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Abstract: The blood-brain barrier (BBB) is a fundamental component of the central nervous system
(CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microen-
vironment by controlling the passage of substances and regulating the trafficking of immune cells
between the blood and the brain. The BBB is primarily composed of highly specialized microvas-
cular endothelial cells. These cells’ special features and physiological properties are acquired and
maintained through the concerted effort of hemodynamic and cellular cues from the surrounding
environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes,
and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport
of nutrients and metabolites into brain parenchyma through a tightly regulated transport system
while limiting the access of potentially harmful substances via efflux transcytosis and metabolic
mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or
progression of major neurological disorders. Although the association between disease and BBB
disruption is clear, its nature is not always evident, specifically with regard to whether an impaired
BBB function results from the pathological condition or whether the BBB damage is the primary
pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be
a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe
the fundamental structure and function of the BBB in both healthy and altered/diseased conditions.
Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to
restore the integrity of the BBB concomitant to the treatment of these brain disorders.

Keywords: biological barriers; tight junctions; endothelial; dysfunction; stroke; viability; therapeu-
tic targets

1. Introduction

Biological barriers perform a significant role in maintaining the integrity and function
of many vertebrate organs. Intercellular protein complexes of the plasma membrane form
paracellular diffusion barriers that separate internal and external fluid compartments,
which is a crucial process for the development and function of all organs [1]. Different
biological barriers are present in different body organs such as the skin, intestine, kidney,
reproductive system, lung, liver, mouth mucosa, and central nervous system (CNS). The
CNS is protected from the external environment by three biological barriers at three
interfaces. These are the blood-brain barrier (BBB), the blood–CSF barrier (BCB), and the
arachnoid barrier [2]. The BBB is formed by the endothelial cells lining cerebral microvessels
and separates the blood from brain interstitial fluid. The choroid plexus epithelium is
positioned between the blood and ventricular cerebrospinal fluid (CSF) and forms the
blood-CSF barrier. The arachnoid barriers are formed by epithelium positioned between
the blood and subarachnoid CSF. These three barrier layers participate in limiting and
regulating molecular exchange at the interfaces between the blood and the neural tissue or
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its fluid spaces. Among these CNS barriers, the BBB exerts the tightest control over the
surrounding brain microenvironment. More specifically, the BBB provides barrier functions
at three different levels.

The first is a physical barrier that blocks the paracellular pathway of polar substances
(including ions) between adjacent endothelial cells. Tight junctional proteins form this
barrier through homotypic binding with their homologous counterpart on the adjacent
endothelial cells. Different efflux transporters provide the second barrier, with a wide
range of affinity for lipophilic substances. These include a P-glycoprotein (P-gp), breast
cancer resistant protein (BCRP), and multidrug resistance-associated proteins (MRPs) [2].
The third is a multi-enzymatic barrier that provides the BBB with a certain degree of drug
metabolism capabilities [3]. The brain capillary contains a wide range of neurotransmitter-
metabolizing enzymes, including cholinesterases, GABA transaminase, aminopeptidases,
and endopeptidases, as well as several drug- and toxin-metabolizing enzymes [4]. Thus,
the enzymatic blood-brain barrier protects the brain from circulating neurotransmitters as
well as from many toxins.

Considering the pivotal role the BBB plays in maintaining brain homeostasis and pro-
tecting the CNS, it is understandable that dysfunctions of the BBB can be prodromal to the
onset of neurological and spine disorders and/or the worsening of brain disorders. There-
fore, it is not surprising that an impairment of the BBB has been associated with severe and
detrimental outcomes in the context of many neurological disorders (see Figure 1) [2,5,6].
Since impairment of the BBB is closely linked to many CNS disorders, therapeutic targets
that aim to restore the BBB’s viability could be a feasible method to reduce the burden
of diseases and improve the outcome for a patient. Hence, this review highlights the
pathological conditions associated with dysfunction of the BBB and the therapeutic targets
currently exploited to promote BBB restoration.

Figure 1. Schematic illustration summarizing some of the major neurological disorders associated
with impairment of the BBB. Note that in some cases, there is a clear, direct causative association
where impairment of the BBB is the major prodromal factor for the onset and/or progression of the
CNS disorder (e.g., post-ischemic brain injury). In other instances, whether the BBB damage is the
causative factor or a derivate effect of the brain disorder further impacting the disease at a later stage
is less clear (e.g., Epilepsy).
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2. The Function of the BBB

The overall components of the BBB participate in maintaining a stable microenviron-
ment which is important for sustaining complex neural functions and protecting the CNS.
The BBB contains different ion channels and transporters, which help maintain the ionic
balance for synaptic signaling activity. Potassium (K+), magnesium (Mg2+) and calcium
(Ca2+) ions are regulated at the BBB and BCSFB [2,5,6]. For instance, the concentration of
potassium (K+) in mammalian plasma is around 4.5 mM. In contrast, in CSF and ISF, it is
approximately 2.5–2.9 mM, and it is not affected by external factors such as exercise, meal
intake, pathological state, or experimental condition [7,8].

Moreover, the BBB plays a pivotal role in sustaining brain nutrition through a plethora
of mechanisms. The BBB has a low passive permeability for water-soluble nutrients and
metabolites essential for the nervous tissue. On the other hand, specific transporters
present in the BBB allow for the transportation of other essential substances, for instance,
glucose and amino acids that cannot pass through the BBB. Expression of these selective
and region-specific (luminal and abluminal surfaces of the ECs) transporters ensures BBB
endothelium polarization [3,9]. Further, the BBB plays a significant role in regulating the
neurotransmitter in CNS by keeping the central and peripheral neurotransmitter pool
separated. Uncontrolled release of neurotransmitters such as glutamate into the brain CSF
during hypoxia in ischemic stroke conditions may cause severe and permanent neurotoxic
damage [3,10].

Additionally, the movement of macromolecules between blood and brain parenchyma
is controlled and maintained by the BBB. CSF contains a lower concentration of proteins
than in plasma as the BBB prevents the entry of macromolecules into the CNS. Different
plasma proteins, such as albumin, prothrombin, and plasminogen, may cause cellular
apoptosis, damaging nerve tissues [11–13]. Factor Xa converts prothrombin to thrombin,
and the tissue plasminogen activator converts plasminogen to plasmin. Both factor Xa
and the tissue plasminogen activator are present in the brain. Leakage of these large
macromolecular proteins into the brain through a disrupted BBB may result in severe
pathological consequences, including seizures, glial cell activation and division, scarring,
and cell death [13]. The BBB also serves as a shield to protect the CNS from various toxins
circulating in the blood. These toxic molecules can be endogenous proteins, metabolites, or
xenobiotics obtained through diet or environmental pollutants. If they gain entry into the
brain, they may compromise neuronal activity and/or promote cell death [2].

3. Structure of the Blood-Brain Barrier: An Overview

The development of the BBB begins during the fetal stage, and it is well constructed
by the point of birth, especially for macromolecules and proteins [14–21]. At the cellular
level, the BBB consists of microvascular endothelial cells (EC) lining the luminal walls
of brain microvessels alongside closely associated pericytes embedded within the basal
membrane and surrounded by astrocytic end-feet processes (see Figure 2) that support
EC’s phenotypic differentiation and the maintenance of BBB features [2,3]. The micro-
capillary endothelium is characterized by the expression of tight junctions (TJs), a lack
of fenestrations, negligible pinocytotic trafficking, and distinct asymmetrical distribution
patterns of the transmembrane transporters, which provides the BBB endothelium a cel-
lular polarization. The presence of TJs such as occludin (OCLN), claudin-5 (CLN-5), and
junctional adhesion molecules (JAMs) are important for the BBB. These interendothelial
junctions form a diffusion barrier that selectively prevents most blood-borne and xenobiotic
hydrophilic substances from entering the brain through paracellular routes, protecting it
from any undesired systemic and external influences [2,22]. Occludin and claudins are as-
sociated with cytoplasmic scaffolding and regulatory proteins called zona occludens (ZO-1,
ZO-2, ZO-3) and cingulin, which anchor the TJs to the actin cytoskeleton, provide signaling
functions, and guide the TJs in membrane distribution. In addition to TJs, the interen-
dothelial space also features junctional complexes, including the adherens junction (AJs)
and proteins such as cadherins. VE-cadherin (also known as Cadherin-5 or CD144) plays
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a particularly important role in the maintenance of cell-cell adhesion, contact inhibition,
cytoskeleton remodeling, intracellular signaling, BBB permeability (via the modulation of
CLN-5 expression [23]), and angiogenesis) [24]. Therefore, the loss of the AJ can lead to
a loss of BBB integrity and its increased permeability [23,25]. However, the function and
properties of the barrier do not entirely depend on the presence and expression of claudins
and/or OCLN but rather on the organization, distribution, and interactions of these TJs
with their homotypic counterpart on the adjacent cells [26].

Figure 2. Schematic illustration of the BBB anatomy. A cross-section of a brain microcapillary segment depicting the
innermost luminal compartment composed of a uniform layer of a tightly packed endothelial cell (EC) surrounded by
an additional envelope of pericytes (embedded within the basal membrane and astrocytic foot processes which tightly
ensheaths the brain microcapillary. The movement of substances across the BBB endothelium is controlled by a multimodal
barrier that includes tight junctions (gating barrier to paracellular diffusion of polar molecules); efflux transporters
(P-gp, MRPs, BCRP, etc.) with high affinity for lipophilic substances such as cytochrome P450 enzymes, MAO, etc.
(metabolic/enzymatic barrier).

Considering the intrinsic properties of the TJs physical barrier, the transport of water-
soluble nutrients (such as D-glucose, monocarboxylic acids, and essential amino acids)
from peripheral circulation into the brain parenchyma depends upon specific carrier-
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mediated transport systems with which the BBB endothelium is enriched, as summarized
below. Although BBB properties are a characteristic feature of the brain microvascular
endothelium, they are not intrinsic properties of the BBB endothelium. Rather, they are
primarily acquired through an endothelial interaction with the surrounding environment
during a process known as barriergenesis. Cellular cues derived from mural cells, immune
cells, glial cells, and neural cells, all of which are part of the neurovascular unit (NVU) [27]
during the various phases of brain development, are essential for the differentiation of the
vascular endothelium into a BBB phenotype.

3.1. Endothelial Cells (ECs)

The brain microvascular endothelium is distinct from other tissue ECs, allowing them
to tightly control the passage of ions, molecules, and cells between the blood and the
brain. ECs of the CNS microcapillaries are joined by tight junctions (TJs), that restrict the
paracellular transport of polar solutes [28–30]. Compared with the peripheral vascula-
ture, the BBB endothelium exhibits an extremely low transcytosis and vesicle-mediated
transcellular passage of solutes [31]. In addition, these microvascular endothelial cells
present a regional polarization of transport mechanisms (both qualitative and quantita-
tive) between the luminal and the basolateral side of the cell membrane so as to better
control the influx and efflux of substances to and from the brain [32,33]. Transcytosis is
an apical-to-basolateral vesicular-dependent intracellular transport mechanism and one
of the key features of BBB. Transcytosis in brain endothelial cells is partially responsible
for transporting several large molecules, including fatty acids and transferrin, across the
BBB [34,35]. Transcytosis activity is higher during the early development period in the
brain endothelial cells; however, it becomes dormant during the course of BBB maturation.
Therefore, the upregulation of transcytosis (increased intracellular vesicles in the brain
endothelial cells) is considered an early and precise indicator of BBB disruption [36,37].
Although it was previously assumed that changes in tight junction proteins primarily
facilitated BBB permeability, recent evidence obtained from mice and zebrafish suggests
that transcytosis is equally important in the regulation of BBB integrity [34].

Efflux transporters are primarily localized to the luminal surface of the BBB endothelial
cells. They include the P-glycoprotein (P-gp), breast cancer resistance protein (BCRP),
and multidrug resistance associate proteins (MRPs) such as MRP1, MRP3, MRP4, and
MRP6. Through the use of ATP hydrolysis, these transporters manage to drive their
potentially harmful amphipathic and hydrophobic substrates across the ECs membrane
back into the bloodstream against a concentration gradient, thus preventing them from
entering into the brain [38,39]. These transporters function in parallel with various enzymes
such as cytochrome P450s, monoaminoxidase (MAO), cholinesterases, catechol O-methyl
transferase (COMT), endopeptidases, aminopeptidases, etc., that further increase the ability
of BBB to remove/neutralize potentially harmful substances [3,40–43]. In contrast, other
specialized transporters (that are mostly ATP independent), belonging to the solute carrier
(SLC) superfamily, mediate the movement of small anionic and cationic molecules as well
as nucleosides and peptides across the BBB, but also remove waste products from the CNS
into the blood [44]. A brief overview of these transporters is presented here, although the
reader is referred elsewhere for a more detailed and comprehensive description [45].

Moreover, the BBB endothelium has a higher amount of mitochondria compared
to other vascular ECs. This is crucial to produce the necessary for ATP to support the
metabolic work capability of the BBB and provide the ion gradient required for some of the
transport functions [46]. Additionally, BBB ECs express very low amounts of leukocyte ad-
hesion molecules (LAMs including E- and P-selectins) required for leukocyte entrance into
the CNS across the endothelium [47,48], thus limiting the movement of immune cells into
the brain [49–51], which is a de facto an immune-privileged organ. However, an elevated ex-
pression of LAMs was observed in the setting of neuroinflammatory diseases [47,49,51,52].
For instance, the infiltration of T and B lymphocytes, neutrophils, and macrophages was ob-
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served at multiple sclerosis (MS) active injury sites. Moreover, the infiltration of neutrophils,
macrophages, and lymphocytes was reported in stroke [27,53].

3.2. The Basement Membrane

The endothelial vascular tube is surrounded by the following two types of basement
membranes (BM): the inner vascular basement membrane and the outer parenchymal
basement membrane. The inner vascular BM is composed of an extracellular matrix that is
secreted by endothelial cells and pericytes. On the contrary, the outer parenchymal BM
is secreted by astrocytic processes. These basement membranes are mainly comprised
of laminin, agrin, type IV collagens, nidogen, heparin sulfate proteoglycans, and other
glycoproteins. The vascular and parenchymal BM possess different isoforms of laminin.
The vascular BM is composed of laminin α4 and laminin α5, whereas the parenchymal BM
is comprised of laminin α1 and laminin α2 [54,55]. These basement membranes perform a
pivotal role in many signaling processes and act as an additional barrier prior to access to
the neural tissue. It is well acknowledged that matrix metalloproteinase enzymes (MMPs)
disrupt the basement membranes, resulting in BBB dysfunction at the onset of different
neurological disorders [27].

3.3. Astrocytes

Astrocytes are the most abundant cells in CNS and are responsible for the operation
of different physiological and biological functions, including, but not limited to, neural
parenchyma compartmentalization, pH regulation, ionic homeostasis, neurotransmitter
uptake, and processing and signal mediation from neurons to vasculatures [56]. Interest-
ingly, the glial/neuron ratio increases dramatically with brain complexity and volume (3).
At the level of arterioles and venules, astrocytes contribute to the cerebral blood flow
regulation through the release of vasoactive substances, thus modulating the vascular tone.
At the brain microvascular level, astrocytes promote the differentiation of cerebrovascular
endothelial cells to a BBB phenotype and contribute to the modulation of mature BBB
functions and activity such as the induction and maintenance of tight junctions [2,57,58].
In vitro studies have also revealed that markers related to the development of a func-
tional BBB, such as transferrin receptor, P-glycoprotein, gamma-GTP, etc., are typically
upregulated in endothelial cells when co-cultured with astrocytes [58,59].

Recently, studies have demonstrated the crucial role of astrocytic endfeet in brain
metabolism [9]. The communication between the astrocytes and the underlying micro-
capillaries occurs via the astrocytic endfeet, which ensheath the vascular tubes. These
endfeets contain various proteins, including dystroglycan, dystrophin, aquaporin 4 (Aqp4),
and the dystroglycan–dystrophin complex, which connects the endfeet cytoskeleton to
the basement membrane through its binding with agrin [60,61]. Aqp4 is coordinated by
this connection, which assists in maintaining cerebral water and ion homeostasis [27,62]
as well as neurotransmitter regulation [63]. In contrast, activated astrocytes can secrete
pro-inflammatory cytokines acting as inflammatory modulators and neurotoxins, causing
neuronal damage [64,65].

In vivo studies have shown that the BBB is already experiencing development before
the astrocytes envelop the brain capillaries; it has therefore been concluded that while astro-
cytes may not perform a significant role in the initial setting of BBB development, they enact
a crucial role in the modulation and maintenance of BBB integrity post-formation [27,66].

3.4. Mural Cells and Pericytes

The vascular smooth muscle cells surrounding the large vessels and pericytes are
known as mural cells. The pericytes are essential components of the brain capillary located
on the abluminal surface of the microvascular endothelial tube and are embedded in the
vascular BM [67]. They share a BM with endothelial cells, displaying a direct synaptic-like
peg-socket focal contact with endothelium through N-cadherin and connexins [68]. CNS
vasculature contains the greatest number of pericytes compared to other tissues with an
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approximate endothelial and its pericyte ratio is between 1:1 and 3:1 while the ratio is 100:1
for the muscle [69].

Pericytes are associated with different functions, including but not limited to main-
taining BBB integrity, angiogenesis, microvascular stability, the regulation of the capillary
diameter and cerebral blood flow, the deposition of the extracellular matrix, the regulation
of immune cell filtration, and the removal of toxic metabolites [68,70–73]. Additionally, peri-
cytes are crucial for regulating the formation of BBB during its development (Barriergenesis)
and maintaining its integrity and function during adult and senior stages [66,74]. More-
over, other studies have demonstrated that pericytes perform an important role in cerebral
autoregulation by expressing receptors for vascular mediators such as, angiotensin I [75],
catecholamine [76], vasopressin vasoactive intestinal peptides [77], endothelin-1 [78], and
vasopressin [79]. Different molecular identifiers, including PDGFR-β, NG2, Anpep (CD13),
desmin, Rgs5, Abcc9, Kcnj8, Dlk, and Zic1 Immune Cells have been used to distinguish
pericytes [68,80–82], although none of these are perfect identifiers of this cell type. It is
challenging to determine pericytes’ precise involvement and functional contribution due
to the lack of specific classification parameters (to define the exact type of pericyte) and
corresponding specific markers [27].

3.5. Immune Cells

The blood vessels in the CNS interact with different immune cells, both in the CNS
and in the blood. Perivascular macrophages and microglial cells are the principal immune
cells within the CNS. Macrophages are monocyte lineage cells derived from blood-borne
progenitors and reside on the vascular tube’s abluminal side [83,84]. These cells can
phagocyte cellular debris and act as the first line of innate immunity [27]. Multiple studies
have demonstrated that these cells can cross the BBB, and 80% of them are replaced within
three months [85–87].

Microglial cells reside in CNS parenchymal immune cells that are derived from
progenitors in the yolk sac and enter the brain during embryonic development [88]. These
cells regulate neuronal development, the innate immune response, and wound healing and
act as antigen-presenting cells in adaptive immunity [89,90]. Additionally, the interaction
of blood-borne immune cells (neutrophils, T cells, and macrophages) with CNS vessels
is also assumed to be integral for the maintenance of BBB integrity as they are capable
of increasing vascular permeability by releasing reactive oxygen species once they are
activated in response to an injury, disease condition or infection [91,92]. Therefore, it is
crucial to identify the underlying mechanism behind the activation of both immune cells
and the BBB and the interaction between the two to better understand the mechanisms that
cause BBB disruption across different neurological diseases [27].

4. Adrenergic System and BBB

Several studies performed during the 1990s demonstrated the influence of the adren-
ergic system on BBB permeability. An increased BBB permeability was observed due
to α-adrenoceptor activation either by the intracerebroventricular administration of ago-
nists [93] or through the electrical stimulation of the locus coeruleus [94]. Moreover, the
permeability of the BBB was facilitated by the blockade of the β-adrenoceptor. As a result of
the α-adrenoceptor blockade and β-adrenoceptor stimulation, decreased BBB permeability
became evident in various studies [95,96]. In all of these studies, alterations in the BBB
permeability were accompanied by changes in pinocytotic activity in brain microvessel
endothelial cells; however, the morphology of TJs remained unchanged [97].

5. BBB Dysfunction in CNS Disorders

The functional alterations of structural and cellular components in the BBB are respon-
sible for BBB disruptions. These alterations may include changes that occur in tight junction
expression, their distribution, and the local microenvironment that could be conducive
to the opening of TJs, transport systems, enzymes, and the disruption of the basement
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membrane, which may ultimately lead to serum components and immune cell infiltration
into the brain parenchyma, disrupt the CNS homeostasis and damage the surrounding
brain tissues. Several studies have demonstrated that the disruption of the BBB is related to
the onset and progression of various neurological and cerebrovascular diseases, including
stroke, traumatic brain injury, brain tumor, multiple sclerosis, Alzheimer’s and Parkinson’s
disease, epilepsy, edema, glaucoma, and amyotrophic lateral sclerosis. However, whether
the disease conditions result from BBB impairment or BBB disruption occurs due to the
disease pathology is still somewhat in dispute (for instance, in epilepsy). However, barrier
disruption is often observed and can contribute to and exacerbate the developing pathol-
ogy (see Table 1) [98]. We provide a summary overview of major CNS disorders and the
implication of BBB impairments below.

Table 1. Blood-Brain Barrier disruption associated with different disease conditions and potential therapeutic targets.

Pathophysiology of BBB Disruption Associated Diseases Therapeutic Targets Ref.

Upregulation of VEGF and Activation
of VEGFR2

ALS, AD, PD, epilepsy,
ischemic stroke

anti-VEGF antibody and VEGFR 2
inhibitor (e.g., SU5416) [99]

eNOS activation Stroke and TBI selective eNOS inhibitor (e.g., cavtratin) [100]

Upregulation of MMPs Schizophrenia, Stroke, and TBI Inhibition of MMPs (e.g., GM6001) [101]

Activation of endothelin receptors,
ETA, ETB

Stroke and epilepsy Inhibition of ETA and ETB (e.g., S-0139,
BQ788) [102–104]

Downregulation of VE-Cadherine MS, Stroke Inhibition of miR-27a/VE by CD5-2;
antibody against ICAM (Enlimomab) [105]

Disorganization of adherens junctions MS, Stroke Stabilize the adherens junctions using
sphingosine-1-phosphate (S1P) [106]

Reduced expression of TJ proteins Depression, Stroke, Stress,
Induction of TJs protein expression. (e.g.,
antisense oligonucleotide for miR-501-3p,

HDAC1 inhibitor, MS-275 -Entinostat)
[107,108]

Imbalance of AMP-activated protein
kinase pathway Stroke Activation of AMP-activated protein

kinase pathway by melatonin [109]

Activation or upregulation of
inflammatory cytokines e.g., TNF-β,

IL-1β, TNF-α and IL-6

Stroke, TBI, Cognitive
impairments,
Seizures, MS

Inhibition of inflammatory cytokines (e.g.,
etanercept, anti-IL-6 antibody,

and natalizumab)
[110–113]

Oxidative stress induction by
activation of NOX4 and NOX5 Stroke selective inhibition of NOX4 or NOX5

(GKT136901 and ML090) [114,115]

Contraction of actin-myosin
cytoskeleton via myosin light chain

Phosphorylation
Stroke Inhibition of RhoA/Rho-associated

proteins kinase (ROCK). e.g., fasudil [116,117]

Upregulation of MMPs Stroke, TBI and Schizophrenia Inhibition of MMP2/9
(e.g., SB-3CT) [118]

5.1. Stroke

Stroke is the leading cause of permanent disability and is associated with various
comorbidities such as hypertension and hyperglycemia [119]. Around 86% of stroke in-
cidents are ischemic and are a result of the interruption of the blood and oxygen supply
to a particular brain region [90], leading to a series of interrelated pathophysiological
cascades that include but are not limited to BBB impairments [120,121]. The BBB’s dis-
ruption appears to start immediately after vessel occlusion and continues after the stroke
event for an extended period [122]. However, it is not yet clear if the BBB disruption is
the cause or the consequence of the post-stroke injury [123]. It has been observed from
different experimental studies that hypoxia-ischemia conditions can affect the BBB by
disrupting the TJs and damaging endothelial cells, resulting in increased permeability [124].
The TJs ensure a low paracellular permeability, ultimately preventing the occurrence of
unwanted ion fluxes and paracellular diffusion across the BBB [125]. However, during
ischemic stroke, the degradation of TJs occurs in a multistep and time-dependent way,
comprising several signaling mechanisms [126]. In healthy conditions, the stability of
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TJ is maintained by anchoring the tight and adherens junctions (AJs; e.g., cadherin) to
the actin cytoskeleton through tight junction-associated proteins such as ZO-1, ZO-2 and
ZO-3 that act as linkers. The actin-myosin cytoskeleton is distributed in the form of short
filaments and diffuse monomers between the endothelial cells. However, when subjected
to hypoxic stress, the actin filaments polymerize into linear stress fibers, and the actin-
myosin cytoskeleton contracts via myosin light chain phosphorylation, resulting in an
increased cytoskeletal tension, the deterioration of the junction seals, and an increased
BBB permeability [127–129]. Decreased expression levels in TJ transmembrane proteins (oc-
cludin, claudins, zona occludens, and junction adhesion molecules) has also been observed
in stroke brains [125,126].

Pericytes, which constitute a functional component of NVU, closely interact with the
capillary and venule endothelial cells via paracrine signaling and physical contact [130].
Pericyte plays a critical role in BBB maintenance due to its contractile, inductive, structural,
and regulatory properties [131,132]. During an ischemic stroke, blood vessel constriction
and a loss of pericytes occur, leading to a decreased cerebral blood flow and the loss of BBB
integrity. It has been reported that during the hypoxic phase of an ischemic stroke, pericytes
migrate from their original microvascular location, thereby impairing the viability of the
BBB [131]. Moreover, an in vivo study in mice stroke models reported that the pericyte-
derived vascular endothelial growth factor (VEGF) promotes the loss of BBB integrity in
favor of angiogenesis following a stroke event [133]. VEGF is a crucial proangiogenic factor
that stimulates endothelial cell proliferation, and its migration has been found to produce
beneficial effects when administered before or after a stroke occurrence [134–136]. However,
if VEGF is administered during the post-stroke acute phase, it can promote a leakage in
BBB and cause a cerebral hemorrhage, resulting in an increased infarct volume [136].

Astrocytes, another crucial component of the NVU, participate in the maintenance
of the BBB. However, they can also promote BBB disruption during an ischemic stroke.
Astrocytes perform a dual role, depending on the phase of ischemia. During the acute
phase, astrocytes are activated and secrete proinflammatory cytokines, inhibiting axonal
generation, thus producing harmful effects. In contrast, astrocytes can perform a protective
role during the chronic phase by participating in neurite sprouting, synapse formation,
neurotrophic factor secretion, and rebuilding the BBB [137,138].

These events may be mediated by the release of soluble factors, such as cytokines,
vascular endothelial growth factor (VEGF), and nitric oxide (NO). Higher levels of pro-
inflammatory cytokines, including IL-1β, and TNF-α have been reported in animal brains
after focal and global ischemia [139] and in the CSF of stroke patients [140]. It has also been
observed, in vitro, that ischemic conditions can induce the secretion of IL-8 and monocyte
chemoattractant protein-1 (MCP-1) in astrocyte and endothelial cells [141]. Another study
has demonstrated that human astrocytes release inflammatory mediators under hypoxia,
resulting in the upregulation of IL-8, ICAM-1, E-selectin, IL-1 β, TNF-α, and of MCP-1
genes in human cerebrovascular endothelial cells. The elevated level of cytokines upreg-
ulates endothelial and neutrophil adhesion molecules, resulting in the transmigration of
leukocytes across the endothelium and the BBB. The recruitment of leukocytes is character-
ized by increased phosphotyrosine staining, decreased TJs proteins, and the redistributed
AJs protein (vinculin), indicating BBB disruption [142].

Additionally, Mark KS et al. reported that under hypoxic conditions, sucrose perme-
ability across primary bovine brain microvessel endothelial cells increased by more than
2.5 folds along with elevated expression of actin and altered the distribution of OCLN,
ZO-1, and ZO-2 proteins [143]. Collectively, these experimental findings suggest that
hypoxia-ischemia conditions can trigger the disruption of TJs and the loss of BBB integrity
through a cascade of events involving VEGF, cytokines, and NO.

5.2. Multiple Sclerosis (MS)

Multiple sclerosis is an autoimmune disease in which reactive T cells interact with the
antigen presented by macrophages- or microglia-expressing HLA-DR2a and HLADR2b. It
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leads to the destruction of the myelin sheath and the underlying axons [144]. NO, and vari-
ous cytokines (interferon-γ, TNF-α, and IL-3), secreted by activated macrophages, damage
oligodendrocytes and interfere with myelination and myelin gene expression [145,146].
Moreover, elevated amounts of reactive oxygen species (ROS) have been detected in MS
lesions, leading to brain damage and contributing to several mechanisms underlying the
pathogenesis of MS lesions [147]. As radiographic and histopathological evidence sug-
gests, BBB disruption is one of the initial critical steps in multiple sclerosis. Radiographic
analyses displayed Gd enhancing lesions; markers of BBB disruption are related to the
active inflammation in the lesions and are considered an important diagnostic marker of
MS [148].

Additionally, histopathological studies have revealed the origination of the myelin
breakdown around parenchymal blood vessels [149]. Since BBB disruption creates a
gateway for the entrance of inflammatory infiltrates into the perivascular space, it is
hypothesized that a loss of BBB integrity could be one of the initial critical events in the
lesion formation. This hypothesis is supported by evidence, such as the deposition of
fibrinogen (a marker of endothelial permeability) [150], followed by a high infiltration of T
cells in the demyelinated foci. TJs abnormalities, including the loss of claudin-3 [151,152],
were also observed in the relapsing-remitting and progressive stages of MS, suggesting the
opening of paracellular routes [148]. Furthermore, the failure of upregulating AQP4 and
the retraction of astrocytic end-feet from the glia limitans [148] and the degradation of the
basement membrane protein laminin [123] were both observed in MS, further inducing the
loss of BBB viability.

5.3. Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder characterized by
the progressive loss of the upper and lower motor neurons (LMNs) at the spinal or bulbar
level [153]. It has been reported, in different studies, that the disruption of the BBB is associ-
ated with the loss of motor neurons, neuroinflammation, and motor impairment [154–156].
Oxidative stress performs a crucial role in the degeneration and dysfunction of motor neu-
rons and astrocytes [157]. ROS generation in motor neurons, which results from excitotoxic
activation, can induce the oxidative damage of glutamate transport in the surrounding
astrocytes, resulting in increased excitatory stress, thereby promoting an ALS develop-
ment [158,159]. Aqp4 and inward rectifying potassium channels (Kir) are essential for
maintaining functional BBB astrocyte lining. In the ALS model, the ability of astrocytes to
maintain the homeostasis of the surrounding environment is disrupted, and this imbal-
anced homeostasis negatively impacts the BBB viability, promotes neuronal dysfunction,
and ultimately, neuronal cell death [159,160]. Several in-vivo studies have demonstrated
the breakdown of BBB in a SOD1-G93A animal model for ALS [161–165]. This transgenic
mouse model expresses the human SOD1 corresponding to the G93A mutation under the
control of the cistronic human SOD1 promotor. Mutations in this gene have been linked to
the onset of familial ALS (or Lou Gehrig’s disease), whereby the animals develop paralysis
in one or more limbs within a few weeks of age.

Moreover, BBB abnormalities were also discovered in a postmortem study of an
ALS patient [166]. Miyazaki et al. reported that MMP-9 activation in ALS patients and
ALS animal models resulted in BBB damage prior to motor neuron degeneration. Addi-
tionally, there was a lack of association between the PCAM-1-positive endothelium and
GFAP-positive astrocyte foot processes in patients and in vivo [154]. A direct correlation
was observed between the CSF homocysteine increment and BBB disruption in ALS pa-
tients [167]. Another study also reported the astrocytic downregulation of the morphogenic
protein sonic hedgehog, which resulted in an interleukin-1β mediated disruption of the
BBB [168]. The same study also reported that the IL-1β mediated the upregulation of CCL2,
CCL20, and CXCL2, which are pro-inflammatory chemokines that can facilitate immune
cell migration, leading to BBB disruption and neuroinflammation. The involvement of
TARDBP (a gene encoding for a protein called transactive response DNA binding protein
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43 kDa—TDP-43, which regulates gene transcription) and angiopoietin (ANG) genes muta-
tion in poor BBB integrity and neuroinflammation in ALS patients has also been proposed
in another study [169]. Endothelial damage and/or impaired endothelium repair have also
been proposed as causative factors for ALS onset [170].

5.4. Traumatic Brain Injury (TBI)

Traumatic brain injury or TBI is caused by the impact of direct or indirect external
mechanical force to the brain, for instance, motor vehicle accidents, falls, assaults, sports-
related incidents, etc. [171]. Almost 2.5 million people in the US require emergency care
each year, and more than 5.3 million people live with a long-term disability caused by
TBI [172–174]. The pathophysiology of TBI can be divided into two stages: primary or
immediate injury and secondary or delayed injury [175,176]. The primary trauma includes
acute pathological changes such as a shearing injury, hematomas, and contusions. The
secondary injuries include oxidative stress, inflammation, cerebral edema, excitotoxicity,
altered vascular permeability, altered calcium homeostasis, and BBB disruption [171].
Among these abovementioned pathophysiological consequences, disruption of the BBB
as mediated by inflammation plays a significant role in the progression of brain injury
and long-term neurological deficits associated with TBI [177]. The disruption of BBB is
one of the notable pathophysiological features of TBI as related to neuroinflammatory
events, which may result in brain edema and cell death. It has been observed that during
or post-TBI, astrocytes and microglia can rapidly respond to injury through increased
levels of multiple biological effects, which may also affect BBB function [178]. BBB integrity
and low paracellular permeability are maintained through the presence and binding of
inter-endothelial TJs between adjacent cells. TBI can cause endothelial cells to become
damaged by disrupting blood flow, altering tight junction protein expression and the basal
membrane, thus disrupting BBB integrity and increasing the paracellular permeability of
the barrier [171,179]. Studies have shown that BBB disruption after TBI triggers leukocyte
recruitment, inflammatory cell migration, proinflammatory cytokines, and ROS release.
The generation of ROS related to TBI can further damage the BBB and mechanical trauma
by promoting lipid peroxidation, protein backbone fragmentation, and DNA damage if
it remains unchecked [171]. BBB disruption after TBI also stimulates the activation of the
coagulation cascade, leading to the formation of intravascular blood clots and subsequent
ischemia [175].

Alteration of the BBB following TBI occurs via two steps; the first step occurs within
4–6 h of tissue injury, and the second step occurs three days post-injury, affecting the
cortex and the ipsilateral hippocampus [180]. Habgood et al. reported the passage of
small and large molecules inside the brain after TBI, indicating the breakdown of the BBB.
However, the loss of BBB integrity was temporary, as evidenced by the restoration of
the BBB restriction of large and small molecules within 4–5 h and five days post-injury,
respectively [152]. However, the findings of this study contrast with those of another
group of researchers, indicating that restoring the BBB may require a significantly longer
period of up to several years [181]. A recent study has demonstrated several inflammatory
mechanisms behind BBB breakdown in mild traumatic brain injury (mTBI or concussion,
the most common type of TBI) and hypertension [182]. Oxidative stress has been identified
as the main cause of BBB impairment in the sub-acute stages of blast-induced traumatic
brain injury (bTBI). Moreover, MMP activation after bTBI can also lead to the oxidative
stress-mediated loss of BBB integrity caused by NADPH oxidase [183]. VEGF, MMP, NO,
glutamate, and endothelin-1 are specific promoters in the loss of BBB integrity that have
been associated with post-TBI astrocyte activation [184]. CSF/serum albumin ratio [185],
TJs proteins [186,187], S100β [188,189], and plasma-soluble prion protein (PrPc) [190,191]
are, conversely, potential biomarkers that have been associated with BBB disruption.

As suggested by a recent study, chronic traumatic encephalopathy (CTE) is also a
neurodegenerative disorder related to repeated mTBIs, underlying the association between
CTE development and concussive injuries in athletes and military personnel. However,
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the underlying molecular pathobiology of CTE is not well understood [192]. Markedly
discontinuous or the absence of CLN-5, ZO-1, and BBB-associated tight junction com-
ponents were observed in the regions of the perivascular p-Tau deposition, alongside
immunohistochemical evidence of a damaged BBB [192]. Moreover, BBB disruption in
the regions of the perivascular p-τ deposit has been reported in CTE and schizophrenia-
diagnosed professional boxers. This p-τ deposition resulted in the loss of CLN-5 and
increased extravasation of endogenous blood components such as fibrinogen and IgG [193].
Furthermore, the correlation between caspase-3-cleaved tau accumulation and the upregu-
lation of cleaved-caspase-3 following chronic TBI suggests the involvement of apoptosis
and neuroinflammation in the delated disruption of BBB following TBI [194].

5.5. Alzheimer’s Disease (AD)

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized
by memory impairment [195]. Amyloid β (Aβ) is one of the major constituents of the
amyloid plaque found in brain regions of patients with Alzheimer’s disease. The impair-
ment of the BBB has been correlated with the pathogenesis of AD, where elevated levels
of Aβ deposition and accumulation negatively affect the barrier integrity [195]. However,
various studies have also demonstrated that BBB dysfunction plays a crucial role in gener-
ating Aβ [195–197] by activating β-secretase and γ-secretase [196,198]. At the BBB level,
the receptor for advanced glycation end products (RAGE) is considered the prominent
transporter of beta-amyloid into the brain from the systemic circulation.

In contrast, the low-density lipoprotein receptor-related protein (LRP)-1 carries the
beta-amyloid in the opposite direction and out of the brain. A study of elderly human
control and the AD hippocampi revealed the upregulation of RAGE receptors at the
microvascular level while LRP-1 expression was downregulated in AD compared to the
controls. The opposite pattern of expression was observed at the neuronal level [199].
The results from this study strongly support the proposition that changes in the relative
distribution of RAGE and LRP-1 receptors affecting the brain microvasculature and neurons
are a prodromal feature of AD. This study also suggests that a significant proportion of the
amyloid accumulating within the brain is likely to originate from systemic circulation.

Additionally, changes and dysfunction in the BBB structural components, including
pericytes, glial cells, vascular endothelial cells, the basement membrane protein (argin),
and TJs, have been associated with an increased risk of AD [199]. Additional studies have
also demonstrated that AD is associated with a decreased level of the glucose transporter,
GLUT-1 [200], and p-glycoprotein [201]. Other features of AD, such as neuroinflammation
and oxidative stress, both promoting BBB dysfunction, can reinforce the pathogenic cycle,
thereby associating BBB alteration with the onset and progression of the disease [202–204].
However, additional studies are necessary to better dissect the pathogenic cascade leading
to the onset of AD and to determine whether and to what measure BBB dysfunction acts as
a causative factor or a derived effect that further contributes to the progressive worsening
of the disease. For more detailed and extensive information on the subject, we refer the
readers to recently published literature [205,206].

5.6. Parkinson’s Disease (PD)

Parkinson’s disease (PD) is a cognitive disorder that causes movement dysfunction. It
is associated with multiple pathologic characteristics, including the formation of certain
proteinaceous inclusions inside neurons, known as Lewy Bodies, and the loss of dopaminer-
gic neurons in the Substantia Nigra pars compacta [207]. Although PD is related to multiple
gene mutations, they are not isolated factors in promoting the onset of PD. Furthermore,
the disease is thought to be related to a range of polygenetic and environmental cues. For
example, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a lipophilic compound
and crosses the BBB easily, that has been found to induce symptoms and the pathology
of PD in the case of in vivo models [208]. Furthermore, a reduced P-gp function at the
BBB has been observed in PD patients suggesting that a dysfunctional BBB may act as a
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causative mechanism in the onset of the disease [209,210]. Additional observations have
revealed systemic vascular inflammation in PD patients [211], which may also harm the
BBB; however, evidence of increased BBB permeability in PD patients is still lacking.

5.7. Huntington’s Disease (HD)

Huntington’s disease (HD) is an autosomal dominant inherited invariably fatal dis-
order that results from the expansion of glutamine residues in the HTT gene encoding
for a protein called huntingtin (htt) as a result of a mutation in CAG—a trinucleotide
repeat that exceeds its usual range [212]. The protein function is not completely under-
stood but has been implicated in axonal transport [213] as well as in the transcription of
the brain-derived neurotrophic factor (BDNF) that is produced by cortical neurons and
promotes the survival of striatal neurons in the brain [214]. This protein contains between
6–35 glutamine residues in its standard form, but in individuals affected by Huntington’s
disease, it presents more than 36 glutamine residues. The mutant huntingtin protein
is ubiquitously expressed, but only certain brain regions such as the hypothalamus are
affected. The reason as to why only selected neurons are affected by the disease is still
unknown. However, hypothalamic changes in HD impacting the regulation of metabolism,
sleep, and emotional responses can be considered an early manifestation of the disease.
HD is characterized by the loss of neuronal cells with typical phenotypic features in pa-
tients, such as a compromised cognitive function, personality disorder, and hyperkinetic
movements over the progression of the disease [215]. BBB disruption has been observed in
the in vivo model of HD. Post-mortem tissues from human patients also presented similar
morphological changes [216,217]. However, the causative implication of BBB impairment
in HD is not well understood. A major challenge in HD research is presented by the lack of
an appropriate rodent model to reproduce the neurodegeneration and disease progression
features observed in human subjects [218,219].

5.8. Brain Tumor

Brain tumors have been proved to negatively impact BBB integrity and permeability
while promoting the formation of a blood-tumor barrier (BTB) that is highly heterogeneous
and characterized by numerous distinct features, including non-uniform permeability and
the active efflux of molecules [220,221]. Studies have shown that around 30% of brain
tumors are metastatic and derive from lung cancer, breast cancer, and melanomas [222].
Different studies have demonstrated the breakdown of inter-endothelial TJs in gliomas and
metastatic adenocarcinoma in humans [223]. The downregulated expression of TJ proteins,
CLN-5, OCLN, and CLN-1, have been observed in the brain microvessels of patients with
glioblastoma multiforme even though the expression of ZO-1 (a scaffold protein that cross-
links and anchors the TJ strand proteins to the cell cytoskeleton), remained unaltered [217].
The explanation behind the loss of TJs in the microvessels of brain tumors remains elusive.
Still, the role of VEGF and the cytokines produced by the tumor cells certainly play a
significant role in the elevated BBB vascular permeability and the formation of cerebral
edemas [22,224]. The latter has also been linked to the substantial upregulation of AQP4 in
various brain tumors, including astrocytoma and metastatic adenocarcinoma, and has is
correlated with the opening of the BBB [225]. Several in-vivo studies using brain edema
models have shown that mice that lack AQP4 have better survival rates than wild-type mice.
AQP4 upregulation was also reported in rat models of brain injury and ischemia [226,227].
Although the brain is highly impermeable to cancerous cells, preventing their passage into
CNS, BBB disruption is likely to provide a gateway for metastatic tumor cells to enter the
brain parenchyma.

It has been demonstrated that BBB/BTB structural integrity is heterogeneous with
respect to metastatic lesions and tumor types [220]. For instance, the fenestration of BBB ECs
differs between four molecular subtypes of medulloblastoma, which consequently affect
the transcytosis of drugs across the BTB and their therapeutic efficacy [228]. Moreover,
the extent of BBB properties and its function can vary among brain metastases across
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different subtypes of breast cancer. A higher level of GLUT1 and BCRP expression has
been observed in human epidermal growth factor receptor 2 (HER2)-positive breast cancer
brain metastases compared to other subtypes [229]. In addition, the heterogeneity of
BTB permeability has been observed in several pre-clinical studies [220]. For instance,
the center of the tumor displays a higher level of leakiness compared to the peritumoral
region and the surrounding brain microenvironment. A higher distribution of liposomes
containing doxorubicin within the tumor was found in the intracranial GBM8401 glioma
model relative to the surrounding brain tissue [230].

5.9. Septic Encephalopathy

Sepsis-associated encephalopathy (SAE) is a poorly understood diffuse brain dysfunc-
tion that occurs frequently and is secondary to systemic inflammation without an overt
CNS infection. SAE is frequently diagnosed in patients with a severe systemic infection
(70% of cases) and those in critically ill conditions who recovered in intensive care units.
The exact pathophysiology of SAE is unknown, but it appears to encompass a variety of
pathogenic mechanisms, including endothelial dysfunction, reduced cerebral blood flow
and oxygen extraction in the brain tissue, circulating inflammatory mediators, and cerebral
edema. This cascade of events results in activation of microglial and brain endothelial cell,
TJs downregulation, and increased leukocyte recruitment. Thus, the resulting neurovascu-
lar inflammation and the BBB dysfunction exacerbate SAE pathology, leading to neuronal
degradation and cell death and aggravating sepsis-induced brain dysfunction [231]. BBB
breakdown in septic encephalopathy was assessed through a rodent model, using multiple
BBB permeability markers such as colloidal iron oxide [232], 14C amino acid [233], and
125I-albumin [234]. Increased pinocytosis, their detachment from microvessel walls, dark
and shrunken neurons, and the swelling of astrocytes end-feet are pathogenic features
associated with BBB disruption as presented in these animal models of septic encephalopa-
thy [231,232]. The involvement of the adrenergic system during the inflammatory response
to sepsis, including the suppression of β2 adrenoreceptor stimulation and stimulation
of α1 adrenoreceptor, potentially initiate the inflammatory cascade leading to the loss of
BBB integrity [235]. Further information regarding the pathogenic mechanisms of BBB
dysfunction in sepsis can be found elsewhere [236,237].

5.10. Hepatic Encephalopathy (HE)

Hepatic encephalopathy (HE) is a complex and potentially reversible neuropsychiatric
disorder resulting from acute or chronic liver failure and is characterized by drowsiness,
confusion, asterixis, extrapyramidal hypertonia, convulsion, and coma [238,239]. HE re-
sults from the impaired ability of the liver to metabolize neurotoxins, particularly ammonia,
leading to several psychiatric/neurological deficits [238]. Association between a disrupted
BBB and HE pathogenesis has been reported in several studies. Intact BBB has been ob-
served in HE [240]; however, positron emission tomography studies have demonstrated an
increased permeability of the BBB surface area to ammonia [238]. Additionally, alterations
in the expression of genes coding for endothelial nitric oxide synthase and tight junction
proteins in rat brain at coma/edema stage of encephalopathy with hepatic devasculariza-
tion have been reported [241]. Moreover, an increased level of neurotoxin ammonia has
been reported to be associated with edema and an altered morphology of astrocytes to
Alzheimer’s type II astrocytes in the basal ganglia of patients with HE. This neurotoxin has
been found to cause a decreased expression level of TJ CLN-12 [242]. McClung reported
that ammonia exposure causes increases in the effective pore size of the BBB under cer-
tain conditions [243]. These studies indicate the potential influence of BBB breakdown in
HE pathogenesis.

5.11. HIV Encephalitis

The activation of astrocytes and macrophages has been associated with an infection
of the human immunodeficiency virus (HIV) in the CNS. Different types of cytokines,
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chemokines, reactive oxygen species, and several neurotoxins released by activated as-
trocytes and macrophages alter neurotransmitter activities and disrupt cellular function,
promoting neuronal dysfunction and leukoencephalopathy [244]. In addition to TNF-α,
other factors, including NO, arachidonic acid, platelet-activating factor, and quinolinic acid,
contribute to pathology. TNF-α, mainly released by HIV-infected macrophages, affects
oligodendrocytes [245]. Even though the mechanism of virus entry into the CNS is still
not clear, once the virus permeates the brain, it impairs the BBB integrity and facilitates
a further viral load into the CNS. For instance, serum proteins were present in the brain
parenchyma of patients with HIV-associated dementia [246].

Additionally, the presence of fragmented or reduced levels of TJs expression such as
ZO-1 and OCLN was observed in the brains of deceased patients with HIV-1 encephali-
tis [247]. The extravasation of albumin and the overexpression of ICAM-1 and VCAM1
were also observed in the gp120 transgenic mice model of HIV. Circulating gp120 is thought
to negatively affect the integrity of the BBB [248,249]. Similar studies have also reported
the cytotoxic effect of gp120 on the ECs of the brain microvessels, which could be respon-
sible for a higher expression of metalloproteinases and/or induced oxidative stress, thus
impacting the BBB viability [250,251].

Despite treatment with antiretroviral therapy, HIV-1 associated dementia (HAD) and
cognitive impairments have been observed in HIV patients [252,253]. An imbalance be-
tween the matrix metalloproteinase (MMPs) and the tissue inhibitors of metalloproteinase
(TIMPs) have been identified as the prodromal factors responsible for BBB disruption and
HAD pathogenesis in HIV-1 patients [254]. It has also been demonstrated that HIV-infected
cells release viral proteins such as gp120, Tat, and Nef and inflammatory cytokines and
chemokines, decreasing BBB integrity and viability [255].

5.12. Epilepsy

Several studies have reported on the association between BBB disruption and epilepsy.
BBB disruption is a causative factor and/or consequence of epilepsy [256]. Studies have
shown that seizure activity can cause a dysfunction of the BBB [257–261]. Contrastingly,
ample evidence suggests that BBB disruption can result in epilepsy or aggravate the
epileptic condition [262–270]. An opening of the BBB has been observed following a
seizure, and is probably associated with acute hypertension [271–273]. The disruption of
the BBB has also been observed after traumatic brain injury (TBI), status epilepticus (SE),
and temporal lobe epilepsy (TLE). It has been reported that a widespread BBB leakage
occurs within minutes of post-SE, which can last from several hours to days [262,274–283],
suggesting the disruption of BBB to be a consequence of epilepsy or seizure [256].

Additionally, a leakage in BBB has been observed in epileptic patients with contrast-
enhanced MRI [284–286]. An analysis of brain tissue collected from epileptic patients
also demonstrated an elevated albumin level in the brain parenchyma, suggesting blood-
to-brain extravasation of large molecules [287,288]. Furthermore, the downregulation of
regional GLUT-1 and a decreased uptake and metabolism level have been observed from
patient samples in different studies [287,289,290].

It has been observed that BBB disruption may be epileptogenic or may contribute to
the occurs of seizures. Several studies have demonstrated that BBB permeability is most
evident during the acute phase, occurring soon after SE, although it extends into the latent
phase in experimental models [191,262,274,275,277]. Interestingly, intense BBB leakage has
been identified during the acute and latent phases without spontaneous seizures. This result
indicates that BBB disruption does not induce seizures immediately but possibly performs
a significant role in epileptogenesis. Similarly, significant BBB disruption was detected
directly after TBI; however, seizure activity was only observed at later stages [268–270].
BBB disruption partnered with osmotic shock may also result in seizures in patients [291].
Moreover, several diseases with a disrupted BBB, including stroke, TBI, infection, and
inflammation, may result in epilepsy and seizures [262,292]. Patients with a GLUT-1
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deficiency have also developed epilepsy, suggesting the BBB transporter as crucial to
maintaining normal brain function [293,294].

Several experiments have reported the extension of BBB disruption into the chronic
phase of epilepsy [191,262,274,275,277]. Quantitative measurement of BBB disruption
has revealed the gradual reduction of BBB leakage during epileptogenesis in most brain
regions; however, leakage can continue for weeks or months after the initial insult in the
ventral brain regions in epileptic rats, although to a lesser extent than during the acute
phase [262,277]. Moreover, the disruption of BBB has been observed in the resected brain
tissue of patients with drug-resistant epilepsy, for which the loss of BBB integrity was
detected through albumin immunohistochemistry [256]. A positive correlation has been
observed between BBB leakage and the severity of a seizure in epileptic rats during the
chronic phase [262]. It has been reported that the opening of the BBB by mannitol in chronic
epileptic rats resulted in a stable and progressive increase in the seizure frequency [262].
Because these events do not occur instantaneously but over a more extended period,
it is possible that gradual changes after BBB disruption may result in a lower seizure
threshold but an increased seizure frequency. Similar results have been observed in several
studies in patients with post-traumatic epilepsy. A long-lasting focal increase in BBB
permeability has been reported and associated with abnormal EEG activity and a reduced
cerebral blood flow [268–270]. Similarly, a greater level of active spiking is observed in the
resected epileptogenic foci of the disrupted BBB (characterized by albumin extravasation)
in comparison to albumin, which is less extravasated regions [289]. Collectively, these data
indicate a relationship between the occurrence of seizures and BBB leakage, suggesting
that BBB impairments can further propel epileptogenesis and the progression of (already
established) epilepsy in an already diseased brain [256].

5.13. Schizophrenia

The disruption of the BBB has been related to forms of psychosis such as schizophrenia.
A weak relationship has been observed between schizophrenia and the TJ protein, claudin
5. Around 30% of schizophrenic patients have 22q11 deletion syndrome (22q11DS) and
are CLN-5 haploinsufficient. Furthermore, it has been demonstrated through in vivo
studies that the adeno-associated virus-mediated inhibition of CLN-5 results in the BBB’s
disruption and abnormal behavioral outcomes. Experimental in vitro and in vivo studies
have revealed a dose-dependent upregulation of CLN-5 expression after treatment with
antipsychotic medications. However, a discontinuous expression of CLN-5 was observed
in schizophrenic patients relative to the age-matched controls when their post-mortem
brain samples were analyzed [295].

Additionally, it has been reported that the overall severity of schizophrenia (OSOS)
and single group negative symptoms are related to BBB disruption [296]. The correlation
between deficit schizophrenia and leaky BBB has been studied. It has been concluded
that deficit schizophrenia results from BBB dysfunction, secondary to the breakdown of
paracellular and vascular pathways [297].

5.14. Meningitis

The disruption of the BBB may enhance the transportation of various compounds
inside the brain by altering permeability and may cause meninges inflammation [298].
A recent study has reported that meningitic E. coli can induce PDGF-B and ICAM-1
for in vitro and in vivo models. An increment in the PDGF-B and ICAM-1 potentially
contributes to breaking the BBB and neuroinflammation by downregulating TJ proteins
and recruiting neutrophils or monocytes, respectively [299]. Besides, microglia perform a
vital role in triggering neuroinflammation by releasing chemokines and cytokines, which
ultimately results in the infiltration of white blood cells through a vascular endothelium in
the BBB and thereby disrupts BBB integrity [300].
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6. Biological Targets for Restoring BBB Viability

The neurovascular unit (NVU) consists of endothelial cells, astrocytes, and pericytes
where tight junction (TJ) related proteins including CLN-5, OCLN, and ZO-1 are present in
the cellular membrane of endothelial cells [301,302]. These tight junction-associated proteins
ensure that the adjacent endothelial cells are tightly bound and control the movement of
molecules between the intra- and the extra-vascular spaces of BBB [302]. Various kinds of brain
damage can trigger different molecular pathways, which can ultimately disrupt the integrity
of BBB [303–305]. Some of the prominent molecules related to BBB disruption include, but
are not limited to, vascular endothelial growth factors (VEGFs), matrix metalloproteinases
(MMPs), and endothelins (ETs) [306,307]. The interaction between microglia and astrocytes
can negatively impact the integrity of the BBB and can promote neuroinflammation, which
is of particular interest to this study. Microglia and astrocytes, which are part of the NVU,
are activated by various brain insults within a pro-inflammatory phenotype (M1 and A1).
Microglial cells, which are more sensitive to pathogens or damage, are the first to activate (into
the pro-inflammatory M1 phenotype) and produce pro-inflammatory mediators, including
tumor necrosis factor (TNF), interleukin 1 beta (IL-1β), and a reactive oxygen species (ROS)
which then triggers the reactive astrocytes into the A1 pro-inflammatory phenotype. In
this inflammatory active form, A1 astrocytes begin releasing various chemokines (which
sustain a self-feedback loop of microglial activation), MMPs (which degrade the extracellular
matrix), and VEGF-A, which directly impact BBB integrity by disrupting CLN-5 and OCLN
TJs, thereby inducing he breakdown of BBB and immune cell infiltration [100,308] (see also
Figure 3). Studies have also reported that the inhibition of these factors may restore BBB
integrity (see Table 1). The potential benefits of targeting this factor for the restoration of BBB
integrity is further discussed below:

Figure 3. Schematic illustration summarizing the effects of brain damage on BBB integrity. The
production and activation of MMPs, VEGFs, and ETs are upregulated in various brain cells following
brain damage. These factors can then impair the viability and integrity of the BBB by negatively
impacting the tight junctions between adjacent endothelial cells.
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6.1. VEGFs

VEGFs are a well-known group of angiogenic factors that include VEGF-A, B, C,
and D. VEGFs promote the proliferation and migration of endothelial cells and enhance
the permeability of newly formed BBB with the assistance of VEGF-specific receptors
(VEGFR-1, VEGFR-2) [309,310]. Brain damage has been found to upregulate the expression
of VEGF both in experimental animal studies [311–313] and in post-mortem patients with
brain damage [314,315]. One of the mechanisms of VEGF-mediated BBB disruption is
related to the downregulation of CLN-5 and OCLN expression, which is associated with
VEGF upregulation in astrocytes [316]. Subsequent studies by the same group have also
shown that the inhibition of astrocytic VEGF-A reduced the BBB breakdown, lymphocyte
infiltration, and inflammatory damage in a mouse.

Additionally, treatment administered using cavtratin, a selective eNOS inhibitor,
protected against neurologic deficits in an MS mouse model and reduced VEGF-A-induced
BBB disruption [100]. Similarly, treatment administered using an anti-VEGF antibody
restored the BBB, leading to improved BBB selective permeability, reduced cerebral edema,
and reduced infarct volume after an ischemic stroke in mice [317]. Furthermore, treatment
with the VEGF receptor 2 (VEGFR-2) inhibitor SU5416 and the knockdown of VEGFR-2
reduced BBB damage after an ischemic stroke in mice [99]. Other studies have also exhibited
the potential of VEGF inhibition as a viable target for restoring the BBB [318,319].

6.2. Matrix Metalloproteinases

Matrix metalloproteinases (MMPs) are zinc-dependent enzymes that can disrupt
BBB permeability by degrading components of the extracellular matrix (ECM). MMPs
can also degrade the TJ and basal lamina proteins, ultimately disrupting the BBB and
thus facilitating leukocyte infiltration, brain edema formation, and the occurrence of a
hemorrhage [320]. Studies have identified the role of several MMPs, such as MMP-2,
-3, -9, and -10, in BBB damage mediated through degradation of the basal lamina in
brain microvessels [320,321]. In an experimental ischemic stroke and traumatic brain
injury, the inhibition of MMP-2 and MMP-9 reduced BBB damage and improved the
outcomes [118,322–324]. MMP inhibitors such as GM6001 reduce BBB disruption and
brain edema [101]. Similarly, a different MMP inhibitor known as BB-1101 protected
the BBB integrity and viability following an ischemic stroke [325]. The inhibition of
MMPs has also been associated with a reduced expression of the intercellular adhesion
molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). These cell adhesion
molecules are part of the immunoglobulin (Ig) superfamily and mediate the adhesion of
lymphocytes, monocytes, and other immune cells to the vascular endothelium. Therefore,
the downregulation of these molecules in response to MMPs’ inhibition will negatively
impact inflammatory cell migration across the BBB [326]. Additionally, the inhibition of
MMP2/9 with SB-3CT after schizophrenia in mice promoted BBB recovery and accelerated
their neurological recovery [118]. Moreover, a tetracycline antibiotic, minocycline, has also
been demonstrated to inhibit MMP enzyme and MMP production [327,328] which may
ultimately reduce BBB disruption.

6.3. Endothelins

Endothelins (ETs) are endogenous vasoconstrictive proteins and are responsible for
several CNS physiological and pathological consequences. The overexpression of ET-1
has been associated with BBB breakdown and cognitive dysfunction after an ischemic
stroke in mice [329,330]. Furthermore, the upregulation of ET-1 promoted the expression
of MMP2 and downregulated that of the inter endothelial TJ OCLN after an ischemic
stroke [329]. Similarly, increased levels of ET-1 after a hemorrhagic stroke was associated
with BBB disruption and brain edema formation [331]. Endothelin receptors, ETA, and
ETB, have also been associated with ET-mediated BBB damage, and ETA antagonist, S-0139,
was also found to reduce post-stroke increased BBB permeability and edema formation
in mice [102]. Similarly, an anti-ETB known as BQ788 was found to significantly improve
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BBB integrity in an experimental animal model of epilepsy by inhibiting MMP-9 and ZO-1
degradation [103,104].

6.4. Adherens Junctions

Furthermore, changes in adherens junction (ADs) proteins expression have been
observed under different pathological conditions and associated with BBB disruption.
For instance, decreased cadherin expression or loss of cadherin has been observed in
stroke, TBI, and brain tumors, with BBB integrity loss. In contrast, the restoration of their
expression resulted in tight junction repair and disease regression [332]. However, the
options that are currently available to restore ADs expression are limited. The use of CD5-2,
a miR-27a/VE blocker, has been shown to increase VE-cadherin expression [105]. In fact,
CD5-2 significantly improved BBB integrity and reduced cerebral cavernous malformation
lesions in mice [333]. Additionally, a bioactive sphingolipid known as sphingosine-1-
phosphate (S1P) has been shown to preserve BBB integrity by stabilizing the cadherin at
the endothelial cell-cell contact regions [106]. Due to the functional link between adherens
junctions and tight junctions, the modulation of cadherin may impact the formation of
inter-endothelial tight junctions.

6.5. Tight Junctions

A decreased expression of tight junction proteins such as CLN-5 and ZO-1 has been
observed in different neurological disease conditions. In mouse models of depression,
chronic treatment with anti-depressants resulted in an increased CLN-5 expression [334].
An experimental antisense oligonucleotide for miR-501-3p prevented ZO-1 downregulation
and cognition impairments in mice [107]. Similarly, a treatment with MS-275 (Entinostat),
a histone deacetylase 1 (HDAC1) inhibitor, improved the BBB claudin-5 expression and
reduced depression-like syndrome in a mice model of stress [108]. Likewise, melatonin
treatment has also been associated with the mitigation of tight junction dysfunction through
AMP-activated protein kinase [109].

Additionally, studies have shown the downregulation of tight junction proteins (CLN-
5, OCLN, and ZO-2) after traumatic brain injury in mice [335]. Recent experimental data
have also shown that Nrf2 enhancers such as metformin and sulforaphane can mitigate
the post-injury reduction of tight junction proteins [336,337]. Similarly, blast-induced trau-
matic brain injury in mice reduced the BBB expression of tight junction proteins, and the
phenomenon was reversed with a post-injury administration of dexamethasone [338]. An-
other compound, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL), a membrane-
permeable radical scavenger, has also been demonstrated to improve BBB disruption by
enhancing the expression of tight junction proteins after ischemic injury in a rat model of
transient focal ischemia and splanchnic artery occlusion and reperfusion [339,340].

6.6. Endothelium

The endothelium is the thin layer of specialized endothelial cells that lines the inner
luminal surface of blood vessels, and it is the innermost part of BBB. This layer of endothe-
lial cells controls the vascular tone, blood fluidity, and extravasation of blood components
within the brain parenchyma [3]. An injury or the dysfunction of this endothelium of BBB
results in neurovascular inflammation, oxidative stress, thrombosis, and ischemia; there-
fore, this represents an important therapeutic target for several neurovascular disorders
which affect BBB [341]. The study has shown the protective role of superoxide dismutase
(SOD) conjugated with antibody (Ab/SOD) in managing acute vascular inflammation [342].
Similarly, ICAM-1 targeted catalase resulted in a marked reduction in oxidative stress,
restored BBB integrity, and improved neurological function [343]. Enlimomab, a murine
antibody for human ICAM-1, presented a significant therapeutic effect in repairing BBB
after ischemic stroke in animal studies (101). Additionally, in a rat model of middle cerebral
artery occlusion (MCAO) and a model of an ischemic stroke, the systemic administration
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of SOD1-cl-nanozymes reduced brain tissue injury along with sensory motor function
recovery in rats [344].

6.7. Cytokines

One of the prominent characteristics of compromised BBB is the upregulation of
inflammatory cytokines, such as TNF-β, IL-1β, TNF-α, and IL-6 [334]. Inhibiting these
inflammatory cytokines has been shown to protect BBB integrity and ameliorate CNS
disorders [345–347]. Treatment with the TNF-α inhibitor etanercept improved BBB in-
tegrity in a mouse model of depression [110]. Similarly, the use of anti-IL-6 antibodies
improved BBB integrity in ovine fetuses [111]. Additionally, natalizumab, a humanized
monoclonal antibody against the cell adhesion molecule α4-integrin, has been able to
inhibit BBB endothelial inflammation by blocking the interaction between α4 integrin on
white blood cells that are involved in inflammation and the VCAM-1 expressed on the
vascular endothelium, thereby preventing white blood cells from entering the brain and
spinal cord tissue [112,113].

6.8. Oxidative Stress

A critical class of intracellular signaling molecules known as reactive oxygen species
(ROS), if accumulated in excess, can cause oxidative stress and cell damage, eventually lead-
ing to cell death. Increased production of ROS and oxidative stress have been associated
with several neurological disorders, such as Alzheimer’s disease, Parkinson’s disease, Hunt-
ington’s disease, multiple sclerosis, and stroke [348,349]. The activation of two oxidative
stress-inducing enzymes, NADPH oxidase 4 (NOX4) and NOX5 promote BBB breakdown,
leading to the infiltration of inflammatory cells in the brain parenchyma [114,115]. In
a cerebral ischemic mice stroke model, the selective inhibition of NOX4 by GKT136901
(a NOX-1/4 inhibitor with potential application in diabetic nephropathy, stroke, or neu-
rodegeneration) and NOX5 by ML090 (a pan-NOX inhibitor) improved BBB integrity and
reduced infarct volume [114,115]. Additionally, the nuclear factor erythroid 2 (NFE2)-
related factor 2 (Nrf2) is an emerging regulatory factor that participates in the modulation
of cellular oxidative stress through the transcription of an array of antioxidant and detoxi-
fying genes [350]. A reduced level of Nrf2 has been associated with increased susceptibility
to brain injury due to its effect on BBB integrity [351], given that this nuclear factor has
also been shown to regulate the expression of BBB endothelial tight and adherens junction
proteins such as ZO-1 and OCLN [352]. Consequently, compounds such as metformin and
sulforaphane, which enhance Nrf2 expression and activity, have been shown to effectively
protect and/or restore BBB integrity after brain injuries [336,337].

6.9. Actin-Myosin Cytoskeleton

Phosphorylation of the myosin light chain promotes the contraction of the actin-
myosin cytoskeleton, leading to an increased cytoskeleton tension, junction protein disorga-
nization, and the widening of paracellular space, ultimately impacting the BBB [127]. From
a mechanistic perspective, both phosphorylation and tight junction protein internalization
are mediated by the activation of RhoA/Rho-associated proteins kinase (ROCK). Phospho-
rylation of tight junction proteins OCLN and CLN-5 by ROCKs promotes the migration
of monocytes across the BBB [353]. Additionally, ROCKs activation in the capillaries of a
mice model of AD led to BBB disruption and increased microvascular permeability [354].
Hence, the inhibition of ROCK1/ROCK2 has been proven to counteract BBB disruption
resulting from brain injuries, such as cerebral ischemia, experimental autoimmune en-
cephalomyelitis, and intracerebral hemorrhages [355]. Even though there are selective
pharmacological inhibitors for ROCK1/ROCK2 isoforms, non-isoform specific ROCKs
inhibitors, fasudil and Y-27632 are the most widely explored. Treatment using fasudil
reduced the disruption of BBB and cavernous cerebral malformation in a murine model
of an ischemic stroke [116,117]. Similarly, the inhibition of ROCK with Y-27632 or an
ischemic stroke significantly reduced the cerebral lesion and edema volumes and improved
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the functional outcomes [356]. In the same study, the treatment of brain microvascular
endothelial cells exposed to oxygen-glucose deprivation (OGD), using Y-27632 prevented
the loss of intercellular junctions. Additionally, Slx-2119 (KD025) and SR3677, ROCK2-
specific inhibitors, have also been shown to protect the cerebrovascular integrity in cerebral
ischemia and reduce the production of amyloid-β in a mouse model of Alzheimer’s disease,
respectively [357,358].

7. Conclusions

The BBB is a vital cellular and biological barrier that maintains the CNS microen-
vironment’s homeostasis by controlling the movement of molecules into and out of the
brain parenchyma. This barrier acts as a gatekeeper so as to protect the brain from toxins,
chemicals, inflammation, and pathogens. Therefore, a disruption of the BBB can lead to the
onset and progression of several cerebrovascular and neurological diseases, which can be
of a chronic or acute type [359]. In this review, we have summarized the role and functions
of the BBB, the neurological disorders that are directly or indirectly associated with BBB
disruption, and discussed potential therapeutic targets for restoring the impaired BBB.
Studies have shown the involvement of different signaling pathways, such as VEGF, TNF-α,
MMP and ET, in promoting the disruption of the BBB. Various experimental and clinical
studies have revealed that some small molecular factors bear the potential of becoming
viable therapeutic targets of intervention (see Figure 4). Unfortunately, clinical treatments
that are capable of effectively restoring the disrupted BBB do not yet exist.

Figure 4. Structure of blood-brain barrier (BBB) and potential therapeutic targets to restore the BBB viability. Targeting
angiogenesis, oxidative stress, cytoskeleton reorganization, and inflammation can effectively protect and potentially restore the
viability of the BBB. This includes MMPs and angiogenesis inhibitors (e.g., antibodies targeting VEGF/VEGFR), oxidative stress
inhibitors/reducers (such as NOX inhibitors and Nrf2 enhancers) that are promoters of cytoskeleton reorganization (e.g., ROCK
inhibitors). Blocking inflammation by targeting immune cells can prevent their recruitment, thus protecting the BBB.
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Even though substantial progress has been made in identifying many of the putative
mechanisms and key factors involved in BBB disruption, further well-controlled pre-clinical
and clinical studies are required to validate these pathogenic mechanisms. Furthermore,
it is critically important to assess the pros and cons of modulating the activity of these
molecular targets to promote the protection and/or restoration of BBB functions and
integrity.

Understanding the relationship between BBB disruption and the subsequent brain
pathophysiological cues is crucial for developing more effective and specific therapeutic
strategies. Today, there is a major lacuna in our understanding of the underlying mecha-
nisms linking BBB dysfunction and neurological disorders. In several instances, whether
the impairment of the BBB is a direct causative factor of the CNS disorder or, instead, a
result of the neurological disease, which can later negatively impact the outcome, is also
unclear. However, regardless of its potential role as a prodromal factor for the onset of CNS
disorders or a collateral casualty, BBB disruption has been established as a key player in
worsening the disease’s outcome. Hence, combinatorial therapies targeting both the BBB
and the brain parenchyma are more desirable than treatments targeting each of them as
singular issues.

Moreover, due to the inherited heterogeneity of the brain structure and function, it is
also important to consider region-specific BBB damage and subsequent therapeutic targets.
Novel technologies are becoming available to assist in designing and delivering more effec-
tive and selective therapeutic strategies. These advanced techniques, like transcriptomic
and proteomic analysis, single-cell RNA sequencing, and other advanced technologies,
can help to elucidate the mechanistic differences of BBB damage as related to specific
regional structures of the brain. Such an approach would assist in providing the necessary
assistance for the development of more effective treatments.
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BMECs Human Brain Microvascular Endothelial Cells
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MMPs Matrix Metalloproteases
MRP Multidrug Resistance-Associated Protein
MS Multiple Sclerosis
NOX NADPH Oxidase
Nrf2 Nuclear Factor Erythroid 2 (NFE2)-Related factor 2)
NVU Neurovascular Unit
OCLN Occludin
PD Parkinson’s Disease
P-gp P-glycoprotein
VEGF Vascular Endothelial Growth Factor
ROCK RhoA/Rho-Associated Proteins Kinase
ROS Reactive Oxygen Species
VCAM1 Vascular Cell Adhesion Protein 1
VEGFR2 Vascular Endothelial Growth Factor Receptor-2
TJs Tight Junctions
ZO-1 Zona Occludens-1
3D 3 Dimensional
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311. Jośko, J. Cerebral angiogenesis and expression of VEGF after subarachnoid hemorrhage (SAH) in rats. Brain Res. 2003, 981, 58–69.
[CrossRef]

312. Lee, C.; Agoston, D.V. Vascular endothelial growth factor is involved in mediating increased de novo hippocampal neurogenesis
in response to traumatic brain injury. J. Neurotrauma 2010, 27, 541–553. [CrossRef] [PubMed]

313. Sköld, M.K.; von Gertten, C.; Sandberg-Nordqvist, A.C.; Mathiesen, T.; Holmin, S. VEGF and VEGF receptor expression after
experimental brain contusion in rat. J. Neurotrauma 2005, 22, 353–367. [CrossRef] [PubMed]

314. Matsuo, R.; Ago, T.; Kamouchi, M.; Kuroda, J.; Kuwashiro, T.; Hata, J.; Sugimori, H.; Fukuda, K.; Gotoh, S.; Makihara, N.; et al.
Clinical significance of plasma VEGF value in ischemic stroke—Research for biomarkers in ischemic stroke (REBIOS) study. BMC
Neurol. 2013, 13, 32. [CrossRef] [PubMed]

315. Shore, P.M.; Jackson, E.K.; Wisniewski, S.R.; Clark, R.S.; Adelson, P.D.; Kochanek, P.M. Vascular endothelial growth factor is
increased in cerebrospinal fluid after traumatic brain injury in infants and children. Neurosurgery 2004, 54, 605–611. [CrossRef]

316. Argaw, A.T.; Gurfein, B.T.; Zhang, Y.; Zameer, A.; John, G.R. VEGF-mediated disruption of endothelial CLN-5 promotes
blood-brain barrier breakdown. Proc. Natl. Acad. Sci. USA 2009, 106, 1977–1982. [CrossRef] [PubMed]

317. Kimura, R.; Nakase, H.; Tamaki, R.; Sakaki, T. Vascular endothelial growth factor antagonist reduces brain edema formation and
venous infarction. Stroke 2005, 36, 1259–1263. [CrossRef]

318. Kanazawa, M.; Igarashi, H.; Kawamura, K.; Takahashi, T.; Kakita, A.; Takahashi, H.; Nakada, T.; Nishizawa, M.; Shimohata, T.
Inhibition of VEGF signaling pathway attenuates hemorrhage after tPA treatment. J. Cereb. Blood Flow Metab. 2011, 31, 1461–1474.
[CrossRef]

319. Lange, C.; Storkebaum, E.; de Almodóvar, C.R.; Dewerchin, M.; Carmeliet, P. Vascular endothelial growth factor: A neurovascular
target in neurological diseases. Nat. Rev. Neurol. 2016, 12, 439–454. [CrossRef]

320. Lakhan, S.E.; Kirchgessner, A.; Tepper, D.; Leonard, A. Matrix metalloproteinases and blood-brain barrier disruption in acute
ischemic stroke. Front. Neurol. 2013, 4, 32. [CrossRef]

321. Seo, J.H.; Guo, S.; Lok, J.; Navaratna, D.; Whalen, M.J.; Kim, K.W.; Lo, E.H. Neurovascular matrix metalloproteinases and the
blood-brain barrier. Curr. Pharm. Des. 2012, 18, 3645–3648. [CrossRef]

322. Zhao, B.Q.; Wang, S.; Kim, H.Y.; Storrie, H.; Rosen, B.R.; Mooney, D.J.; Wang, X.; Lo, E.H. Role of matrix metalloproteinases in
delayed cortical responses after stroke. Nat. Med. 2006, 12, 441–445. [CrossRef]

323. Sifringer, M.; Stefovska, V.; Zentner, I.; Hansen, B.; Stepulak, A.; Knaute, C.; Marzahn, J.; Ikonomidou, C. The role of matrix
metalloproteinases in infant traumatic brain injury. Neurobiol. Dis. 2007, 25, 526–535. [CrossRef]

324. Trujillo, K.A.; Akil, H. Opioid and non-opioid behavioral actions of dynorphin A and the dynorphin analogue DAKLI. NIDA Res.
Monogr. 1990, 105, 397–398.

325. Sood, R.R.; Taheri, S.; Candelario-Jalil, E.; Estrada, E.Y.; Rosenberg, G.A. Early beneficial effect of matrix metalloproteinase
inhibition on blood-brain barrier permeability as measured by magnetic resonance imaging countered by impaired long-term
recovery after stroke in rat brain. J. Cereb. Blood Flow Metab. 2008, 28, 431–438. [CrossRef]

326. Lee, K.S.; Jin, S.M.; Kim, H.J.; Lee, Y.C. Matrix metalloproteinase inhibitor regulates inflammatory cell migration by reducing
ICAM-1 and VCAM-1 expression in a murine model of toluene diisocyanate-induced asthma. J. Allergy Clin. Immunol. 2003, 111,
1278–1284. [CrossRef] [PubMed]

327. Golub, L.M.; Ramamurthy, N.; McNamara, T.F.; Gomes, B.; Wolff, M.; Casino, A.; Kapoor, A.; Zambon, J.; Ciancio, S.; Schneir, M.;
et al. Tetracyclines inhibit tissue collagenase activity. J. Periodontal. Res. 1984, 19, 651–655. [CrossRef]

328. Brundula, V.; Rewcastle, N.B.; Metz, L.M.; Bernard, C.C.; Yong, V.W. Targeting leukocyte MMPs and transmigration: Minocycline
as a potential therapy for multiple sclerosis. Brain 2002, 125, 1297–1308. [CrossRef] [PubMed]

329. Leung, J.W.; Chung, S.S.; Chung, S.K. Endothelial endothelin-1 over-expression using receptor tyrosine kinase tie-1 promoter
leads to more severe vascular permeability and blood brain barrier breakdown after transient middle cerebral artery occlusion.
Brain Res. 2009, 1266, 121–129. [CrossRef]

330. Zhang, X.; Yeung, P.K.; McAlonan, G.M.; Chung, S.S.; Chung, S.K. Transgenic mice over-expressing endothelial endothelin-1
show cognitive deficit with blood-brain barrier breakdown after transient ischemia with long-term reperfusion. Neurobiol. Learn.
Mem. 2013, 101, 46–54. [CrossRef] [PubMed]

331. Yeung, P.K.; Shen, J.; Chung, S.S.; Chung, S.K. Targeted over-expression of endothelin-1 in astrocytes leads to more severe brain
damage and vasospasm after subarachnoid hemorrhage. BMC Neurosci. 2013, 14, 131. [CrossRef] [PubMed]

332. Li, J.; Zheng, M.; Shimoni, O.; Banks, W.A.; Bush, A.I.; Gamble, J.R.; Shi, B. Development of Novel Therapeutics Targeting the
Blood–Brain Barrier: From Barrier to Carrier. Adv. Sci. 2021, 8, 2101090. [CrossRef]

333. Li, J.; Zhao, Y.; Choi, J.; Ting, K.K.; Coleman, P.; Chen, J.; Cogger, V.C.; Wan, L.; Shi, Z.; Moller, T.; et al. Targeting miR-27a/VE-
cadherin interactions rescues cerebral cavernous malformations in mice. PLoS Biol. 2020, 18, e3000734. [CrossRef]

334. Menard, C.; Pfau, M.L.; Hodes, G.E.; Kana, V.; Wang, V.X.; Bouchard, S.; Takahashi, A.; Flanigan, M.E.; Aleyasin, H.; LeClair,
K.B.; et al. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci. 2017, 20, 1752–1760. [CrossRef]
[PubMed]

http://doi.org/10.1016/j.febslet.2006.03.087
http://www.ncbi.nlm.nih.gov/pubmed/16631753
http://doi.org/10.1371/journal.pone.0086407
http://www.ncbi.nlm.nih.gov/pubmed/24551038
http://doi.org/10.1016/S0006-8993(03)02920-2
http://doi.org/10.1089/neu.2009.0905
http://www.ncbi.nlm.nih.gov/pubmed/20001687
http://doi.org/10.1089/neu.2005.22.353
http://www.ncbi.nlm.nih.gov/pubmed/15785231
http://doi.org/10.1186/1471-2377-13-32
http://www.ncbi.nlm.nih.gov/pubmed/23566234
http://doi.org/10.1227/01.NEU.0000108642.88724.DB
http://doi.org/10.1073/pnas.0808698106
http://www.ncbi.nlm.nih.gov/pubmed/19174516
http://doi.org/10.1161/01.STR.0000165925.20413.14
http://doi.org/10.1038/jcbfm.2011.9
http://doi.org/10.1038/nrneurol.2016.88
http://doi.org/10.3389/fneur.2013.00032
http://doi.org/10.2174/138161212802002742
http://doi.org/10.1038/nm1387
http://doi.org/10.1016/j.nbd.2006.10.019
http://doi.org/10.1038/sj.jcbfm.9600534
http://doi.org/10.1067/mai.2003.1501
http://www.ncbi.nlm.nih.gov/pubmed/12789230
http://doi.org/10.1111/j.1600-0765.1984.tb01334.x
http://doi.org/10.1093/brain/awf133
http://www.ncbi.nlm.nih.gov/pubmed/12023318
http://doi.org/10.1016/j.brainres.2009.01.070
http://doi.org/10.1016/j.nlm.2013.01.002
http://www.ncbi.nlm.nih.gov/pubmed/23313614
http://doi.org/10.1186/1471-2202-14-131
http://www.ncbi.nlm.nih.gov/pubmed/24156724
http://doi.org/10.1002/advs.202101090
http://doi.org/10.1371/journal.pbio.3000734
http://doi.org/10.1038/s41593-017-0010-3
http://www.ncbi.nlm.nih.gov/pubmed/29184215


Pharmaceutics 2021, 13, 1779 36 of 36

335. Sivandzade, F.; Alqahtani, F.; Sifat, A.; Cucullo, L. The cerebrovascular and neurological impact of chronic smoking on post-
traumatic brain injury outcome and recovery: An in vivo study. J. Neuroinflamm. 2020, 17, 133. [CrossRef] [PubMed]

336. Zhao, J.; Moore, A.N.; Redell, J.B.; Dash, P.K. Enhancing expression of Nrf2-driven genes protects the blood brain barrier after
brain injury. J. Neurosci. 2007, 27, 10240–10248. [CrossRef] [PubMed]

337. Prasad, S.; Sajja, R.K.; Kaisar, M.A.; Park, J.H.; Villalba, H.; Liles, T.; Abbruscato, T.; Cucullo, L. Role of Nrf2 and protective effects
of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017, 12, 58–69. [CrossRef]

338. Förster, C.; Waschke, J.; Burek, M.; Leers, J.; Drenckhahn, D. Glucocorticoid effects on mouse microvascular endothelial barrier
permeability are brain specific. J. Physiol. 2006, 573, 413–425. [CrossRef]

339. Cuzzocrea, S.; McDonald, M.C.; Mazzon, E.; Filipe, H.M.; Costantino, G.; Caputi, A.P.; Thiemermann, C. Beneficial effects of
tempol, a membrane-permeable radical scavenger, in a rodent model of splanchnic artery occlusion and reperfusion. Shock 2000,
14, 150–156. [CrossRef]

340. Rak, R.; Chao, D.L.; Pluta, R.M.; Mitchell, J.B.; Oldfield, E.H.; Watson, J.C. Neuroprotection by the stable nitroxide Tempol during
reperfusion in a rat model of transient focal ischemia. J. Neurosurg. 2000, 92, 646–651. [CrossRef]

341. Marcos-Contreras, O.A.; Greineder, C.F.; Kiseleva, R.Y.; Parhiz, H.; Walsh, L.R.; Zuluaga-Ramirez, V.; Myerson, J.W.; Hood, E.D.;
Villa, C.H.; Tombacz, I.; et al. Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood–brain
barrier. Proc. Natl. Acad. Sci. USA 2020, 117, 3405. [CrossRef]

342. Shuvaev, V.V.; Han, J.; Tliba, S.; Arguiri, E.; Christofidou-Solomidou, M.; Ramirez, S.H.; Dykstra, H.; Persidsky, Y.; Atochin, D.N.;
Huang, P.L.; et al. Anti-inflammatory effect of targeted delivery of SOD to endothelium: Mechanism, synergism with NO donors
and protective effects in vitro and in vivo. PLoS ONE 2013, 8, e77002. [CrossRef] [PubMed]

343. Lutton, E.M.; Razmpour, R.; Andrews, A.M.; Cannella, L.A.; Son, Y.J.; Shuvaev, V.V.; Muzykantov, V.R.; Ramirez, S.H. Acute
administration of catalase targeted to ICAM-1 attenuates neuropathology in experimental traumatic brain injury. Sci. Rep. 2017, 7,
3846. [CrossRef]

344. Manickam, D.S.; Brynskikh, A.M.; Kopanic, J.L.; Sorgen, P.L.; Klyachko, N.L.; Batrakova, E.V.; Bronich, T.K.; Kabanov, A.V.
Well-defined cross-linked antioxidant nanozymes for treatment of ischemic brain injury. J. Control. Release 2012, 162, 636–645.
[CrossRef]

345. Senatorov, V.V., Jr.; Friedman, A.R.; Milikovsky, D.Z.; Ofer, J.; Saar-Ashkenazy, R.; Charbash, A.; Jahan, N.; Chin, G.; Mihaly, E.;
Lin, J.M.; et al. Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible
neural dysfunction. Sci. Transl. Med. 2019, 11. [CrossRef] [PubMed]

346. Dilena, R.; Mauri, E.; Aronica, E.; Bernasconi, P.; Bana, C.; Cappelletti, C.; Carrabba, G.; Ferrero, S.; Giorda, R.; Guez, S.; et al.
Therapeutic effect of Anakinra in the relapsing chronic phase of febrile infection-related epilepsy syndrome. Epilepsia Open 2019,
4, 344–350. [CrossRef] [PubMed]

347. Kenney-Jung, D.L.; Vezzani, A.; Kahoud, R.J.; LaFrance-Corey, R.G.; Ho, M.L.; Muskardin, T.W.; Wirrell, E.C.; Howe, C.L.; Payne,
E.T. Febrile infection-related epilepsy syndrome treated with anakinra. Ann. Neurol. 2016, 80, 939–945. [CrossRef]

348. Prasad, S.; Liles, T.; Cucullo, L. Chapter 44—Brain, Nrf2, and Tobacco: Mechanisms and Countermechanisms Underlying
Oxidative-Stress-Mediated Cerebrovascular Effects of Cigarette Smoking. In Neuroscience of Nicotine; Preedy, V.R., Ed.; Academic
Press: Cambridge, MA, USA, 2019; pp. 355–363. [CrossRef]

349. Brandes, M.S.; Gray, N.E. NRF2 as a Therapeutic Target in Neurodegenerative Diseases. ASN Neuro. 2020, 12, 1759091419899782.
[CrossRef] [PubMed]

350. Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharm. Toxicol. 2013, 53, 401–426. [CrossRef]
351. Mitsuishi, Y.; Taguchi, K.; Kawatani, Y.; Shibata, T.; Nukiwa, T.; Aburatani, H.; Yamamoto, M.; Motohashi, H. Nrf2 Redirects

Glucose and Glutamine into Anabolic Pathways in Metabolic Reprogramming. Cancer Cell 2012, 22, 66–79. [CrossRef] [PubMed]
352. Sajja, R.K.; Green, K.N.; Cucullo, L. Altered Nrf2 Signaling Mediates Hypoglycemia-Induced Blood–Brain Barrier Endothelial

Dysfunction In Vitro. PLoS ONE 2015, 10, e0122358. [CrossRef]
353. Yamamoto, M.; Ramirez, S.H.; Sato, S.; Kiyota, T.; Cerny, R.L.; Kaibuchi, K.; Persidsky, Y.; Ikezu, T. Phosphorylation of claudin-5

and occludin by rho kinase in brain endothelial cells. Am. J. Pathol. 2008, 172, 521–533. [CrossRef]
354. Park, J.C.; Baik, S.H.; Han, S.H.; Cho, H.J.; Choi, H.; Kim, H.J.; Choi, H.; Lee, W.; Kim, D.K.; Mook-Jung, I. Annexin A1 restores

Aβ(1-42) -induced blood-brain barrier disruption through the inhibition of RhoA-ROCK signaling pathway. Aging Cell 2017, 16,
149–161. [CrossRef] [PubMed]

355. Lai, A.Y.; McLaurin, J. Rho-associated protein kinases as therapeutic targets for both vascular and parenchymal pathologies in
Alzheimer’s disease. J. Neurochem. 2018, 144, 659–668. [CrossRef]

356. Gibson, C.L.; Srivastava, K.; Sprigg, N.; Bath, P.M.; Bayraktutan, U. Inhibition of Rho-kinase protects cerebral barrier from
ischaemia-evoked injury through modulations of endothelial cell oxidative stress and tight junctions. J. Neurochem. 2014, 129,
816–826. [CrossRef] [PubMed]

357. Lee, J.H.; Zheng, Y.; von Bornstadt, D.; Wei, Y.; Balcioglu, A.; Daneshmand, A.; Yalcin, N.; Yu, E.; Herisson, F.; Atalay, Y.B.; et al.
Selective ROCK2 Inhibition In Focal Cerebral Ischemia. Ann. Clin. Transl. Neurol. 2014, 1, 2–14. [CrossRef] [PubMed]

358. Herskowitz, J.H.; Feng, Y.; Mattheyses, A.L.; Hales, C.M.; Higginbotham, L.A.; Duong, D.M.; Montine, T.J.; Troncoso, J.C.;
Thambisetty, M.; Seyfried, N.T.; et al. Pharmacologic inhibition of ROCK2 suppresses amyloid-β production in an Alzheimer’s
disease mouse model. J. Neurosci. 2013, 33, 19086–19098. [CrossRef]

359. Daneman, R. The blood-brain barrier in health and disease. Ann. Neurol. 2012, 72, 648–672. [CrossRef]

http://doi.org/10.1186/s12974-020-01818-0
http://www.ncbi.nlm.nih.gov/pubmed/32340626
http://doi.org/10.1523/JNEUROSCI.1683-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17881530
http://doi.org/10.1016/j.redox.2017.02.007
http://doi.org/10.1113/jphysiol.2006.106385
http://doi.org/10.1097/00024382-200014020-00013
http://doi.org/10.3171/jns.2000.92.4.0646
http://doi.org/10.1073/pnas.1912012117
http://doi.org/10.1371/journal.pone.0077002
http://www.ncbi.nlm.nih.gov/pubmed/24146950
http://doi.org/10.1038/s41598-017-03309-4
http://doi.org/10.1016/j.jconrel.2012.07.044
http://doi.org/10.1126/scitranslmed.aaw8283
http://www.ncbi.nlm.nih.gov/pubmed/31801886
http://doi.org/10.1002/epi4.12317
http://www.ncbi.nlm.nih.gov/pubmed/31168503
http://doi.org/10.1002/ana.24806
http://doi.org/10.1016/B978-0-12-813035-3.00044-7
http://doi.org/10.1177/1759091419899782
http://www.ncbi.nlm.nih.gov/pubmed/31964153
http://doi.org/10.1146/annurev-pharmtox-011112-140320
http://doi.org/10.1016/j.ccr.2012.05.016
http://www.ncbi.nlm.nih.gov/pubmed/22789539
http://doi.org/10.1371/journal.pone.0122358
http://doi.org/10.2353/ajpath.2008.070076
http://doi.org/10.1111/acel.12530
http://www.ncbi.nlm.nih.gov/pubmed/27633771
http://doi.org/10.1111/jnc.14130
http://doi.org/10.1111/jnc.12681
http://www.ncbi.nlm.nih.gov/pubmed/24528233
http://doi.org/10.1002/acn3.19
http://www.ncbi.nlm.nih.gov/pubmed/24466563
http://doi.org/10.1523/JNEUROSCI.2508-13.2013
http://doi.org/10.1002/ana.23648

	Introduction 
	The Function of the BBB 
	Structure of the Blood-Brain Barrier: An Overview 
	Endothelial Cells (ECs) 
	The Basement Membrane 
	Astrocytes 
	Mural Cells and Pericytes 
	Immune Cells 

	Adrenergic System and BBB 
	BBB Dysfunction in CNS Disorders 
	Stroke 
	Multiple Sclerosis (MS) 
	Amyotrophic Lateral Sclerosis (ALS) 
	Traumatic Brain Injury (TBI) 
	Alzheimer’s Disease (AD) 
	Parkinson’s Disease (PD) 
	Huntington’s Disease (HD) 
	Brain Tumor 
	Septic Encephalopathy 
	Hepatic Encephalopathy (HE) 
	HIV Encephalitis 
	Epilepsy 
	Schizophrenia 
	Meningitis 

	Biological Targets for Restoring BBB Viability 
	VEGFs 
	Matrix Metalloproteinases 
	Endothelins 
	Adherens Junctions 
	Tight Junctions 
	Endothelium 
	Cytokines 
	Oxidative Stress 
	Actin-Myosin Cytoskeleton 

	Conclusions 
	References

