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Abstract: Considering the high prevalence and the complex pharmacological management of
immune-mediated inflammatory diseases (IMIDs), the search for new therapeutic approaches for
their treatment is vital. Although the immunomodulatory and anti-inflammatory effects of mesenchy-
mal stromal cells (MSCs) have been extensively studied as a potential therapy in this field, direct
MSC implantation presents some limitations that could slow down the clinical translation. Since the
beneficial effects of MSCs have been mainly attributed to their ability to secrete a plethora of bioactive
factors, their secretome has been proposed as a new and promising pathway for the treatment of
IMIDs. Formed from soluble factors and extracellular vesicles (EVs), the MSC-derived secretome has
been proven to elicit immunomodulatory effects that control the inflammatory processes that occur
in IMIDs. This article aims to review the available knowledge on the MSC secretome, evaluating the
advances in this field in terms of its composition, production and application, as well as analyzing
the pending challenges in the field. Moreover, the latest research involving secretome administration
in IMIDs is discussed to provide an updated state-of-the-art for this field. Finally, novel secretome
delivery alternatives are reviewed, paying special attention to hydrogel encapsulation as one of the
most convenient and promising strategies.

Keywords: MSCs; secretome; hydrogel; extracellular vesicles; exosomes; immunomodulation; IMIDs;
IBD; GvHD; OA

1. Introduction

Immune-mediated inflammatory diseases (IMIDs) are pathological conditions charac-
terized by defective immune responses that lead to chronic tissue damage [1]. This group
of chronic and highly disabling conditions that share inflammatory pathways includes
inflammatory bowel disease (IBD), osteoarthritis (OA) or graft-versus-host-disease (GvHD),
among others [1–3]. The prevalence of some of these pathologies is reaching epidemic
proportions, causing a huge economic impact on health-care systems worldwide [4].

The pharmacological management of IMIDs is complex, since current treatments
are mainly symptomatic and generally based on corticosteroids, biological therapies or
immunosuppressants in the most severe cases [5]. The frequent resistance to these drugs
together with their important side effects importantly limit their clinical use [6]. Thus,
intense research is taking place to develop new therapeutic strategies for the treatment
of IMIDs. Among them, therapies based on mesenchymal stromal cells (MSCs) represent
a novel and promising alternative [7]. Over the last decades, intense debate has taken
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place regarding the most adequate terminology and phenotypic characterization for MSCs,
which is discussed in Box 1 [8–17].

Initially, the interest in MSCs was based on their ability to differentiate into stromal
tissue cells and their engraftment capacity. Indeed, their regenerative effects have been
explored in many studies from the very beginnings of this research field. However, it soon
became apparent that, once implanted in the body, cells did not survive long enough to
engraft and differentiate into tissue cells, whereas, they were able to produce and release
bioactive factors to their microenvironment exerting important effects [18,19]. Indeed, the
set of bioactive factors produced by MSCs—also known as the MSC-derived secretome—
has been demonstrated to modulate the exacerbated or erratic immune responses observed
in IMIDs by regulating cells from both innate and adaptive immunity [20]. Thus, MSC
therapies have evolved into a new picture frame. Their grafting capacity has taken a back
seat, and, instead, attention has now shifted to the secretory properties. It is not the cells
for tissue construction that are required, but the beneficial effects of the released factors
that are pursued [21]. Since reaching that inflection point, the secretory properties of MSCs
have been thoroughly studied [19,22].

It is important to mention that MSCs present a high immunoplasticity and hence, the
content of their secretome varies depending on the cell microenvironment [23]. By means
of toll-like receptors (TLRs) present in their membrane, MSCs detect the cytokines present
in their surroundings. It has been widely reported that TLR4 activation with factors such
as LPS activates the MSC1 phenotype, in which they mostly elaborate proinflammatory
mediators. In contrast, factors such as interferon γ (IFN-γ), tumor necrosis factor α (TNF-α)
or poly-I:C result in TLR3 activation and MSC polarization towards an MSC2 phenotype
leading to the secretion of mediators that have been proven to regulate and control the
function of immune effector cells and lead to tissue repair and homeostasis [4,24–26].
Therefore, this MSC2 phenotype represents a promising avenue for the treatment of IMIDs,
in which there is an exacerbated/erratic immune response.

However, despite the intense research in the field and the important advances, there
are still some limitations in the therapeutic use of MSCs (Figure 1). One of these issues is
the lack of protocol standardization. Discrepancies among published results are frequently
attributed to variances in cell source, cell isolation and culture techniques or administration
routes [22]. Another important concern is the poor retention and survival of the implanted
cells. It has been reported that less than 1% of MSCs survive more than one week after
systemic administration [27]. This therapeutic window may be insufficient in the majority
of the applications [27,28]. Furthermore, to obtain an adequate secretion profile that serves
as a treatment of IMIDs, MSCs have to present an immunomodulatory MSC2 phenotype.
However, in many IMIDs, the chronic inflammation levels reached are not sufficient to
polarize the cells towards such a phenotype and their production of immunomodulatory
factors is very limited, compromising the efficacy of the therapy [3].

Regarding safety, although intravenous administration of human MSCs is generally
accepted as safe, only showing postinfusion febrile and site reactions, the likelihood
of more severe side effects such as thrombosis or adverse inflammatory effects is still
present [18,22,27,29,30]. Another obstacle for the clinical translation of cell-based therapies
is that their legal regulation is complex and not well defined in some of the cases.
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Figure 1. MSC secretome is composed of two different fractions: EVs and soluble factors. Both
of them are capable of eliciting immunomodulatory effects on immune cells such as lymphocytes,
macrophages and NK cells.

Because of these issues—and taking into account that the secretory effects of MSCs
are considered the main factor responsible for their therapeutic properties [27,28]—the
attention has now shifted to the MSC-derived secretome, which will be deeply reviewed in
Section 2. The use of the secretome derived from MSCs instead of the cells themselves can
overcome some of the important limitations above mentioned. One of the key advantages
of secretome-based therapies is that they resolve multiple safety concerns. The secretome
is not a living proliferative cell population and this avoids the potential adverse effects that
could occur with the implantation of cells. Furthermore, related to safety, the danger of
tumorigenicity related to cryopreservants used for cell storage has vanished [31]. On the
other hand, while MSC implantation involves the unknown production of bioactive factors,
the MSC-derived secretome can be evaluated for content prior to its administration [29].
This contributes to protocol standardization since it enables measurement of the dosage and
consequently, the obtained results are more scalable and reproducible [27]. Moreover, this
overcomes the issue of the MSC-phenotype, since cells can be in vitro preconditioned to
present an immunomodulatory-MSC2 phenotype and collect the resulting enriched, condi-
tioned media. Considering all this, it is possible to say that cell-free therapies based on the
MSC-derived secretome open a new path to safer therapies that are scalable, standardizable
and easier to regulate [3].
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Box 1. MSC designation and identification.

In a series of studies performed between the 1960s and 1980s, Friedenstein and co-workers isolated
adherent cells from mouse bone marrow (BM) which formed fibroblast-like colonies and were
capable of generating bone tissue when transplanted [8–11]. Posterior studies demonstrated that
these cells were also able to generate cartilage and adipose tissue, and that they were present in
embryonic and adult tissues such as umbilical cord, adipose tissue, skin or dental pulp [11,13]. In
the late 1990s the term “mesenchymal stem cells” was first used by Arnold Caplan. MSC definition
has been controversial over the years because of a lack of unified criteria for their terminology and
characteristics. Thus, terms like “mesenchymal stem cells”, “marrow stromal cells”, “multipotent
stromal cell” or “mesenchymal stromal cells” have been used arbitrarily. To tackle this problem,
in 2005, by means of a position statement, the International Society for Cellular Therapy (ISCT)
established the term “mesenchymal stromal cells” as the most suitable for the MSCs acronym [15].
A year later, the ISCT proposed a list of phenotypic characteristics that identify MSCs [15]. In
this context, the ISCT stated that MSCs are plastic-adherent cells that grow forming fibroblast-
like colonies and present the ability to differentiate into three different cell lineages: osteoblasts,
chondroblasts and adipocytes. Moreover, according to the ISCT, MSCs are characterized by the
presence of surface markers including CD73, CD90 and CD105; and the absence of CD45, CD34,
CD14 or CD11b, CD79a or CD19 and class II histocompatibility complex antigen (HLA-DR) [14].
Nevertheless, these criteria have been widely criticized for not being accurate enough and the
correct MSC defining criteria and designation is still polemic. In general terms, the ISCT guidelines
have been taken as an updateable basic knowledge about MSCs, useful for defining them but not
enough to describe them completely [8].

2. MSC-Derived Immunomodulatory Secretome

MSCs can mediate immunomodulation through cell−cell interactions by means of
membrane ligands, such as programmed death-ligand 1 (PD-L1) and FAS ligand (FAS-
L), which bind to inhibitory receptors on immune cells [32,33]. However, as previously
mentioned, the bioactive factors that MSCs secrete have been recognized as the main factors
responsible for their effects [26]. The set of bioactive factors released by these cells to the
extracellular space is known as MSC-derived secretome [34]. In a descriptive approach,
this secretome presents two differentiated parts: a first one formed from soluble factors
and a second one composed of extracellular vesicles (EVs) [35] (Figure 2). In this section,
we will revise the composition of the secretome derived from the MSC2 phenotype.
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2.1. Soluble Factors

Among the soluble factors secreted by the anti-inflammatory MSC2 phenotype, it is
possible to find a plethora of molecules including growth factors, cytokines and enzymes.
In the following lines, some of the most relevant factors will be discussed, highlighting the
effects that make them potential candidates for the treatment of IMIDs [36].

Prostaglandin-E2 (PGE2) has been described as one of the soluble factors of the MSC
secretome [3]. The release of this anti-inflammatory factor has been related to natural killer
(NK) cell inhibition, macrophage polarization towards an M2 phenotype, suppression of T
cell proliferation and the promotion of regulatory T cell (Treg) differentiation [37–39].

Another important group of factors in the soluble MSC-derived secretome are galectins,
which are involved in cell–matrix adhesion, cell–cell interactions and transmembrane sig-
naling. Furthermore, some galectins produced by MSCs have also been demonstrated to
present immunomodulatory properties, as is the case of galectin 1 (Gal-1) and galectin 9
(Gal-9). The former has been reported to inhibit T cell proliferation and to regulate cytokine
release, whereas the latter is involved in the inhibition of T and B cells [40,41].

Indoleamine 2, 3-dioxygenase (IDO) is a cytosolic metabolic enzyme that can also be
secreted [7]. IDO catabolizes tryptophan and the depletion of this amino acid causes T
cell anergy. Moreover, in this metabolic pathway, toxic kynurenine metabolites are
produced, which exert a cytotoxic action on effector T cells and inhibit NK and B
cells [40]. Furthermore, IDO stimulates macrophage polarization to the M2 phenotype,
characterized by IL-10 production which inhibits T cell proliferation and promotes Treg
differentiation [1–6,8,10–12,14–39,42–45].

Another interesting factor released by MSCs is interleukin 1 (IL-1) receptor antagonist
(IL-1Ra), which when bound to IL-1 receptors impedes the proinflammatory effects of
this cytokine. Thus, among others, IL-1Ra limits CD4+ T cell activation, helper T cell (Th)
differentiation, B cell proliferation and macrophage IL-1β secretion [46–48].

TNF-α-induced gene/protein 6 (TSG-6) is another secretory factor responsible for
the anti-inflammatory activity exerted by MSCs [49]. Indeed, it has been demonstrated
to mediate immunosuppressive effects on multiple immune cells. Among them, TSG-6 is
able to inhibit neutrophil migration [50,51], to suppress Th1 immune responses [52] and
to promote Treg production [51]. Regarding macrophages, TSG-6 limits TNF-α secretion
by activated macrophages [53,54] and promotes macrophage polarization towards an
anti-inflammatory M2 phenotype [55,56]. As another example, leukemia inhibitory factor
(LIF) produced by MSCs has also been related to the immunomodulatory effects of the
secretome [57].

Among the multiple growth factors released by MSCs there are some with described
immunomodulatory effects. One of the most remarkable is transforming growth factor
β (TGF-β) because of its ability to inhibit Th activation, NK proliferation and cytotoxic
activity and dendritic cell (DC) maturation [58–60]. Moreover, TGF-β also promotes the
differentiation of T cells into Tregs [60]. Similarly, hepatocyte growth factor (HGF), also
present in secretome, is a pleiotropic factor especially relevant for its ability to inhibit T cell
proliferation and DC activity and stimulate Treg differentiation [61,62].

2.2. EVs

The second fraction of the MSC-derived secretome is composed of EVs. EVs are
membrane-packed vesicles that act as a system of intercellular communication. They
consist of a lipid bilayer that envelops bioactive molecules including lipids, proteins or
nucleic acid species [35]. The lipid bilayer is not only an envelope since it is enriched
with proteins like traspanins, integrins and other ligands that allow the traffic, adhesion
and endocrine effects of EVs [34–36]. MSC-derived EVs are classified into three groups
attending mainly to their biogenesis mechanism, size and surface markers.

Apoptotic bodies are the biggest ones with a size of ≥1000 nm, they are formed
by cell apoptosis processes and usually express cell death markers such as Caspase 3 or
Annexin V [34].
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The second group are microvesicles (MVs)—also known as shedding vesicles—which
are formed by the budding of the plasma membrane of the source cells. The formation
process requires the reorganization of the cytoskeleton and the liberation is intracellular
calcium dependent. Their diameter varies from 100 to 1000 nm and their density goes
from 1.04 to 1.07 g/mL [63]. Surface markers in MVs include CD40 and their membrane
is usually enriched in lipids such as cholesterol, sphingomyelin and ceramide [63]. The
MV cargo is formed mainly by mRNAs and miRNAs and their interaction with target cells
occurs by specific receptor−ligand interactions between MVs and target cells [36].

The third group are exosomes, which have an endosomal origin [64]. They are
formed via the endocytosis−exocytosis pathway [36]. Briefly, exosome formation starts
when a small amount of intracellular fluid is included in an early endosome [65]. This
early endosome matures and expands into a late endosome, which can merge with other
endosomal membranes to form intraluminal bodies—also known as multivesicular bodies
(MVBs) [66]. The exosomes are finally formed when MVBs are released to the extracellular
environment by exocytosis [67]. The release process is regulated by proteins including p53
and TSG101 and controlled by the cytoskeleton activation pathway but it is not affected
by calcium signaling [29,36]. As previously mentioned, they have a size of 40–100 nm
and its density goes from 1.13 to 1.19 g/mL [66]. As the exosomes present bilayered lipid
membranes they can also include small amounts of phosphatidylserine and high amounts
of cholesterol, sphingolipids and ceramides [36]. They normally express CD9, CD63, CD81
and CD79 markers as well as clathrins, anexines and other biomarkers [68]. When the
exosomes are released to the extracellular environment, their main objective is to establish
communication with other cells [36]. The interaction between exosomes and target cells
can occur by three different mechanisms, such as direct fusion of the exosomes with cell
membrane or endocytosis resulting in the transmission of the content to the target cell
intracellular milieu. This transmission can also occur by the interaction between the lipid
ligand receptors present on cells and the lipids on the exososomal membrane [36,64,69].
Their cargo includes mostly genetic material such as DNA or miRNA noncoding fragments
as well as proteins [64,70,71].

Interestingly, the cargo of the last two groups—MVs and exosomes—has been proven
to elicit major cellular effects. Their mRNA content has been suggested to elicit direct
influence on cell differentiation and proliferation, while the miRNA cargo has been reported
to modulate their phenotype. Indeed, several miRNA contained in EVs have been reported
to present immunoregulatory and regenerative properties [29,72,73]. In their protein
fraction, EVs can contain multiple the soluble components of the secretome aforementioned,
presenting important immunomodulatory effects [29,74,75]. Considering all the above
mentioned, the EV fraction of the secretome itself is a potential candidate for the treatment
of IMIDs [34].

3. Secretome Isolation

Once centrifuged to remove cell debris, the expended medium where the MSCs
are cultured, usually known as “conditioned medium” (CM) contains both fractions of
the MSC-derived secretome [63]. According to the latest research, the EV fraction could
mediate an important effect in the management of IMIDs and therefore, more and more
attention is being paid to its isolation, since it implies the concentration of the bioactive
components [35,76].

The gold standard technique for EV isolation is ultracentrifugation (Figure 3) [35,77].
The described isolation protocols recommend a series of centrifugations of the CM to
remove cell debris, followed by ultracentrifugation to pellet the EVs [35,78,79]. Although
ultracentrifugation has been demonstrated to isolate EVs, it is a time-consuming technique
and it is limited by the risk of disruption of EV integrity [80]. Furthermore, problems may
appear during the process as it is a laborious protocol and the aggregation of the EVs could
easily occur due to gravitational forces [35,81]. Moreover, during the centrifugation of the
CM, the soluble factors of the secretome may also become deposited [82]. This event could
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open a discussion as to whether the therapeutic effects of the EVs are solely related to the
effect of the MVs and exosomes [35].
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discarded, after that, secretome fractions can be isolated by employing different techniques such
as centrifugation, size-based isolation techniques or commercial kits among others. (B) Results of
the survey carried out by the ISCT regarding the techniques used for the isolation of EVs in 2019.
Ultracentrifugation and a combination of size-based isolation techniques are the most commonly
used protocols for EV isolation. (NS, non-significant, * p < 0.05, ** p < 0.01. Missing bars: not queried
in the 2015 survey) (Adapted with permission from [82]).

Size-based isolation techniques have also been very useful. Ultrafiltration devices,
tangential flow filtration (TFF) systems or size exclusion chromatography (SEC) have
turned out to be interesting strategies [82,83]. Blind-elution chromatography has returned
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good results in the purification of the EVs in combination with a prefiltration with TFF
devices [80].

Commercialized rapid isolation kits are also widely employed for EV isolation [80].
All of them are based on the isolation by precipitation methods. Some of the available
kits are ExosQuick (System Biosciences), Exos-spin (Cell Guidance Systems) or Total
Exosome Isolation Reagent (Thermo Fisher, Waltham, MA, USA). Unfortunately, although
commercial kits are useful for separating EVs from the soluble fraction of the secretome, the
achieved purity is often rather poor [79]. Less employed techniques include affinity-based
capture [77]. For example, immunoaffinity methods have been used for the identification
and isolation of specifically marked EVs. This method could be useful if specific EVs are
required for the intended therapy [77].

Nowadays, in laboratory practice, ultracentrifugation and size exclusion techniques
are often combined since ultracentrifugation enables vesicle isolation and size exclusion
techniques to allow their purification. However, many efforts are being made to optimize
and gain knowledge on these procedures, since it is well known that the isolation method
affects the amount, type and purity of EVs as well as their effect [35]. Furthermore, isolation
and purification techniques could be useful to concentrate the bioactive compounds, which
may be beneficial for lowering therapeutic dose volume and therefore, to obtain more
manageable treatments. Despite the advances made so far, there is still a need for isolation
techniques that present a high yield, maintain the characteristics of the obtained products
and are not cost prohibitive but scalable [63].

4. Factors That Introduce Variability in the Secretome Composition
4.1. Donor Source

In many studies where MSC-based therapy is explored, autologous cells are harvested
from donor patients to avoid cell rejection. Nevertheless, factors such as the age or health
condition of the donor have been shown to pose a great influence on the growth, develop-
ment and immunomodulatory capacity of the primary MSCs [84]. Indeed, the secretome
has been shown to vary its composition depending on these factors. For example, the
secretome obtained from donors with multiple sclerosis had less neuroprotective effect in
comparison to that of healthy patients [85]. Likewise, obesity of donors has shown to have
a great influence on the composition of the cargo of the EVs derived from adipose tissue
MSCs (AT-MSCs), reducing the concentration of macrophage inflammatory protein (MIP)
and miRNA-126 [86]. This effect could be limited by using allogeneic sources. However,
primary MSCs—both autologous or allogeneic—are less long-lived and their characteristics
and behavior change throughout the cell passages. Similarly, donor age has an impact on
the MSC secretory profile. Aging has been associated with MSC senescence which can lead
to an important modification of their secretome, especially in terms of miRNA. Indeed,
senescent cells adopt a different secretory profile known as senescent-associated secretory
phenotype (SASP). As well as differences in content, aging cells have been reported to
present a higher EV production as well as EV size reduction [87,88]. This means that the
composition of the MSC-derived secretome can be changeable and not reproducible.

4.2. Cell Source

Another factor that presents a direct effect on the composition of the MSC-based
secretome is the cell tissue source. The differences in the secretome originated from
alternative cell sources has been evidenced thanks to proteomic studies. One of them
showed that there is a significant difference in the protein profile released from bone
marrow (BM-MSCs), AT-MSCs and dental pulp-derived MSCs. However, the secretion of
proteins that have been related to the therapeutic potential of the secretome is constitutive
in all the cellular sources analyzed so far [89]. In this way, the differences in secretome
from these different tissues are mainly quantitative with a greater or lesser variability
on the concentration of the secreted bioactive compounds depending on the cell source.
Backing up these results, studies comparing the secretome protein expression of human
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MSCs derived from BM, Wharton’s jelly (WJ) and exfoliated deciduous teeth (SHED)
demonstrated quantitative differences in a variety of growth factors and cytokines. In
particular, IL-10 expression in the secretome was higher in WJ-MSCs and SHED-MSCs
while the latter was also enriched in HGF [90]. In another comparative study, the secretome
derived from WJ-MSCs, AT-MSCs and BM-MSCs was demonstrated to have different
concentrations of the proteins of interest. In particular, the WJ-MSC-derived secretome was
enriched in factors like RANTES, IL1-Ra TGF-β, HGF and IL-6 [91,92].

It is important to mention that variability introduced by the cell donor or origin
makes the MSCs unpredictable and as a result, there is an increasing interest in their
replacement by immortalized cell lines [93]. According to the latest research, immortalized
MSC-derived secretome does not vary depending on tissue source or cell passage [74,94].
Furthermore, since an important quantity of cells are required for an optimal yield of
secretome production, the use of immortalized MSCs with lower cost and better longevity
results is appealing. All of these considerations show the way to new prospects for the use
of immortalized MSCs lines in secretome-based therapies.

To date, the effect of cell source on EV composition has not been directly explored.
Instead, a few studies have addressed it indirectly by comparing the global therapeutic
effects obtained by EVs originated from alternative tissue sources. In a comparative study,
exosomes obtained from menstrual MSCs (mMSCs) presented greater therapeutic effects on
neurodegenerative pathologies like Parkinson’s disease when compared to BM, umbilical
cord and chorion-derived MSCs [95]. Considering that tissue source definitely introduces
variability in the whole secretome composition, it is highly likely that it also affects the
EV fraction. Therefore, in EV-based therapies, exploring this avenue would shed light on
which could be the source presenting EVs with a better therapeutic profile for the treatment
of certain diseases.

4.3. MSCs Preconditioning Strategies: Towards an Msc2 Anti-Inflammatory Secretome

The possibility of manipulating the MSCs’ microenvironment to polarize them towards
an MSC2 phenotype that renders a secretome loaded with anti-inflammatory factors is
currently in vogue. In the following sections, we review some of the most explored
strategies that could be implemented in secretome-derived therapies for the treatment
of IMIDs.

4.3.1. Hypoxia

The influence of controlled oxygen exposure when culturing MSCs in vitro has been
largely studied [96–98]. Normally, in vitro cell culture is carried out under an 18–21%
oxygen concentration. However, it has been reported that hypoxic culture conditions,
with an oxygen tension varying between 0–10% created using a cell-culture chamber
or bioreactors, could enhance the secretion of the immunomodulatory factors by MSCs.
Indeed, hypoxic preconditioning has been demonstrated to increase MSC production of
pleiotropic growth factors such as HGF, IGF-1 or brain-derived neurotrophic factor (BDNF)
and immunomodulatory factors such as IDO or PGE2, among others [99–103]. In a study
conducted by Yu et al., the secretome derived from hypoxia preconditioned MSCs exerted
an immunomodulatory effect on microglia cells modulating their proinflammatory cytokine
secretion and promoting their polarization towards an anti-inflammatory phenotype [104].
These effects were attributed to a secretome enriched in factors such as IL-10, HGF or
PGE2 [105].

According to the latest research, EV concentration and cargo could also vary when
hypoxic preconditioning is employed. Hypoxic conditions have been reported to not
alter the average size, morphological appearance and surface markers of MSC-derived
EVs [106,107]. Not so well established is whether hypoxia could promote or demote EV
production by MSCs. Despite some studies reporting that EVs release could be triggered
by culturing MSCs in hypoxic conditions [104], others revile this hypothesis, advocating
the opposite [25,107]. This controversy might be based on the use of different hypoxic
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conditions, since slight changes in oxygen concentration and exposure time may have
an important impact [104]. Regarding the therapeutic effect of hypoxia preconditioned
EVs, it has been observed that they are capable of exerting immunomodulatory effects by
enhancing macrophage polarization through M2 anti-inflammatory phenotypes [25,108].
It has been proposed that EVs could enrich their cargo when preconditioned, this being
the principle role of their miRNA cargo [109–111]. Among others, miRNA-21 has been
suggested as a key mediator on preconditioned EVs’ immunomodulatory effects [108].

The mechanisms involved in these effects have not been accurately described yet.
However, it has been reported that hypoxia induces the secretion of hypoxia-inducible
factor (HIF-1), which influences cell metabolism, differentiation, proliferation, migration
and survival [97]. In addition, there are indications that the induction of HIF-1 is directly
related to the mechanisms of membrane fusion and budding and therefore in the release
process of EVs [112–116]. Moreover, it is believed that since in vivo damaged tissues are
frequently hypoxic (1–7%), the culture of MSCs in this environment increases their viability
after being implanted [3,117]. Nevertheless, it is important to note that whereas some
studies have observed increased cell survival after exposure to hypoxic conditions [118],
others have reported cytotoxic effects [119]. These disparate outcomes could be due, again,
to differences in the severity and exposure time of the hypoxic conditions [3,120].

4.3.2. Three-Dimensional (3D) Culture

Even though MSCs are normally cultured in monolayers, 3D cultures have been
shown to enhance immunomodulatory factor production by MSCs [27]. There are several
strategies for MSC 3D culture, one of the most used is spheroid formation [53,121]. In
this scenario, less oxygen reaches the inner layer cells, providing a hypoxic microenvi-
ronment, which together with the promotion of cell−cell contacts, has been reported to
enhance immunomodulatory factor secretion [53]. Recent studies report a higher secretion
of granulocyte—colony stimulating factor (G-CSF) and IL-1Ra by MSCs when cultured
in spheroids. In addition, the secretome obtained from 3D cultured MSCs (3D-MSC-
secretome) has been proven to stimulate macrophage polarization preventing the release of
proinflammatory factors such as TNF-α and stimulating their IL-10 secretion [53,122,123].
Furthermore, an increase in anti-inflammatory factors such as PGE2 has also been ob-
served [53,124]. However, this approach could limit the viability of grafted cells since
their inner core could present oxygen and nutrient diffusion limitations [121]. Efforts
now focus on 3D-MSC-secretome characterization and, although not intense, research has
been performed in this regard, first approaches have already been carried out. Specifically,
the 3D-MSC-secretome has been characterized and compared to the secretome obtained
from 2D-cultured MSCs (2D-MSC-secretome) demonstrating that the spheroid culture of
MSCs could lead to an enrichment of the obtained secretome profile on anti-inflammatory
factors such as IL-10. In contrast, the 2D-MSC-secretome presented higher levels of pro-
inflammatory cytokines such as IL-6 or IL-2 [125]. In terms of the EV fraction of the
secretome, it has been described that 3D-cultured MSCs have a higher efficiency on EV pro-
duction compared to 2D-cultured MSCs. Moreover, EVs obtained from 3D-cultured MSCs
(3D-MSC-EVs) have been shown to display superior functions in some studies [126,127].

Other strategies such as cell culture on scaffolds have also been employed for 3D-
MSC-secretome obtainment. This method has been demonstrated to have a direct impact
on secretome composition and function increasing its HGF levels [128]. However, one of
the most interesting approaches for obtaining a 3D-MSC secretome is the encapsulation of
MSCs in hydrogels [129,130]. Hydrogels enable the immediate cell microenvironment to
be tuned in terms of mechanical properties—elasticity, stiffness—and also, to decorate it
with motifs present in the natural extracellular matrix, all of which contribute to secretome
enrichment [131]. This new approach has recently been combined with the biochemical
stimulation of cells prolonging the immunomodulatory MSCs phenotype [132,133].
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4.3.3. Biochemical Stimuli

In recent years, the exposure of MSCs to biochemical stimuli has been widely explored.
This process is also known as licensing. As previously mentioned, it has been described
that TLR-3 activation with inflammatory cytokines such as IFN-γ, TNF-α or IL-1 polarizes
MSCs towards an MSC2 anti-inflammatory phenotype. As a result, exposing MSCs to
these factors has become a widely used strategy on therapies based on the MSC-derived
secretome for the treatment of IMIDs [134,135].

For instance, cell exposure to IFN-γ has been proven to unfetter the production of fac-
tors such as HGF, Gal-9, IDO or PGE2, thus eliciting immunomodulatory and regenerative
effects [7,27,63,136,137]. Similarly, MSC licensing with TNF-α has been related to secretome
enrichment with tissue repairing and immunomodulatory growth factors [138,139]. Signifi-
cantly, this enrichment is greater when proinflammatory stimuli with TNF-α is combined
with hypoxic conditions during preconditioning [107,140]. Interestingly, the combination
of both cytokines, IFN-γ and TNF-α, has been demonstrated to have a synergistic effect to
polarize MSCs towards the MSC2 phenotype [44].

In this vein, recent studies have shown that exposure to IL-1β and TNF-α enriches the
secretome in proteins such as granulocyte-macrophage colony stimulating factor (GM-CSF),
monocyte chemoattractant protein-1 (MCP-1) and matrix metalloproteinases 8 and 9 [107].
Interestingly, other studies have demonstrated that IL-1β not only enriches the factors
above mentioned but also HGF and IL1-Ra, which exert important immunomodulatory
effects [141].

Variations in the EV-secretion profile have also been studied after MSC exposure to
biochemical stimuli. It has been shown that IFN-γ is capable of inducing minor changes on
EV shape and size when being used in high concentrations [142]. However, these changes
do not always occur [106,107] and there is still the need to confirm if minor modifications
on EV size would affect their therapeutic potential. The concentration of EVs released by
licensed MSCs has also been shown to be higher. In particular, AT-MSCs were demonstrated
to release a higher quantity of EVs when subjected to proinflammatory stimuli. However,
although this increase in the secretion of EVs points to a greater therapeutic effect, it
is vital to characterize the effect of licensing on the EV cargo. In this regard, recent
research has demonstrated that the proinflammatory licensing of MSCs also enhances the
immunomodulatory effects of EVs. In a study performed by Serejo et al., EVs derived
from AT-MSCs licensed with IFN-γ inhibited T-cell proliferation to a higher extent than
unlicensed EVs. These effects were attributed to an increase of IDO and Gal-1 within the
EV cargo [143]. Similar effects have been described when licensing MSCs with TNF-α and
IL-1β [143–145].

Although IFN-γ, TNF-α and IL-1 are the most studied factors, some others have also
been demonstrated to boost the EV immunomodulatory effects. For instance, the use of
thapsigargin has also been tested. The resultant WJ-MSC-derived EVs showed an increased
yield and expression of TGFβ, cyclooxygenase 2 (COX2) and IDO compared to control
EVs. Moreover, licensed EVs exerted direct immunomodulatory effects by suppressing
T-cell proliferation and differentiation while increasing Treg proliferation and macrophage
M2 polarization. Remarkably, these immunomodulatory effects of the EVs obtained by
licensed MSCs were related to therapeutic outcomes observed in dextran sodium sulfate
(DSS)-induced colitis mice models [146].

5. Application of the MSC Secretome for the Treatment of IMIDs

Considering the therapeutic potential of the MSC-derived secretome for the treatment
of IMIDs, its use in animal models is being extensively studied.

5.1. IBD

IBD is a chronic IMID, which comprises ulcerative colitis and Crohn’s disease. Char-
acteristic of IBD is the inflammation of the gastrointestinal tract, which causes several
symptoms such as diarrhea, bloody stool and pain spikes. The pathology of IBD has been
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related to immune disbalances such as excessive T cell activation, reduction of Treg differen-
tiation and overproduction of proinflammatory mediators in the gastrointestinal tract [147].
Consequently, the immunomodulatory properties of the MSC-derived secretome have
become an interesting new avenue for its treatment.

Both local or systemic administration of MSC-derived EVs in dextran sodium sulphate
(DSS)-induced mice models have been demonstrated to improve the clinical severity of
colitis, improving survival rates and showing less gut inflammation on histopathological
studies [148–150]. These beneficial properties of the EVs have been related to the polariza-
tion of macrophages towards an M2 anti-inflammatory phenotype, as well as to oxidative
stress reduction in the affected tissues when being administered by intraperitoneal injection
or locally into injured tissue through laparotomy [150,151]. Preconditioning the MSCs with
IFN-γ and TNF-α has also been demonstrated to enrich the EVs in immunomodulatory
proteins such as HGF, PGE2 or TGF-β eliciting superior effects when administered by in-
traperitoneal injection [148]. Similarly, MSC-derived CM has been proven to downregulate
the expression of proinflammatory cytokines such as TNF-α or IL-1 and upregulate the
anti-inflammatory factors such as IL-10 in DSS-induced colitis mice models [152].

A different strategy that has also been explored is the in vitro exposure of macrophages
to the MSC-derived secretome. Once implanted in a 2,4,6-Trinitrobenzenesulfonic acid
(TNBS)-induced colitis mice model, preconditioned macrophages were demonstrated
to improve animal survival rate by decreasing weight loss and bloody stool, and thus
alleviating colitis progression and avoiding disease recurrence [153].

5.2. OA

OA is a disease that causes the progressive degeneration of joints [154–156]. It is
characterized by cartilage degradation, calcification and inflammation processes that lead
to symptoms such as reduced movement capacity, joint stiffness and diffuse pain [154].
Remarkably, OA has been related to poor cartilage formation−degradation balance with
low rates of chondrocyte proliferation and a notable cell apoptosis [154]. Moreover, im-
mune disbalances such as macrophage overactivation have also been described in OA.
Interestingly, the MSC-derived secretome has been studied as a new therapeutic approach
for the treatment of OA showing promising results in preclinical animal models [154,157].

In a series of studies performed in OA mice models, an exosome intra-articular
injection was shown to have both protective and therapeutic effects in the damaged
joints [155,156]. MSC-derived exosomes have also been demonstrated to prevent car-
tilage and bone from degradation improving disease severity [154]. Moreover, exosomes
have been proven to elicit regulatory effects in chondrocytes, increasing their proliferation
and migration rates as well as enhancing their type II collagen synthesis, which improves
cartilage mechanic resistance [155,158]. It is remarkable that these beneficial effects have
been attributed to the immunomodulatory activity of exosomes including the upregulation
of anti-inflammatory mediators such as IL-10, IL-13 or IL-4, the downregulation of proin-
flammatory mediators such as TNF-α or IL-1 and the polarization of macrophages towards
their M2 anti-inflammatory phenotype, among others [154,159,160].

Indeed, it has been observed that MSC-derived CM, as well as isolated EVs are able
to ameliorate OA symptoms by preventing joint deterioration and improving tissue re-
modeling in mice joint disease models [161]. Finally, it is also worth mentioning that MSC
preconditioning strategies, such as the 3D culture of MSCs, increases the effectiveness of
secretome-based treatments in OA, accomplishing higher synthesis rates of glycosamino-
glycan (GAG) in damaged cartilage as well as recovering chondrocyte proliferation and
migration [125].

5.3. GvHD

Hematopoietic stem cell transplantation (HSTC) is a clinical curative approach for the
treatment of hematological malignancies. When HSCT is performed, GvHD can become
a risky limitation. GvHD occurs when donor T cells respond to the human leucocyte
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antigens (HLA) of the host cells. This incompatibility between donor and host cells results
in immune system disorders with varied clinical manifestations of disease on the skin, liver
or gastrointestinal tract, among others [162].

The immunomodulatory properties of MSCs were first reported to be useful for treat-
ing GvHD caused by HSCT in 2004 [163]. Since such promising findings, several studies,
including both preclinical and human clinical trials have extensively evaluated the use of
MSCs for the treatment of GvHD. However, results are varying and controversial [164,165].
This has mainly been attributed to heterogeneity of protocols that include disparities in cell
source and dosage, and could also be caused by the ability of the specific microenvironment
in each specific patient to polarize the anti-inflammatory MSC2 phenotype. In this scenario,
the use of cell-free therapies could represent an interesting alternative [3].

Indeed, EVs have shown promising outcomes in the treatment and prevention of
GvHD [162]. Clinical manifestations of both acute and chronic GvHD have been proven
to be milder when employing MSC-EVs as a treatment. Among them, skin, liver and
gastrointestinal disease symptoms have been reverted and controlled [166]. Recently, Dal
collo et al. tested the effects of intraperitoneally administered BM-MSC-derived EVs on an
in vivo mice model of acute GvHD [139]. The results demonstrated that EVs were not only
capable of improving disease severity but also of preventing its development, increasing
survival of the animals [139].

Furthermore, in acute GvHD mice models, MSC-derived EVs administered intra-
venously have been proven to modulate cytokine production, enhancing IL-10 production
and controlling TNF-α, IL-17 and IL-2 expression, which are typically related to the inflam-
matory stages in GvHD [167].

Isolated exosomes themselves have also been tested on GvHD models. As Lai and
coworkers demonstrated in their research with GvHD mouse models, MSC-derived ex-
osomes intravenously injected decreased proinflammatory cytokine secretion as well as
being demonstrated to elicit T cell activation in host bone marrow and spleen [168,169].

Preclinical studies have shown promising results in pathologies such as IBD, OA or
GvHD (Table 1).
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Table 1. Preclinical studies involving secretome application on inflammatory bowel disease (IBD), osteoarthritis (OA) and graft-versus-host disease (GvHD) animal models.

Disease Secretome
Fraction

Secretome
Source Preconditioning Administration

Route and Dose Animal Model Results Ref.

Acute ulcerative
colitis Concentrated CM AF-MSCs -

Intraperitoneal
injection of a 200 µL

single dose
NOD-SCID mice

Decreased colon inflammation scores.
TGFb1 and IL-10 increased levels.

TNFα, IL1-b and MMP2 decreased levels.
[152]

Acute Ulcerative
colitis EVs cA-MSCs TNF-α and IFN-γ

Intraperitoneal
injection of 100 µg at

days 1, 3 and 5.

DSS-induced colitis
mice

Decreased colon inflammation.
Macrophage polarization trough M2

phenotypes.
Treg enhanced expression in injured tissue.

[148]

Acute Ulcerative
colitis Exosomes BM-MSCs -

Intravenous
injection of a

non-determined dose

DSS/TNBS-induced
colitis mice

Increased survival.
Decreased inflammation scores.

Increased levels of IL-10 in colon tissue due
to higher production of M2 macrophages.

[149]

Acute Ulcerative
colitis EVs hP-MSCs - 200 µg single dose

laparotomy injection
TNBS-induced colitis

mice

Decreased oxidative stress. Improved colitis
symptoms and its histopathological

manifestations. Vesicle labelling showed a
permanence of 2 days around

administration area.

[150]

Acute Ulcerative
colitis EVs Mouse BMSCs -

Intraperitoneal
injection of 50 µg per
day for seven days

DSS-induced colitis
mice

Macrophage M2 polarization was observed
on EV-treated individuals as well as lower
expression of proinflammatory cytokines

such as IFN-γ, IL-12 or TNf-α

[151]

Acute GvHD EVs Human
BM-MSCs - Tail vein injection of

1.6 × 106 particles
Spleen cell injected

B6D2F1mice

Suppression of the functional differentiation
of T cells into CD8+ cells was observed in
treated animals compared to control. EV

injected animals showed mitigated clinical
manifestation of disease and lower

pathological damage in
GVHD-targeted organs.

[167]

Chronic GvHD Exosomes hBM-MSCs -
Tail vein injection of
100 µg once a week

for 6 weeks

Bone marrow and
spleen cell injected

BALB mice

Activation of CD4+ T cells was suppressed
avoiding their infiltration into disease

targeted organs.
Lower proinflammatory cytokines Th17,

IL-22 and IL-21 production.

[168]
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Table 1. Cont.

Disease Secretome
Fraction

Secretome
Source Preconditioning Administration

Route and Dose Animal Model Results Ref.

Acute GvHD EVs BM-MSCs Co-culture with
human platelet lysate

Intravenous injection
of a non-specified EV

dose

Human PBMCs
injected xenograft

mouse model

Overall survival of treated animals increased
during the study.

TNF-α and IFN-γ levels of treated
individuals turned out to be lower compared

to those of the control ones.

[139]

Acute GvHD EVs hUC-MSCS -

Intravenous injection
of 200 µg before and

after disease
induction

Allo-HSCT
transplanted mice

Immunomodulatory effects of EVs were
reflected through higher concentration of
IL-10 and lower serum concentration of

TNF-α, IFN-γ and IL-2

[166]

Acute GvHD Exosomes E-MSCs -
Tail vein injection of

1 µg or 10 µg for
3 days

PBMC injected mice
Exosome treated mice show higher Treg

levels compared to those treated
with etanercept

[169]

Osteoarthritis Conditioned media UC-MSCs 3D culture

Intra-articular
injection of 200 µL of
concentrated CM per

day for 4 days

Mycobacterium
butyricum induced

arthritis rats

Clinical manifestations of disease were
milder in 3D-CM treated animals compared
to 2D-CM treated ones. In vitro results of the
study show the enrichment of the secretome
in anti-inflammatory cytokines such as IL-10.

[125]

Osteoarthritis Exosomes and MVs Murine
BM-MSCs TGF-β

Intra-articular
injection of single
dose of 250 ng of

exosomes or 500 ng
of MVs

Collagenase
induced mice

Prevention of cartilage degradation was
observed in treated mice comparing to

non-treated ones. Histological condition and
damage was similar to healthy controls.

Effects attributed to apoptosis prevention and
macrophage differentiation inhibition

exosomes being more efficient.

[154]

Abbreviations: AF-MSCs (amniotic fluid mesenchymal stem/stromal cells); cA-MSC (canine-adipose mesenchymal stem/stromal cells); DSS (dextran sodium sulfate); TNBS (2,4,6-trinitrobenzenesulfonic
acid); BM-MSCs (bone marrow mesenchymal stem/stromal cells); hP-MSCs (human-placental mesenchymal stem/stromal cells); hUC-MSCs (human umbilical cord mesenchymal stem/stromal cells); PBMCs
(peripheral blood mononuclear cells); HSCT (hematopoietic stem cell transplant); E-MSCs (embryonic mesenchymal stem/stromal cells); SM-MSCs (synovial membrane-derived mesenchymal stem/stromal cells).
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5.4. Coronavirus Disease 2019 (COVID-19) and Acute Respiratory Distress Syndrome (ASDR)

COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
is a contagious respiratory disease declared a pandemic on 11 March, 2020. Symptoms
of COVID-19 include fever, cough, fatigue, dyspnea and smell sense loss. The viral in-
fection produces a torrent release of proinflammatory cytokines leading, in many cases,
to fatal outcomes and the death of patients. One of the common complications in cases
of coronavirus infection is the acute respiratory failure known as acute respiratory dis-
tress syndrome (ARDS). Physiopathologically, ARDS occurs when there is continuous
damage to the pulmonary epithelium. This triggers an excessive inflammatory response
in the tissue, weakening it and causing edema and dysfunction. This excessive immune
response has been related to the presence of proinflammatory cytokines and the activa-
tion of macrophages and neutrophils in the pulmonary alveoli [170]. Due to this altered
immunological component in ARDS, the immunomodulatory effect of MSCs could be
especially beneficial for the treatment of COVID-19 cases with this complication. Indeed, a
clinical trial on allogenic MSCs on severe COVID-19 patients demonstrated the therapy to
be beneficial for COVID-19-induced ARDS. In the study, five patients were injected with
the treatment and the clinical symptoms of ARDS improved dramatically [171]. In fact,
the results in this trial were so encouraging that the compassionate use of MSCs of severe
COVID-19 cases has been recently approved by the FDA. However, additional research is
required in larger population samples.

Regarding cell-free therapy based on the MSC-derived secretome, recent studies
have revealed that it could also have therapeutic potential in COVID-19/ARDS treatment.
Indeed, in preclinical studies of ARDS, MVs have been reported to be a valuable strategy.
Worthy of mention, an endotoxin-induced mouse model of acute lung inflammation (ALI)
showed a reduction in lung-edema when MVs were instilled intra-tracheally and similar
results were shown in lipopolysaccharide ALI-induced mice. The mechanism behind these
effects has not been elucidated yet, but it is believed that part of the mRNA cargo of MVs,
such as the Ang-1 mRNA or KFG mRNA, is related to the therapeutic effects.

The effect of MSC-derived exosomes has already been studied in a phase I clinical trial
of COVID-19 induced ARDS. In the trial, 24 severe COVID-19 patients presenting ARDS
were intravenously injected 15 mL of BM-MSC-derived exosomes with a non-specified
dose. The treatment was demonstrated to improve the survival of patients as well as
to control neutrophil and macrophage lung infiltration and lung edema appearance, in
comparison to the status prior to exosome treatment. Moreover, no adverse effects were
detected during the trial and patient survival was determined to be above the 80% [172].

6. Secretome Delivery

The immunomodulatory effects of the MSC-derived secretome have been widely
demonstrated. However, the immediate challenge in this field is still to find a safe, effective
and controlled manner for its delivery [173]. In the treatment of IMIDs, as in many other
pathologies, it is especially important to obtain a controlled and sustained release of
bioactive factors [174]. Nude secretome administration has not been successful in many
cases [175]. When administered systemically, a significant fraction is clarified and removed
by macrophages, that is to say, permanence is very limited [175–179]. Similarly, topically
administered nude secretome also showed a low bioavailability [173,175]. These facts do
not only impair the effectiveness of the treatment but also increase their cost [180,181].
Secretome obtainment, especially if EV isolation is required, is arduous and large-scale
production has not yet been achieved with reproducibility [182,183]. Thus, secretome
delivery needs to have a higher yield and dose wastage should be avoided.

Encapsulation of the secretome into administration delivery matrices is a possible
solution to these problems [184,185]. One of the most interesting strategies may be hydrogel
encapsulation, since it could enable a sustained and controlled release extending the half-
life of the secretome and decreasing its administration frequency [186]. As a result, lower
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secretome production would be needed and dosage availability would be higher, enhancing
also patient comfort and compliance [173,175].

Hydrogels are three-dimensional, hydrophilic, porous and soft matrices that present
high water content [187]. They are formed by the crosslinking of natural—e.g., chitosan,
hyaluronic acid (HA) or alginate—or synthetic—e.g., poly-ethylene glycol (PEG) or poly-
lactic-glycolic acid (PLGA)—polymers with crosslinking agents [175]. Natural polymers
can be also distinguished by their source since they can be extracted from human or non-
human sources such as other animals, plants or bacteria. Unlike other strategies, hydrogels
are easily produced [188] and they can be formulated under mild conditions—room tem-
perature and moisture conditions, gentle stirring, no need for cell-toxic chemicals. This is
of paramount importance for the encapsulation of thermosensitive, brittle or breakable
factors [189]. Furthermore, it is possible to elaborate biocompatible hydrogels by using
the adequate polymers [173,190]. Moreover, the final products are manageable and easily
modifiable for comfortable administration [187,191]. In this regard, the formulation of
injectable hydrogels enables the in situ crosslinking, which once administered, adapt to and
fill the space of the local milieu. Therefore, the encapsulation of the different fractions of
the MSC-derived secretome in hydrogels is a promising alternative for their delivery [192].
In that sense, special interest has been paid to the hydrogel encapsulation of the EV-fraction
of the secretome.

Different hydrogel encapsulation strategies have been used for EV delivery, which
vary in polymer composition—including both natural and synthetic polymers—and the
encapsulation technique. According to the encapsulation techniques, EVs can be included
in the hydrogel before, after or at the same time as the crosslinkers [173] (Figure 4). The
order of encapsulation will depend mostly on the selected polymers and the porosity of the
produced matrices. An example illustrating the first technique where polymers are mixed
up with EVs before the crosslinker addition is the system designed by Quin et al. They
developed an EV-loaded hydrogel made of thiolated hyaluronic acid, thiolated heparin
and thiolated gelatin with polyethylene glycol diacrylate (PEGDA) as a crosslinker. This
process of mixing EVs and polymers before adding the crosslinkers is the most employed
as it is simple and suitable for the majority of the polymers employed [193].

The “breathing” encapsulation method has also been employed for EV encapsulation
in hydrogels [173]. Briefly, polymers and crosslinkers are mixed and afterwards, the formed
matrix is submerged into an EV solution, resulting in their entrance into the hydrogel matrix.
This breathing is suitable for porous systems since EVs would have to cross their matrix
for the encapsulation [194].

Following the third approach, a polypeptide hydrogel made of Pluronic F127, oxida-
tive hyaluronic acid, and poly-ε-L-lysine was developed by Wang and co-workers [195]. In
this case, polymers, crosslinkers and EVs were mixed at the same time. This mixture order
allows the in situ gelation of the hydrogel and its immediate administration in vivo. Simul-
taneous mixing can be used when polymer gelation is quick and a rapid encapsulation of
EVs is needed [195].

The release of EVs from hydrogels can occur through different mechanisms, including
diffusion if the matrix porosity allows it, polymer-EV interactions and matrix degradation.
Therefore, changes in factors such as hydrogel composition, the chemical nature of its
components, the crosslinking method used for its gelation or even the environment where
the hydrogel is administered will directly affect the EV release and thus, the performance
of the system. Furthermore, the mechanical properties of hydrogels can be a determining
factor in the administration of the formulations, making it more or less difficult. Com-
monly, a shear-thinning behavior of the hydrogels is desirable—being less viscous when
administered but recovering elasticity and shape when remaining in steady state—which
enables manageable administration of treatments and increased permanence rates on
injured areas [196].
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Figure 4. Exosome-loaded hydrogel formation strategies. (A) Exosomes are first mixed with polymers
and then crosslinkation is performed. (B) Breathing method where hydrogel matrix is first built up
and exosomes are allowed to diffuse into the matrix. (C) In situ matrix formation where hydrogel
components and exosomes are simultaneously mixed with the use of a double syringe system.

Apart from the hydrogels containing the EV-fraction, whole secretome hydrogel
encapsulation has also been explored so far. In this vein, one of the most promising
approaches is the combination of the MSC preconditioning culture strategies for secretome
enrichment and the subsequent secretome hydrogel encapsulation for its delivery into
injured areas [176]. An example of this strategy is the one employed by Waters et al., which
employs AT-MSC-3D culture to enrich their secretome in regenerative factors. Hydrogel
encapsulation of the obtained secretome was employed as a successful treatment in cardiac
infarcted mouse models [197]. Interestingly, the most explored strategies for secretome
encapsulation are both the breathing and the in situ crosslinking methods because of their
simplicity. However, and as it happens, in EV-encapsulation, the followed strategy depends
mostly on the polymers used for hydrogel formation [176,198].

However, even if secretome hydrogel encapsulation has been demonstrated to be
promising, this field is in its infancy [199]. Despite hydrogels being widely employed in
cell therapy, their use in secretome delivery has not yet been fully exploited [200–202].
Indeed, as shown in Table 2, most of the studies in which EVs or secretome are encap-
sulated in hydrogels are focused on regenerative medicine applications such as osteo-
porosis, endometrial tissue repair, hind limb ischemia, wound healing or cardiac tissue
repair [155,195,203–216]. Therefore, future research is guaranteed to explore the poten-
tial of this approach for the delivery of immunomodulatory secretome for the treatment
of IMIDs.
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Table 2. Studies involving hydrogel encapsulation of exosomes for increased treatment permanence around injured areas. MSC-EVs (mesenchymal stromal cell-derived extracellular
vesicles) u-MSCs (umbilical-derived MSCs); p-MSCs (placenta-derived MSCs); a-MSC (adipose tissue-derived MSCs) e-MSC (embryonic stromal cells) 3D-a-MSC-secretome (3D cultured
adipose-derived MSC-derived secretome).

Hydrogel Composition Encapsulated Part of the Secretome Model Exosome Permanence and Effect Ref.

Hyaluronic acid alginate u-MSC-EVs Critical-sized calvarial defect mice
Exosome released 14 days after treatment

administration and improved bone
regeneration

[208]

Silk fibroin u-MSC-EVs Hind limb ischemia mice
Sustained release after 36 days of

administration and improved blood perfusion
in injured areas

[214]

Peptides u-MSC-EVs Myocardial infarct rats
Sustained and steady release of exosomes until

26 days after administration and improved
myocardial function

[215]

Methyl-cellulose/chitosan p-MSC-EVs Diabetic rats with cutaneous wound
Adhesive behaviour of the treatment around
injured area and faster wound closure rates

were observed
[195]

Alginate a-MSC-EVs Full thickness excisional wound rats
Hydrogel gradual degradation was observed

and loaded exosome complete release was
stated 172 h after treatment administration

[216]

Gelatin and laponite 3D-a-MSC-Secretome Acute myocardial infarction rat models
Hydrogel shear-thinning behaviour was sought.
Formulation injection was possible as well as
its establishment into the peri-infarcted area.

[197]

Multidomain peptide nanofibers e-MSC-secretome Diabetes-induced kidney injury mice models

Hydrogel permanence on injected abdominal
cavity was demonstrated was of 24 h.

Secretome release was proven to be sustained
and no burst release was observed when

administered.

[198]

Silk fibroin Bm-MSC-secretome Age-related osteoporosis rat models

Release of bioactive factor was proven to be
slow and continuous. Hydrogel matrix

degradation and silk fibroin interaction with
release medium was proposed to be responsible

for this sustained release mechanism.

[203]
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7. Concluding Remarks

Despite numerous studies showing that the immunomodulatory effects of MSCs
are promising in inflammation management, the cell-based therapies present important
limitations. Concerns regarding cell administration—including implant rejection, risk of
thrombosis or adverse inflammatory reactions, as well as the difficult reproducibility and
bioactive factor evaluation—have put MSC-based therapies at stake. Several studies show
that the immunomodulatory effects of MSCs can be mainly attributed to their secretome,
which has led to a turning point where cellular therapies could be replaced by cell-free ther-
apies. In this sense, the MSC-derived immunomodulatory/anti-inflammatory secretome is
the new promising vein of gold, overcoming the drawbacks of cell-based therapies. This is
encouraging the scientific community to study its therapeutic effects and the interest in the
field is increasing rapidly.

Regarding its application, using secretome as a treatment on IMIDs such as IBD,
osteoarthritis or GvHD has been demonstrated to elicit therapeutic effects. However, there
is still a great research pathway ahead since there are still limitations for this therapeutic
potential to overcome. First, an exhaustive characterization of secretome is necessary to
ensure comprehension and reproducibility of the treatments in which it is used. There
are signs of a variable composition of the secretome depending on conditioning factors
both external and inherent to the source cells, but the magnitude of this variability has not
been accurately determined in the research carried out so far. Similarly, there is no unified
consensus on the best methods to optimize and customize the secretome content, which is
mandatory to achieve adaptable therapies with a broad spectrum of applications.

Another milestone that has not yet been reached is the development of finely tuned
methods for secretome obtention. A great variety of methods for the isolation and purifica-
tion of the whole secretome or EVs have been proposed, however, advances still need to
take place to optimize the yield and scalability.

Moreover, as mentioned above, one of the pillars still under research is the develop-
ment of secretome delivery strategies. The controlled and sustained release of secretome
factors being the main goal, hydrogel encapsulation could be one of the most appropriate
delivery strategies because of the simplicity and efficiency of the approach. Although EV
encapsulation in hydrogels has lately been explored for tissue regeneration purposes, no
studies have been published regarding MSC-secretome delivery devices for IMID treat-
ment. Therefore, the study of this strategy is warranted in the near future. All these facts
open a new promising avenue for the development of secretome-based therapies for the
treatment of IMIDs.
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