSA Loading and Shell Thickness on the In Vitro Release of BSA from
PDLG5002-Based Core-Shell Microspheres

To determine whether the shell thickness is a key determinant of the lag time, PDLG5002-
based core-shell microspheres with a narrow particle size distribution but different shell
thicknesses were produced (Table 2). The shell thickness was tuned from 3.5 to 7.5 µm
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by varying the inner phase flow rate. Figure 4 shows the influence of the shell thickness
on the BSA in vitro release profiles for these formulations. All formulations exhibited a
delayed release profile with a lag phase of 3 weeks followed by a clear increase in BSA
release over 1 to 2 weeks. A limited initial burst release was found for formulation A,
but for all formulations, no additional BSA release was observed during the lag phase.
The observed lag time is in line with previous studies where drug was released from
core-shell microspheres [28,29] and implants [8,30] with a PDLG5002 shell after a lag time
of 3 to 4 weeks. Thus, it can be concluded that the lag time does not depend on the
shell thickness, at least for core-shell microspheres within the investigated size range and
perhaps even for formulations with a much thicker shell, such as the abovementioned core-
shell implants [8,30]. These implants had a shell thickness of approximately 1.5 mm, which
is 200 to 450 times the shell thickness of the core-shell microspheres developed in this study.
A possible explanation for this finding is that PLGA is a bulk-degrading polymer and not
surface eroding [11,16]. Consequently, water is able to permeate through the PLGA shell,
resulting in swelling and eventually bulk degradation [31–33]. Initially, the non-porous
shell serves as a barrier to drug release, thereby causing a lag phase during which no BSA
is released. However, water penetration can directly occur throughout the whole polymer
layer, but this uptake of water does not lead to such swelling that BSA directly diffuses
out of the microspheres [32,33]. Upon water penetration, bulk degradation of the polymer
starts, and when the degradation of the shell reaches a critical level, it can no longer serve
as a barrier. This causes BSA to diffuse out of the microspheres. Consequently, the lag time
solely depends on the polymer characteristics and not on the thickness of the shell, which
is in accordance with our hypothesis. However, other studies have demonstrated a clear
relationship between the shell thickness and the onset of the pulse [17–19]. In those studies,
the lag time ranged from 3 to even 5 weeks. The pulse occurred at the time that the shell of
the microspheres ruptured, which was also shown by SEM [17]. It is unclear why different
results were obtained.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 10 of 16 
 

 

different shell thicknesses were produced (Table 2). The shell thickness was tuned from 
3.5 to 7.5 µm by varying the inner phase flow rate. Figure 4 shows the influence of the 
shell thickness on the BSA in vitro release profiles for these formulations. All formulations 
exhibited a delayed release profile with a lag phase of 3 weeks followed by a clear increase 
in BSA release over 1 to 2 weeks. A limited initial burst release was found for formulation 
A, but for all formulations, no additional BSA release was observed during the lag phase. 
The observed lag time is in line with previous studies where drug was released from core–
shell microspheres [28,29] and implants [8,30] with a PDLG5002 shell after a lag time of 3 
to 4 weeks. Thus, it can be concluded that the lag time does not depend on the shell thick-
ness, at least for core–shell microspheres within the investigated size range and perhaps 
even for formulations with a much thicker shell, such as the abovementioned core–shell 
implants [8,30]. These implants had a shell thickness of approximately 1.5 mm, which is 
200 to 450 times the shell thickness of the core–shell microspheres developed in this study. 
A possible explanation for this finding is that PLGA is a bulk-degrading polymer and not 
surface eroding [11,16]. Consequently, water is able to permeate through the PLGA shell, 
resulting in swelling and eventually bulk degradation [31–33]. Initially, the non-porous 
shell serves as a barrier to drug release, thereby causing a lag phase during which no BSA 
is released. However, water penetration can directly occur throughout the whole polymer 
layer, but this uptake of water does not lead to such swelling that BSA directly diffuses 
out of the microspheres [32,33]. Upon water penetration, bulk degradation of the polymer 
starts, and when the degradation of the shell reaches a critical level, it can no longer serve 
as a barrier. This causes BSA to diffuse out of the microspheres. Consequently, the lag 
time solely depends on the polymer characteristics and not on the thickness of the shell, 
which is in accordance with our hypothesis. However, other studies have demonstrated 
a clear relationship between the shell thickness and the onset of the pulse [17–19]. In those 
studies, the lag time ranged from 3 to even 5 weeks. The pulse occurred at the time that 
the shell of the microspheres ruptured, which was also shown by SEM [17]. It is unclear 
why different results were obtained. 

 
Figure 4. Cumulative in vitro release of BSA from PDLG5002-based core–shell microspheres with 
different shell thicknesses and BSA loadings (n = 3). 

BSA loading also seemed to have no effect on the in vitro release profile (Figure 4). 
The non-porous shell entirely prevented the release of BSA during the lag phase, and once 
the shell had sufficiently degraded, a large part of the encapsulated BSA was released at 
once, independent of the BSA loading. The formulation with the highest BSA loading did 
show a minimal burst release of 14.0 ± 1.6%, but this could rather be attributed to BSA 
release from some fractured particles with thin shells that were visible on SEM images 
(data not shown) than to the BSA loading. 

0 2 4 6

0

20

40

60

80

100

Time (weeks)

BS
A 

re
le

as
ed

 (%
)

5.7 ± 0.6 µm, 6.6% (C)

7.5 ± 0.2 µm, 1.4% (D)

5.2 ± 0.5 µm, 6.9% (B)
3.5 ± 0.6 µm, 8.5% (A)

Figure 4. Cumulative in vitro release of BSA from PDLG5002-based core-shell microspheres with different shell thicknesses
and BSA loadings (n = 3).

BSA loading also seemed to have no effect on the in vitro release profile (Figure 4).
The non-porous shell entirely prevented the release of BSA during the lag phase, and once
the shell had sufficiently degraded, a large part of the encapsulated BSA was released at
once, independent of the BSA loading. The formulation with the highest BSA loading did
show a minimal burst release of 14.0 ± 1.6%, but this could rather be attributed to BSA
release from some fractured particles with thin shells that were visible on SEM images
(data not shown) than to the BSA loading.
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However, for all formulations, the percentage of the total BSA content that was released
during the pulse was only 30 to 50%. Incomplete release of proteins is a common problem
for PLGA-based drug delivery formulations, even for relatively stable model antigens
such as BSA, and it is often ascribed to protein instability within the formulation [8,34,35].
Possible explanations for protein instability are the polymer degradation products that
are formed upon hydrolysis of the polymer, which can both create an acidic microclimate
within the formulation and can cause protein aggregation due to the incompatibility of
the protein with the polymer degradation products [36–38]. In addition, adsorption of
the protein to the hydrophobic polymer surface can cause part of the protein to remain
entrapped [36–38]. Therefore, further research into alternative polymers that generate less
or no acidic degradation products while maintaining a delayed pulsatile release profile is
desired. However, the BSA release does seem to continue after the pulse, although at a
lower rate. This is caused by ongoing hydrolysis of the polymer, leading to a second phase
of release in which BSA slowly diffuses out [11]. Nonetheless, it is not expected that this
phase will ultimately lead to complete release of the encapsulated protein.

3.4. Particle Morphology of PDLG5002-Based Core-Shell Microspheres during BSA
In Vitro Release

To further clarify the BSA in vitro release mechanism, PDLG5002-based core-shell
microspheres containing BSA (Formulation C) were imaged by optical microscopy and
SEM at different time points during the in vitro release study (Figure 5). Before incubation
in in vitro release medium, highly monodisperse core-shell microspheres with thin shells
and a single core are visible (Figure 5a,b). The cores seem free of water due to the freeze
drying, but the imprint of the inner water droplets can still be seen in the shells, and in
some microspheres, an accumulation of BSA is visible in the cores. Upon incubation in
in vitro release medium at 37 ◦C, the microspheres retained a smooth surface for at least
14 days, although the sphericity of the particles reduced (Figure 5e,f). In addition, after 2 h,
some agglomeration had already occurred (Figure 5c,d). Moreover, water seems to have
penetrated into the cores, as BSA is not visible anymore, and the imprint of the small inner
water droplets has disappeared. This can be attributed to the glass transition temperature
of the polymer, which was 31.6 ◦C as dry product and 19.1 ◦C after adding a small volume
of water to the sample and allowing it to moisturize for 30 min [7]. Subsequently, the
excess of water was removed, and the sample was measured with differential scanning
calorimetry 5 h later. The measured glass transition temperature is below environmental
temperature when set at 37 ◦C, which causes the polymer to change from the glassy state
into the rubbery state [7]. This increases the mobility of the polymer chains, thereby
enabling water influx into the cores [39,40]. Additionally, the polymer heats up and absorbs
water, which is reflected in the swollen shells [11]. This transition into the rubbery state
might also have caused the agglomeration of some of the microspheres. After 25 days,
the microspheres had collapsed and presented a raisin-like structure (Figure 5g,h). These
results are in accordance with the in vitro release profile (Figure 4) that demonstrated a
clear increase in BSA release from week 3 to 5. At this point, polymer degradation has
reached a critical level, which caused BSA to diffuse out of the microspheres.
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Figure 5. Representative microscopy images depicting the morphology of PDLG5002-based core-
shell microspheres (formulation C) at different stages before and during the in vitro release of BSA.
(a,b) Images of the initial microspheres after washing and freeze drying and before release; (c,d) 2 h
after release; (e,f) 14 days after release; (g,h) 25 days after release. Left panel: optical microscopy
images, right panel: SEM images.
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3.5. Effect of PLGA Monomer Ratio on the In Vitro Release of BSA from PLGA-Based
Core-Shell Microspheres

BSA-containing core-shell microspheres with different shell compositions were pro-
duced to determine the influence of the PLGA monomer ratio on the in vitro release profile,
as this monomer ratio greatly influences the degradation rate of PLGA. Figure 6 shows
that all three formulations exhibited a delayed release profile without any BSA release
during the lag phase. For formulation E, the release of BSA out of the microspheres indeed
continued after the pulse, albeit at a decreased rate (data not shown). Moreover, there was
a clear relationship between the monomer ratio of PLGA and the lag time, as the lag phase
substantially increased with the increasing lactide content of the polymer. The lag time was
approximately 3, 4.5, and 7 weeks for a PDLG5002, PDLG5002 + PDLG7502 (mass ratio
1:1), and PDLG7502 shell, respectively. A higher lactide content causes the hydrophilicity
and thus the degradation rate to decrease [10–12]. In comparison, the lag time of the
previously studied core-shell implants with a PDLG7502 shell was only 4.5 weeks [8].
A possible reason for this difference in lag time is that autocatalytic degradation starts
after a few weeks of release. This autocatalytic degradation might play a bigger role in
the large implants than in the thin-shelled microspheres [10,41]. A potential application
of the produced core-shell microspheres is the current vaccine against SARS-CoV-2: for
instance, the Pfizer-BioNTech vaccine that requires two doses given 3 weeks apart [42]. So
far, only PDLG5002, PDLG7502, and a blend of both polymers were tested, but alternative
monomer ratios could be used to tailor the in vitro release profile to the specific needs of
different vaccines. Moreover, other studies with core-shell microspheres and implants have
demonstrated that the lag time could be varied by altering the molecular weight of the
polymer [29,43]. This opens many possibilities for the use of core-shell microspheres as
single-injection vaccines.
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Figure 6. Cumulative in vitro release of BSA from core-shell microspheres composed of PLGA of
different monomer ratios (n = 3).

4. Conclusions

This research demonstrates that monodisperse PLGA-based core-shell microspheres
containing BSA can be produced using a microfluidic setup. In vitro release studies showed
that after an adjustable lag time of 3 to 7 weeks, BSA released from the microspheres in a
pulsatile manner, although the release was incomplete. This lag time was dependent on the
monomer ratio of PLGA, with a higher lactide content causing a longer lag time. However,
neither the shell thickness nor BSA loading had an influence on the release profile. These
parenterally injectable delayed pulsatile release microspheres are a promising candidate
for single-injection vaccine formulations when combined with a primer, as the lag time
could be altered by varying the composition of the polymer shell. The primer dose could
be included by injecting the core-shell microspheres together with an immediate-release
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formulation or a solution of the antigen. Moreover, even a second booster dose could be
included by simply co-injecting core-shell microspheres with a different lag time. In this
way, the release profiles can be tailored to the particular needs of a vaccine, which enables
the use of core-shell microspheres for a wide variety of vaccines. Future research should
focus on using alternative polymers that do not generate acidic degradation products to
avoid incomplete protein release, and incorporating a therapeutically relevant vaccine.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13111854/s1, Video S1: video obtained with CLSM that visualizes the 3D
structure of FITC–BSA fluorescence in PDLG5002-based core-shell microspheres.
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