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Abstract: (1) Background: Pharmaceutical cocrystals have attracted remarkable interest and have
been successfully used to enhance the absorption of poorly water-soluble drugs. However, supersat-
urable cocrystals are sometimes thermodynamically unstable, and the solubility advantages present a
risk of precipitation because of the solution-mediated phase transformation (SMPT). Additives such
as surfactants and polymers could sustain the supersaturation state successfully, but the effect needs
insightful understanding. The aim of the present study was to investigate the roles of surfactants and
polymers in the dissolution-supersaturation-precipitation (DSP) behavior of cocrystals. (2) Methods:
Five surfactants (SDS, Poloxamer 188, Poloxamer 407, Cremophor RH 40, polysorbate 80) and five
polymers (PVP K30, PVPVA 64, HPC, HPMC E5, CMC-Na) were selected as additives. Tecovirimat-
4-hydroxybenzoic (TEC-HBA) cocrystals were chosen as a model cocrystal. The TEC-HBA cocrystals
were first designed and verified by PXRD, DSC, SEM, and FTIR. The effects of surfactants and
polymers on the solubility and dissolution of TEC-HBA cocrystals under sink and nonsink conditions
were then investigated. (3) Results: Both the surfactants and polymers showed significant dissolution
enhancement effects, and most of the polymers were more effective than the surfactants, according to
the longer Tmax and higher Cmax. These results demonstrate that the dissolution behavior of cocrys-
tals might be achieved by the maintained supersaturation effect of the additives. Interestingly, we
found a linear relationship between the solubility and Cmax of the dissolution curve for surfactants,
while no similar phenomena were found in solutions with polymer. (4) Conclusions: The present
study provides a basis for additive selection and a framework for understanding the behavior of
supersaturable cocrystals in solution.

Keywords: cocrystals; dissolution; solubility; supersaturation; surfactant; polymer

1. Introduction

The development of poorly water-soluble drugs remains a challenge for the foresee-
able future. Approximately 40% of approved drugs and nearly 70% of developmental
pipeline candidates display poor aqueous solubility, which usually results in poor oral
bioavailability [1]. Oral drug absorption can be increased by enhancing solubility and
dissolution, especially for BCS class II drugs with low solubility and high permeability
where absorption is dissolution-rate limited. Various supersaturable formulation strategies
that could create a supersaturation state have been used and have shown bioavailability
enhancement of a crystalline drug [2], such as cocrystals [3], salts [4], amorphous solid
dispersions [5], microemulsions [6], and inclusion complexes [7]. Among these, pharma-
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ceutical cocrystals have attracted remarkable interest and have been successfully used to
modify and improve the in vivo bioavailability of an API.

A pharmaceutical cocrystal is a multicomponent single-phase crystal composed of two
or more different components in a well-defined stoichiometric ratio, wherein at least one
component is the active pharmaceutical ingredient (API), and the other component(s) is
(are) the coformer(s), bonding together by noncovalent interactions rather than by ionic in-
teractions as salts [8,9]. Over the past two decades, considerable studies have been reported
on the applications of pharmaceutical cocrystals, and a few of them are on the market
or in clinical trial phases [3]. Cocrystals could significantly improve the dissolution and
solubility of poorly water-soluble drugs by inserting a soluble coformer in the crystal lattice
through noncovalent bonding, leading to the reduction in the solvation barrier [10,11].
Moreover, cocrystals could also enhance membrane permeation and diffusion due to the
induced supersaturated drug concentration [12,13]. There was evidence that cocrystals
could improve drugs’ mechanical properties and stability [14].

However, the solubility advantages of pharmaceutical cocrystals at supersaturated
concentrations present a risk of precipitation to a less soluble crystalline form during
the dissolution process because of the solution-mediated phase transformation (SMPT)
phenomena; hence, cocrystals are sometimes thermodynamically unstable [15,16]. To
prevent crystallization to the stable drug, it is crucial to maintain such a supersaturated
state according to the “spring and parachute” pattern [17]. A strategy is to incorporate
additives in a formulation, such as cyclodextrins, surfactants, or polymers, which could
inhibit drug precipitation and improve the dissolution-supersaturation-precipitation (DSP)
behavior of cocrystals [8]. In such systems, the supersaturation state must be maintained
over a reasonable time to promote enough absorption for increased bioavailability. Childs
et al. demonstrated that the addition of a solubilizing agent and a precipitation inhibitor
into cocrystal formulations could successfully sustain the supersaturation state and achieve
a 10 times higher area under the curve (AUC) in vivo than the parent drug [18].

Recent findings have shown that the micellar solubilization mechanism of surfactants
could be used to maintain supersaturation, and the effect is remarkably relevant to the
fraction of drug micelles incorporated [19,20]. Commonly used surfactant carriers, such as
sodium lauryl sulfate (SDS), Tween, and Soluplus®, can generate a micellar structure above
the critical micellar concentration (CMC) during the dissolution process of cocrystals [21],
that is, surfactant-mediated dissolution behaviors [22]. Moreover, it has been found that
molecularly dissolved drugs are more important than increased solubility to enhance
bioavailability. In addition, some results show that the surfactant could suppress crystalline
growth of the drug from a supersaturated state rather than solubilization [23]. To illustrate
the relationship between the cocrystal solubility advantage (SA) and the drug-solubilizing
power of surfactants (SP), Prof. Rodríguez-Hornedo and his coworkers demonstrated
a quantitative method based on cocrystal SA diagrams in a set of papers for surfactant
selection to control cocrystal disproportionation [24,25]. However, surfactants used for
thermodynamic stabilization of cocrystals might present regulatory burden problems [26].

In recent years, polymers have been extensively studied as crystallization inhibitors
during the dissolution of cocrystals, such as polyvinylpyrrolidone (PVP) copolymer of
vinylpyrrolidone (60%)/vinyl acetate (40%) (PVP VA), polyethylene glycol (PEG), and
the cellulosic polymers hydroxypropyl methylcellulose (HPMC), methylcellulose, hydrox-
ypropylcellulose (HPC), hydroxypropyl methylcellulose acetate succinate (HPMCAS) [27]).
It was found that the intermolecular noncovalent bonding, dissolution rate of cocrystals,
and amount of polymers played important roles in the precipitation effect [24]. For example,
polymers with more O–H donor groups exhibit suitable precipitation inhibitor properties
due to the easy formation of hydrogen bonds [27]. As a result, polymers could not only
prevent the surface precipitation of the parent drug but also modify the dissolution rate.
Using a molecular dynamics (MD) simulation method, Kirubakaran et al. reported that the
adsorption of polymers on cocrystal surfaces might inhibit the precipitation of the drug
and change the dissolution rate [28]. Moreover, for bulk precipitation cocrystals, adding a
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solubilizer, such as PEG, to the formulation should significantly enhance the efficiency of
dissolution [28].

The role of coformers on the solubility and dissolution advantages of cocrystals is now
realized, although the exact mechanism is not fully understood. Different coformers can
affect the stability of supersaturable cocrystals in solution more or less, leading to signifi-
cant differences in the solubility of the drug [29] and in vivo absorption [30]. Cocrystals
with higher solubility coformers have shown higher solubility advantage orders than the
parent drug. Coformers can also interfere with a polymer in solution through competitive
intermolecular hydrogen bonding and inhibit the growth of drug crystals [31]. However,
there were reports that cocrystals with lower solubility coformers tended to induce higher
supersaturation in the bulk phase. Interestingly, coformers with even carbon numbers
exhibited a higher supersaturation effect than coformers with odd carbon numbers [15].
Sometimes, a solubilization advantage of cocrystals was not observed due to the rapid
cocrystal dissolution generated by higher soluble coformers. The amount of coformers also
plays a role in the solubility of the cocrystals, which could be depressed by using excess
coformers through the coformer effect [32,33].

The abovementioned points are very important for the formulation design and de-
velopment of pharmaceutical cocrystals. However, the dissolution behavior in a solution
of cocrystal and supersaturation control is unclear and generally relies on a case-by-case
approach. An insightful understanding of key factors during the process of cocrystal dis-
solution is essential for the design and optimization of highly absorbable pharmaceutical
cocrystal formulations. The present study aimed to investigate the roles of surfactants
and polymers on the dissolution behavior of supersaturable cocrystals. In this study, five
surfactants (SDS, Poloxamer 188, Poloxamer 407, Cremophor RH 40, polysorbate 80) and
five polymers (PVP K30, PVPVA 64, HPC, HPMC E5, CMC-Na) were selected as addi-
tives for solubilization and precipitation in predissolved solution. The CMC values of the
surfactants at 298 K are listed in Table 1. Cocrystals of tecovirimat and 4-hydroxybenzoic
acid (TEC-HBA) were chosen as model cocrystals. TEC is a BCS class II drug with low
oral bioavailability and has been shown to be readily solubilized by a ternary inclusion
complex containing hydroxypropyl-β-cyclodextrin in our previous work [7]. HBA is a
hydroxyl-carboxylic acid with carboxylic groups attached at positions one and four. The
chemical structures of the drug, coformers, surfactants, and monomer units of polymers
are shown in Figure 1. The TEC-HBA cocrystals were firstly obtained and verified using
PXRD, DSC, SEM, and FTIR. The effects of surfactants and polymers on the solubility
and dissolution of TEC-HBA cocrystals under sink and nonsink conditions were then
investigated. The influence of pH was also investigated. The present study will provide an
insightful basis for additive selection and a framework for understanding the behavior of
supersaturable cocrystals.

Table 1. The CMC value of the surfactants at 298 K [34].

Surfactants SDS Poloxamer 188 Poloxamer 407 Cremophor RH 40 Polysorbate 80

CMC/(%w/v) 0.24 1.5 0.71 0.039 0.0014
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Figure 1. Structure of tecovirimat (TEC), 4-hydroxybenzoic acid (HBA), surfactants, and polymers used.

2. Materials and Methods
2.1. Materials

Tecovirimat (TEC) was synthesized by the Beijing Institute of Pharmacology and
Toxicology (Beijing, China). 4-hydroxybenzoic (HBA) was purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). FeSSIF and FaSSGF were purchased from
Shenzhen Zhenqiang Bio-Technology Co., Ltd. (Shenzhen, China).

Sodium dodecyl sulfate (SDS) was purchased from VWR International, LLC. (Radnor,
PA, USA). Poloxamer 188 (Lutrol® F68) and Poloxamer 407 (Kolliphor® P407) were received
from BASF (Ludwigshafen, Germany). Cremophor RH 40 was purchased from Beijing
Fengli Jingqiu Pharmaceutical Co., Ltd. (Beijing, China), polysorbate 80 (Tween 80) was
purchased from Coolaber Co., Ltd. (Beijing, China).

Polymers were selected from chemically diverse classes and obtained from different
manufacturers. Polyvinylpyrrolidone K30 (PVP K30) was purchased from ISP technologies
Inc. (Covington, GA, USA). Poly(1-vinylpyrrolidone-co-vinyl acetate) (PVPVA 64) was
obtained from BASF (Ludwigshafen, Germany). Hydroxypropyl cellulose (HPC) was from
Ashland Inc. (Covington, GA, USA). Hydroxypropyl methyl cellulose E5 (HPMC E5) was
from Dow (Midland, TX, USA). Carboxymethylcellulose sodium (CMC-Na) was purchased
from Ashland Inc. (Covington, GA, USA). Acetonitrile was applied by Sigma-Aldrich Co.,
Ltd. (St. Louis, MI, USA). Double-distilled freshwater was prepared for the whole study.
All of the other reagents were analytical grade, purchased from commercial suppliers.

2.2. Methods
2.2.1. Preparation of TEC-HBA Cocrystals

Tecovirimat and 4-hydroxybenzoic cocrystals (TEC-HBA CC) were prepared by a
solvent evaporation method. A 1:1 molar ratio of TEC (0.376 g, 1 mmol) and HBA (0.138 g,
1 mmol) was dissolved in ethanol with magnetic stirring at 80 ◦C, and the clear solution
was left at 30 ◦C overnight for solvent evaporation. The resulting solid phases were dried
in an oven at 45 ◦C for 2 h and then characterized by X-ray powder diffraction (XRPD) and
differential scanning calorimetry (DSC).
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2.2.2. Preparation of TEC/HBA Physical Mixture

A physical mixture (PM) of TEC and HBA was prepared by gently mixing in a drug-
to-coformer ratio of 1:1 (mmol/mmol) for 10 min in a plastic bag.

2.2.3. HPLC Analysis

The TEC and HBA concentrations were simultaneously analyzed by a Waters HPLC
system (Waters Instruments Co., Rochester, MN, USA) composed of a Waters 2695 Sep-
aration Module, a Waters 2487 Dual λ Absorbance Detector, and a Waters Empower 2
Workstation. The HPLC analysis conditions were as follows: Eclipse XDB C18 column
(5 µm, 4.6–250 mm, Agilent, Santa Clara, CA, USA); column temperature, 30 ◦C; mo-
bile phase, Acetonitrile/50 mM sodium dihydrogen phosphate buffer solution pH 4.6
(55/45, v/v); flow rate, 1.0 mL/min; wavelength, TEC at 224 nm and HBA at 224 nm,
separately; injection volume, 20 µL. The retention time of TEC and HBA were 6.93 and
2.56 min separately.

2.2.4. Solubility Measurements

To understand the difference in solubility behavior of TEC and the corresponding
coformer HBA in the cocrystals and physical mixtures, solubility measurements of the
pure drug and coformer were also conducted under the same conditions using a magnetic-
stirring method. Excess samples were added to a small vial containing 30 mL of water,
the fasted state simulated gastric fluid (FaSSGF) and fed state simulated intestinal fluid
(FeSSIF), surfactant solutions (with different concentrations of predissolved SDS, F68, P407,
Tween 80 or RH40) or polymer solutions (with different concentrations of predissolved
PVP K30, PVP VA 65, HPMC-E5, HPC, or CMC-Na) and then stirred at 37 ◦C and 120 rpm
for 24 h. Aliquots were filtered through 0.45 µm filters and diluted properly to determine
the concentrations of TEC and HBA by HPLC as described above. All experiments were
carried out in triplicate. The solid residues retrieved from the solubility tests were dried
and observed by SEM.

2.2.5. Intrinsic Dissolution Measurements

The intrinsic dissolution rate (IDR) measurement was carried out using a 708-DS
Dissolution Apparatus (Agilent Technologies, Santa Clara, CA, USA) by the rotating disk
method. Approximately 200 mg of solid sample was compressed to a disk using a hydraulic
press at 2.38 ton/in for 1 min a die of 8 mm diameter. The disk was sealed with paraffin
wax, providing a flat surface on one side for dissolution. Then, the disk was immersed
in 1000 mL of the dissolution medium (water or pH 7.4 buffer medium) at 37 ◦C with the
disk rotating at 100 rpm. At each time interval (5, 10, 15, 20, 25, 30, 45, 60, 90, 120 min),
5 mL of the dissolution medium was withdrawn and replaced by an equal volume of fresh
medium to maintain a constant volume. Samples were filtered and properly diluted [9].
The concentrations of TEC were determined by the HPLC method mentioned above. All
tests were carried out in triplicate.

2.2.6. Powder Dissolution under Sink Conditions

Powder dissolution under sink conditions was carried out by the paddle method
using a ZRS-8G Dissolution Tester (Tianjin TIANDA TIANFA—pharmaceutical testing
instrument manufacturer, Tianjing, China). Pure TEC, PM, and TEC-HBA cocrystals were
added to water, FaSSGF, and FeSSIF. The volume of dissolution media was 1000 mL to
achieve sink conditions with a paddle speed of 100 rpm at 37 ◦C. Samples of 5 mL were
taken at 5, 10, 15, 20, 25, 30, 45, 60, 90, 120, 180, 240, 360 min, and an equal volume of fresh
medium was added to maintain a constant dissolution medium volume. The samples were
filtered through 0.45 µm filters and diluted properly for determination of the concentrations
of TEC and HBA by HPLC as described above. The dissolution profiles were represented
as the cumulative percentages of the amount of the drug and coformer released at each
sampling interval. All experiments were carried out in triplicate.
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2.2.7. Powder Dissolution under Nonsink Conditions

To mimic the in vivo conditions of supersaturable cocrystals with “spring and parachute”
patterns as closely as possible, powder dissolution was conducted under nonsink condi-
tions. Pure TEC or the equivalent of TEC-HBA cocrystals was added to 30 mL of water or
dissolution medium with predissolved surfactants or PIs, and the concentrations were both
selected as 0.25% and 0.5% (w/v). The dissolution experiments were carried out at 37 ◦C with
magnetic stirring at 120 rpm (IKA ICC control IB R RO 15eco, IKA-Werke GmbH & Co. KG,
Staufen, Germany). Samples of 1 mL were withdrawn at specified time intervals (5, 10, 15,
20, 25, 30, 45, 60, 90, 120, 180, 240, 360 min). Samples were immediately filtered through
0.45 µm filters and diluted properly to determine the concentrations of dissolved TEC by
HPLC as described above. All experiments were carried out in triplicate.

2.3. Characterization Techniques
2.3.1. Powder X-ray Diffractometry (PXRD)

The PXRD patterns of solid samples were measured with an X-ray diffractometer
(Bruker XRD-D8 Advance, Bruker AXS GmbH., Karlsruhe, Germany) equipped with Cu as
the anode material using a tube current of 40 mA and a tube voltage of 40 kV. The samples
were continuously scanned from 5◦ to 50◦ (2θ) at a scanning rate of 0.2◦/min.

2.3.2. Differential Scanning Calorimetry (DSC)

The thermal behaviors of solid samples were carried out using a differential scan-
ning calorimeter (TA Q200, TA Instruments-Waters LLC, New Castle, DE, USA). The
samples with accurate weights were heated in a sealed aluminum pan at a constant rate of
10 ◦C/min over the temperature range from 50 to 250 ◦C. An empty aluminum pan was
used as a reference.

2.3.3. Scanning Electron Microscope (SEM)

The morphological features of solid samples were studied by scanning electron mi-
croscopy (Hitachi S-4800, Hitachi Ltd., Tokyo, Japan). The powder was stuck to a brass
stub by double-sided adhesive tape and then vacuum-coated with a layer of gold to make
it electrically conductive. The samples were examined at an accelerating voltage of 15 kV.
The photomicrographs were all obtained at 800× magnification.

2.3.4. Fourier Transform Infrared Spectroscopy (FTIR)

An FTIR spectrophotometer (Nicolet 6700, Thermo Fisher Scientific, Waltham, USA)
was used to evaluate the spectra of solid samples. The samples were mixed well with
potassium bromide (approximately 1:50, weight ratio) in an agate mortar and compressed
by a tablet pressing machine. The prepared tablets were scanned at wavenumbers ranging
from 4000 to 400 cm−1 after collecting the background spectrum. The signal changes of the
samples were compared to analyze the interaction between them.

2.4. Statistical Analysis

The statistical significance of dissolution profiles was analyzed by two-way variance
analysis (ANOVA) (significance level of 0.05) and a multiple post-hoc Tukey’s test using
SPSS19.0 software (IBM Corp., Armonk, NY, USA). All data were presented as means ±
standard deviation (SD) [27].

3. Results and Discussion
3.1. Characterization of TEC-HBA Cocrystals

PXRD is a powerful tool and is commonly used for the characterization of cocrystals.
The crystalline state of the starting materials of TEC and HBA, TEC/HBA physical mixture,
and TEC-HBA cocrystals are presented in Figure 2a. As shown in the figure, TEC and
HBA displayed a series of intense peaks, demonstrating their crystalline character. The
TEC/HBA PM showed all of the major peaks from TEC and HBA at various diffraction
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angles, which suggested that the crystallinity of the drug and HBA remained unchanged
in the physical mixture. The TEC-HBA cocrystals exhibit new characteristic interference
peaks at 2θ at 11.50◦ and 14.18◦. Moreover, 2θ angles such as 13.77◦ and 42.03◦ of TEC
disappeared. The PXRD pattern of the cocrystal showed characteristic profiles that were
different from those of the two starting materials, suggesting the formation of a new
crystalline phase.

Figure 2. PXRD (a), DSC (b), SEM (c), and FTIR (d) patterns of TEC, HBA, TEC/HBA physical
mixture, and TEC-HBA cocrystals.

Thermal analyses can provide information related to melting, decomposition, or
changes in the specific heat capacity that determine the physicochemical status of a drug
dispersed in the carrier. Figure 2b shows the DSC thermal behavior of samples. TEC exhib-
ited a dehydration phenomenon between 110 and 160 ◦C, followed by a sharp endothermic
peak attributed to the melting point at 195.9 ◦C, which indicated a crystalline hydrate struc-
ture. HBA was characterized by a melting point at 215 ◦C. TEC-HBA cocrystals displayed
a sharp peak at 168.1 ◦C, which confirmed a typical crystalline structure.

SEM is a visualized tool to observe the external morphology of solid samples. Pho-
tographs of TEC, HBA, TEC/HBA PM, and TEC-HBA cocrystals are shown in Figure 2c.
The morphology of TEC was six prismatic-shaped crystals, and HBA appeared as sharp
and angular crystals. The PM showed the characteristic crystallinity of HBA adhered to
the surface of TEC. In contrast, the powder of TEC-HBA cocrystals appeared as homoge-
neous acicular crystals, and the crystalline structure of TEC and HBA disappeared, which
suggested the formation of new crystals.

The changes in the bonding between functional groups could be observed through
FTIR spectroscopy. The TEC, HBA, TEC/HBA PM, and TEC-HBA cocrystals were also
analyzed by FTIR spectroscopy to obtain evidence of noncovalent interactions, and the
results are shown in Figure 2d. TEC had characteristic absorption bands of amide at
3469.54 cm−1 for νN–H, 1665.33 cm−1 for νC=O, and 1620.79 cm−1 for βN–H; C=O stretching
occurred at 1716.43 cm−1, and C=C stretching of an aromatic ring appeared at 1563.22 cm−1.
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Pure HBA displayed –OH and C=O absorption at 3391.26 and 1676.38 cm−1, respectively.
The TEC/HBA PM showed the characteristic absorption bands from TEC and HBA without
any functional group shift, which suggested that there was no interaction between the
drug and coformer. For TEC-HBA cocrystals, the amide group vibration signals of TEC
shifted from 3469.54 to 3398.46 cm−1, and the C=O stretching of HBA shifted from 1676.38
to 1519.33 cm−1, indicating the formation of H-bonds between TEC and HBA.

Overall, the novel TEC-HBA cocrystal formation was confirmed by PXRD, DSC, and
SEM, and the H-bonding between the drug and coformer was verified by FTIR. The drug
TEC and HBA molar ratio was 1:1, which was obtained by the HPLC method (2.2.4),
analyzing TEC and HBA simultaneously (data not shown).

3.2. Solubility Study
3.2.1. Effects of Additives on the Solubility of TEC

The solubility of TEC in solutions with different levels of surfactants and polymers
(0.1%, 0.25%, 0.5%, 0.75%, 10%, w/v) are shown in Figure 3a,b, respectively. For surfactants,
the solubility of TEC was improved with increasing surfactant concentration. A suitable
linear relation was obtained between the concentration and the solubility, indicating the
micellar solubilization equilibria when the concentration of surfactants was above the
CMC [35]. Different solubility profiles of the drug were observed in solutions with different
surfactants. The order of increasing solubility was found to be Tween 80 > RH40 > SDS
> P407 > F68 (level ≤ 0.25%) and SDS > Tween 80 > RH40 > P407 > F68 (level ≥ 0.5%).
However, in the case of polymers such as HPC, HPMC, K30, and VA64, the solubility pro-
files were very different, in which solubility decreased at the beginning and then increased
and decreased again with increasing polymer concentration. The reason might be due to
the nonlinear precipitation inhibition effect on drugs with different concentrations of the
polymers. For CMC-Na, the polymer concentration had little effect on the drug solubility.

Figure 3. Solubility of TEC in solutions with different levels of surfactants (a) and polymers (b).

3.2.2. Effects of pH on Solubility of TEC-HBA Cocrystals

TEC is a weak acid, and its solubility increases with increasing pH [7]. To study the
effects of dissolution media, the solubility of TEC, HBA, TEC/HBA PM, and TEC-HBA
cocrystals in water, FaSSGF, and FeSSIF were investigated, and the results are shown in
Figure 4a. For TEC, in both FaSSGF and FeSSIF, the solubility of TEC from the cocrystals
was significantly higher than that from pure TEC and PM, and the concentration of TEC
increased with increasing pH value. However, in the case of water, the solubility of the
pure drug was the highest of the three samples. To investigate the possible mechanism,
the pH values of the bulk media solutions were also measured after the solubility test
and are given in Figure 4a. In water solution, the pH value of the pure drug solution was
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higher than that of PM and cocrystals; hence, the highest drug solubility of pure TEC was
obtained due to the acidifying effect of HBA of the other two. This result was in agreement
with previous studies for ketoconazole with pH-dependent solubility, which reported that
acidic coformers could lower the interfacial pH and significantly reduce the dissolution
of ketoconazole cocrystals [36]. For both FaSSGF and FeSSIF with buffer ability, the pH
values of TEC, PM, and cocrystal samples were close, and thus, the solubility advantage
of cocrystals could emerge. Therefore, the solubility of cocrystals was affected by both
dissolution media and coformers.

Figure 4. Concentration of TEC (1) and HBA (2) from single components, PM and cocrystals in dissolution media (a),
surfactant solutions (b), and polymer solutions (c). (a-1) TEC in dissolution media, (b-1) TEC in surfactant solutions, (c-1)
TEC in polymer solutions, (a-2) HBA in dissolution media, (b-2) HBA in surfactant solutions, (c-2) HBA in polymer solutions.

For water-soluble HBA, the concentration of a single component in the three media
was considerable. Because the amount of HBA in PM and cocrystals is limited by the
ratio of drug and coformer, the concentration of HBA from PM and cocrystals in the three
media are considerably lower than the solubility capacity of HBA. Compared with PM, the
concentration of HBA was lowered due to the formation of cocrystals.

3.2.3. Effects of Additives on the Solubility of TEC-HBA Cocrystals

The concentration of TEC and HBA from a single component, PM, and cocrystals in
solutions with surfactants and polymers (0.25% and 0.5%, w/v) are shown in Figure 4b,c,
respectively. The addition of both surfactant and polymers can improve the solubility
of TEC in all three samples. The higher the concentration of additives, the greater the
solubility of the drug. The drug solubility ranked from highest to lowest as follows: TEC-
HBA cocrystals > pure TEC > TEC/HBA PM (both at the 0.25% and 0.5% levels). For PM,
the low solubility might be due to the low interfacial pH generated by HBA. In the case of
surfactant, the order of drug solubility of cocrystals was found to be Tween 80 > RH40 >
SDS > P407 > F68 (level ≤ 0.25%) and SDS > Tween 80 > RH40 > P407 > F68 (level ≥ 0.5%).
In the case of polymers, the order of drug solubility of cocrystals was found to be HPMC
> HPC > VA64 > K30 > CMC-Na (both at the 0.25% and 0.5% levels). Previously, HPMC
was reported to be more effective than PVP in inducing supersaturation of carbamazepine-
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succinic acid (CBZ-SUC) cocrystals [15]. The drug solubility order in cocrystals and that of
the pure drug were consistent for both surfactant and polymers, indicating that the HBA in
cocrystals might play a small role in the process of cocrystal dissolution in solution with
additives due to its fast dissolution and diffusion into the bulk media. However, there
was no significant difference between the solubility of exemestane-maleic acid (EXE-MAL)
cocrystals in phosphate buffer alone and in predissolved polymers due to the rapid SMPT
of the cocrystals [37].

For HBA, the solubility in cocrystals was lower than that of PM, suggesting that the
dissolution of HBA from the lattice of TEC-HBA cocrystals was more difficult than that
from the lattice of pure HBA in PM.

To compare the difference between surfactants and polymers, solid residue samples of
TEC, TEC/HBA PM, and TEC-HBA cocrystals before and after the solubility test in different
solutions with surfactants and polymers were studied using SEM, and the results are
shown in Figure 5. The solid residues of TEC and PM showed the characteristic cylindrical
morphology of TEC without significant change, indicating the complete dissolution of HBA
from PM and no crystal transformation of TEC during the solubility test. For cocrystals,
the residues exhibited the morphology of cocrystals and TEC, in which the particle size
in surfactant solutions was slightly larger than that in polymer solutions, suggesting the
higher precipitation inhibition effect of polymers. There was no significant difference
between the 0.25% and 0.5% levels for either surfactants or polymers.

3.3. Intrinsic Dissolution

The dissolution profile in pH 6.8 buffer at 37 ◦C and the corresponding IDR values of
samples are shown in Figure 6. The IDR values are 0.0024, 0.0018 and 0.0054 mg/min/cm2

for TEC, TEC/HBA PM and TEC-HBA cocrystals, respectively. IDR of TEC-HBA cocrystals
was higher than that of pure TEC and TEC/HBA PM, indicating that the slower crystalliza-
tion rate of TEC from the solution [38]. The lower IDR of TEC/HBA PM compared with
the pure drug might be due to the low pH environment generated by HBA [39].



Pharmaceutics 2021, 13, 1772 11 of 21

Figure 5. Cont.
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Figure 5. SEM photographs of solid residues of solubility tests in surfactant and polymer
solutions at 0.25% and 0.5% (w/v) levels.
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Figure 6. Intrinsic dissolution profiles (cumulative amount versus time) of TEC-HBA cocrystal in
pH 6.8 buffer at 37 ◦C in comparison to pure TEC and TEC/HBA PM from a pellet with a surface of
0.5 cm2, and calculated IDR in mg/min/cm2.

3.4. Powder Dissolution under Sink and Nonsink Conditions

The dissolution pattern of cocrystals is important to predict the in vivo absorption
behavior, particularly for BCS II drugs, for which absorption is dissolution-rate limited.
Powder dissolution under sink conditions is usually performed to compare drug disso-
lution in different states, while nonsink conditions are commonly used to maintain a
supersaturation state in solution [40,41]. In this study, biorelevant media composed of
conditions in FaSSGF and FeSSIF were used as the dissolution media to obtain a better
understanding. Dissolution profiles of samples in water, FaSSGF, and FeSSIF under sink
conditions and in water under nonsink conditions are shown in Figures 7a–c and 8, respec-
tively. For drugs under sink conditions, the drug dissolution of cocrystals was much higher
than that of pure TEC and PM in all three media, exhibiting the solubility advantage of
cocrystals. Compared with the drug dissolution from PM, the pure drug dissolution was
higher in water and lower in FaSSGF and FeSSIF, which is consistent with the drug solubil-
ity order results in Section 3.2.3, suggesting the solubility-limited dissolution patterns of
poorly water-soluble TECs. In the case of highly soluble HBA, fast and complete dissolution
was observed both in PM and cocrystals (within 15 min). It was noted that the final pH of
dissolution media measured after dissolution experiments was the same as the initial pH,
which meant that the acidic pH effect of HBA might be negligible during the dissolution
process under sink conditions. Continuous drug dissolution was obtained from the crystal
lattice after the leakage of HBA, and the improvement in the dissolution of cocrystals might
lie in the decrease 0in the lattice energy effect by the formation of cocrystals.
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Figure 7. Powder dissolution profiles of TEC in water (a), FaSSGF (b), and FeSSIF (c) under
sink conditions.
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Figure 8. Powder dissolution profiles of TEC in water under nonsink conditions.

Interestingly, the dissolution of cocrystals in water without any additives under non-
sink conditions made a great difference (Figure 8), in which a typical spring and parachute
profile was observed and was significantly higher than that of pure TEC and PM. For
TEC-HBA cocrystals, the highest dissolution concentration (Cmax) of TEC was 5.07 µg/mL,
and the supersaturation duration time was 30 min (Tmax). Then, the drug concentration
decreased to an equilibrium value slowly within 6 h. The dissolution of TEC from PM was
slightly lower than that of pure TEC, which was consistent with previous results.

3.5. Effect of Additives on Dissolution under Nonsink Conditions

The dissolution results of surfactant and polymer solutions at different concentrations
(0.25% and 0.5%, w/v) under nonsink conditions are shown in Figure 9, respectively. TEC re-
lease from the TEC-HBA cocrystal was significantly improved in the presence of surfactant
and polymers (p < 0.05), except CMC-Na (p > 0.05). Parameters of the dissolution curve of
TEC-HBA cocrystals, such as Cmax and Tmax, under nonsink conditions with 0.25% and
0.5% surfactants and polymers are shown in Table 2. Generally, the dissolution curves of
solutions with polymers were smoother than those of surfactants, which could be reflected
from Tmax in Table 2. The reason for the difference between the surfactants and polymers
might rely on the different mechanisms of the two on the solubility control (the “spring”)
and supersaturation (the “parachute”) [42].

It was reported that additives could improve the dissolution of cocrystals by three
mechanisms: (1) thermodynamic stabilization of cocrystals involving inhibition of SMPT;
(2) generation of metastable polymorphs, which have higher aqueous solubility than their
stable counterparts; or (3) generation of an amorphous phase [43]. The inhibition mecha-
nism of additives of both surface and bulk precipitation was affected by the dissolution
medium components [40], which were discussed as follows in the present study.



Pharmaceutics 2021, 13, 1772 16 of 21

Figure 9. Powder dissolution profiles under nonsink conditions in surfactant and polymer solutions
at different concentrations. *** and **** indicate the difference in 1% and 0.1% level, respectively.
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Table 2. In vitro profiles of dissolution and precipitation of TEC-HBA cocrystals under nonsink conditions in solution with
surfactants and polymers at 0.25% and 0.5% (w/v) level.

Solvent System Tmax/min Cmax/µg·min−1 Spring-Parachute
Properties

Water (without additives) 30 5.07 +

Surfactants
SDS

0.25% 45 9.66 +
0.5% 30 25.33 +

Lutrol® F68
0.25% 120 6.80 +
0.5% 60 7.38 +

Kolliphor® P407
0.25% 120 8.38 +
0.5% 180 10.66 -

Tween 80
0.25% 90 15.72 +
0.5% 180 17.65 +

Cremophor RH 40 0.25% 90 14.20 +
0.5% 90 20.87 +

Polymers
PVP K30

0.25% 240 6.18 +
0.5% 240 6.79 +

PVP VA64
0.25% 240 7.90 +
0.5% 240 8.63 +

HPMC-E5
0.25% 300 18.75 +
0.5% 300 22.68 +

HPC-LF
0.25% / / -
0.5% / / -

CMC-Na7L2P
0.25% 240 4.61 +
0.5% 240 5.17 +

“+” with spring-parachute properties, “-” without spring-parachute properties.

3.5.1. Effect of Surfactants

The concentration of surfactants played a great role in the dissolution patterns of
cocrystals based on the micelle solubilization mechanism. When the TEC-HBA cocrystals
dissolved, the hydrophobic drug entered the core of micelles, and thus, the drug dissolution
was improved. In addition, the surfactant can decrease the surface tension and free energy
of the solution, improve the wettability of the drug, and then improve the dissolution.
For surfactants at the 0.25% level (w/v), compared with water without surfactant, the
dissolution profiles showed a spring-parachute pattern with higher Cmax and Tmax in
all five surfactant solutions. This result indicated that the addition of surfactants could
successfully maintain the supersaturated state of TEC in solutions for a long time (6 h).
The order of Tmax was found to be F68 ≈ P407 > Tween 80 ≈ RH40 > SDS. The Cmax
from high to low was Tween 80 > RH40 > SDS > P407 > F68, consistent with the order
of solubility results in Section 3.2.1. When the concentration of surfactants increased to
0.5%, the spring-parachute profiles disappeared for Tween 80 and RH40 due to their higher
solubilization capacity. For SDS and P407, the Tmax decreased, and Cmax increased with
increasing concentration. However, for P407, both Tmax and Cmax increased with increasing
concentration. These differences indicated that the type and functional group of surfactants
greatly influenced the dissolution behavior of cocrystals. For example, the dissolution of
resveratrol (RSV) cocrystals demonstrated little improvement in comparison with RSV,
which also suggested that surfactant-mediated dissolution was greatly relevant to the
properties of surfactants [20]. Additionally, a previous study showed that sodium dodecyl
sulfate (SLS) and Tween 80 had little influence on the solubility of the carbamazepine-
nicotinamide (CBZ–NIC) cocrystal, but they had opposite effects on the IDR [22]. Cocrystal
solubilization could be quantitatively predicted from drug solubilization [44]. Although the
addition of surfactants can also enhance the dissolution profiles of cocrystals, it is notable
that surfactants can have a negative impact on drug permeation and absorption [45] and
reduce the amount of molecularly dissolved drugs [46].



Pharmaceutics 2021, 13, 1772 18 of 21

3.5.2. Effect of Polymers

Polymers are the most commonly used additives to enhance the dissolution of cocrys-
tals because of the polymer-induced delay of nucleation and crystal growth effect [27]. It
was reported that polymers could unlock the supersaturation potential and inhibit SMPT
in both the bulk and particle surfaces [15]. When a polymer is dissolved in solution, the
polymer molecules can be adsorbed on the crystal surface to form an adsorption layer,
affecting bulk diffusion and surface diffusion [47]. The interaction of polymers with the
crystal surface could alter the dissolution properties of cocrystals and thus improve their
solubility and dissolution [40]. The stronger interactions were, the higher dissolution ex-
hibited [37]. Additionally, the rate of dissolution is mainly governed by the intermolecular
interactions between the solute and solvent, which could be modulated in the presence of
polymers [48].

In the present study, supersaturation of TEC-HBA cocrystals in the bulk phase was
also obviously observed (Figure 9). Many factors could affect the inhibition effect of the
polymers, including the cocrystal dissolution mechanism, interactions between the cocrys-
tal surfaces and the polymers, and the mobility and conformation of the polymers [28].
Differential dissolution profiles of the cocrystal were observed for each polymer with
different monomers. Unlike surfactants, the concentration of polymers had little effect
on the Tmax of the dissolution curve. The Tmax of the curve at the 0.25% and 0.5% levels
was the same, which was much higher than the Tmax of the curve in water. The Cmax of
HPMC-E5 and HPC-LF solutions were significantly increased compared with water, while
the other polymers had little influence on it. The order of Cmax was found to be HPMC >
PVP VA64 > PVP K30 > CMC-Na, which was consistent with the order of solubility results
in Section 3.2.1. The cellulosic polymer HPMC contains a large number of O–H donor
groups, which can form hydrogen bonds with hydrogen-bond acceptors, explaining its
suitable precipitation inhibitor properties. Similar behavior has been reported for other
cocrystal phases in the literature [27]. Additionally, there was no increase in the drug
release rate from the cocrystals at different percentages of HPMC due to the increased
viscosity of the dissolution medium, which can decrease the dissolution of cocrystals [29].
However, for carbamazepine-nicotinamide cocrystals, the dissolution was significantly
affected by the percentage of HPMC in the formulation [49]. The relationship between the
properties of polymers and SMPT needs further study.

3.5.3. Relationship between the Parameters of Dissolution and Solubility Test

This effect of additives on the dissolution of cocrystals could be attributed to their
contribution to solubility. To obtain more information about the influence of solubility on
dissolution, the relationship between the solubility of TEC from TEC-HBA cocrystals was
regressed to the Cmax of the dissolution curve in solutions with surfactants or polymers at
the 0.25% (w/v) level using linear regression, and the results are shown in Figure 10. For
surfactants, it was found that the solubility had a suitable linear relationship with Cmax
(R = 0.9998), which was independent of the type of surfactant. However, for polymers,
there was no significant relationship between the two. This interesting relationship was
first revealed, which can provide a simple way to predict the in vitro dissolution behavior
for cocrystals based on the solubility results.
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Figure 10. Regression line of the Cmax and drug solubility.

4. Conclusions

In this study, the influences of five surfactants and five polymers on the dissolution
behavior of TEC-HBA cocrystals were investigated. Both the surfactants and polymers
showed significant dissolution enhancement effects in the predissolved solutions. More-
over, most of the polymers were more effective than the surfactant according to the longer
Tmax and higher Cmax. These results demonstrate that the dissolution behavior of cocrystals
might be achieved by adding either a surfactant or a polymer to maintain supersaturation.
Interestingly, we found a linear relationship between the drug solubility and Cmax of the dis-
solution curve of the drug in solutions with surfactants, while no similar phenomena were
found in solutions with polymer. These relationships could provide a framework to develop
a drug product using thermodynamically highly unstable cocrystals for dissolution-rate
limited APIs.
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