Supplementary Materials: Pharmacokinetic-Pharmacodynamic Modeling of Tumor Targeted Drug Delivery Using Nano-Engineered Mesenchymal Stem Cells

Shen Cheng, Susheel Kumar Nethi, Mahmoud Al-Kofahi and Swayam Prabha*

Citation: Cheng, S.; Nethi, S.K.; Al-Kofahi, M.; Prabha, S
Pharmacokinetic-Pharmacodynamic Modeling of Tumor Tar geted Drug Delivery Using NanoEngineered Mesenchymal Stem Cells.

Pharmaceutics 2021, 13, 92.
https://doi.org/10.3390/pharmaceutics13010092

Received: 02 December 2020
Accepted: 11 January 2021
Published: 15 January 2021

Publisher's Note: MDPI stays neu tral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors Licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licens es/by/4.0/).

Figure S1. Individual tumor bioluminescence fittings with developed PK-PD models in animals receiving no treatments (ID: 1-18), PTX solution (ID: 19-24), PTX-PLGA-NPs (ID: 25-31) and nanoMSCs (ID: 32-38). Dots represents observed tumor bioluminescence. Red lines are the individual predictions for tumor bioluminescence profiles. Blue dashed lines are the population predictions for tumor bioluminescence profiles. Plots are on \log scales.

Figure S2. Conditional weighted residuals (CWRES) versus time stratified by treatment groups.

Figure S3. Conditional weighted residuals (CWRES) versus population predictions (PRED) stratified by treatment groups.

Figure S4. Dependent variables (DV) versus individual predictions (IPRED) stratified by treatment groups.

Figure S5. Dependent variables (DV) versus population predictions (PRED) stratified by treatment groups.

PTX Solution PK Model NONMEM code

Shen Cheng

11/6/2020

```
$PROB PTX Solution COMPARTMENT MODEL
$INPUT C ID TIME DV AMT CMT EVID MDV Ov
$DATA PTXNGML.csv IGNORE=C
$SUBROUTINES ADVAN13 TRANS=1 TOL=12
$MODEL NCOMP=3
COMP(CENT,DEFDOSE) ;central compartment
COMP(TUMOR) ;tumor compartment
COMP(PHE) ;peripheral compartment
$PK
TVCL = THETA(1) ;typical clearance for PTX free drug
TVCLD = THETA(2) ;typical distribution Clearance for PTX free drug
TVVPL = THETA(3) ;typical volume of distribution of central compartment for PTX free
drug
TVVPHE = THETA(4) ;typical volume of distribution of peripheral compartment for PTX fr
ee drug
TVFUPL = THETA(5) ;typical plasma to blood ratio for PTX free drug
TVPDRUG = THETA(6) ;typical permeability rate constant for PTX free drug
TVDDRUG = THETA(7) ;typical diffusion rate constant for PTX free drug
TVEDRUG = THETA(8) ;typical tumor fraction accessible by PTX free drug
```

CL $=$ TVCL $; m L / h r$
CLD = TVCLD ; mL/hr
VPL = TVVPL ;mL
VPHE = TVVPHE ;mL
FUPL = TVFUPL ;unitless
PDRUG = TVPDRUG ;cm/hr
DDRUG = TVDDRUG ;cm^2/hr
EDRUG = TVEDRUG ;unitless
RTUMOR $=0.42 \quad ; \mathrm{cm}$ tumor radius
RKROGH $=0.0008 ; \mathrm{cm}$ average distance between two tumor associated capillaries
RCAP $=0.0075$;cm average radius of tumor associated capillaries
VT $=0.3$; mL tumor volume

```
S1 = (1/FUPL)*VPL ;FUPL: scaling factor PB ratio
S2 = VT
$DES
CPL = A(1)/VPL
CT = A(2)/VT
CPHE = A(3)/VPHE
DADT(1) = CLD*(CPHE-CPL)-CL*CPL-(2*PDRUG*RCAP)/(RKROGH*RKROGH)*VT*(CPL*EDRUG-CT)-(6*DD
RUG)/(RTUMOR*RTUMOR)*VT*(CPL*EDRUG-CT)
DADT(2) = (2*PDRUG*RCAP)/(RKROGH*RKROGH)*VT*(CPL*EDRUG-CT)+(6*DDRUG)/(RTUMOR*RTUMOR)*V
T*(CPL*EDRUG-CT)
DADT(3) = CLD*(CPL-CPHE)
$ERROR
IF(CMT.EQ.1) THEN
IPRED = A(1)/S1
Y = IPRED*(1+ERR(1))
ENDIF
IF(CMT.EQ.2) THEN
IPRED = A(2)/S2
Y = IPRED*(1+ERR(2))
ENDIF
$THETA
\begin{tabular}{ll}
\((0,0.9)\) & \(; C L \quad \mathrm{~mL} / \mathrm{hr}\) \\
\((0,0.2)\) & ;CLD mL/hr \\
\((0,7)\) & ;VPL mL \\
\((0,18.5)\) & ;VPHE mL \\
\((0,0.0174,0.1)\) & ;FUPL \\
\((0.0875 \mathrm{FIX})\) & ;PDRUG cm/hr \\
\((0.01 \mathrm{FIX})\) & ;DDRUG cm^2/hr \\
\((0.44 \mathrm{FIX})\) & ;EDRUG unitless
\end{tabular}
\$OMEGA
1.34
0.421
```

\$ESTIMATION METHOD=0 MAXEVAL=30000000 NOABORT NSIG=3 SIGL=12 PRINT=5 MSF=005.msf

\$COV
\$TABLE ID TIME DV CMT IPRED PRED RES WRES CWRES CL CLD VPL VPHE FUPL ONEHEADER NOPRINT F ILE=sdtab005
\$TABLE ID CL CLD VPL VPHE FUPL ONEHEADER NOPRINT FILE=patab005

PTX-PLGA-NPs PK Model NONMEM code

Shen Cheng

11/6/2020

```
$PROB PTX PLGA NPs COMPARTMENT MODEL
$INPUT C ID TIME DV AMT CMT EVID MDV OV
$DATA NPNGML.csv IGNORE=C
$SUBROUTINES ADVAN13 TRANS=1 TOL=12
$MODEL NCOMP=8
COMP(CNP) ;central compartment for PTX in the form of PLGA-NPs
COMP(TNP) ;tumor compartment for PTX in the form of PLGA-NPs
COMP(PNP) ;peripheral compartment for PTX in the form of PLGA-NPs
COMP(CPTX) ;central compartment for PTX free drug
COMP(TPTX) ;tumor compartment for PTX free drug
COMP(PPTX) ;peripheral compartment for PTX free drug
COMP(CTOT) ;concentration summation for central compartments
COMP(TTOT) ;concentration summation for tumor compartments
```

\$PK
TVCLNP = THETA(1) ;typical clearance for PTX in the form of PLGA-NPs
TVCLDNP = THETA(2) ;typical distribution clearance for PTX in the form of PLGA-NPs
TVVPLNP = THETA(3) ;typical volume of distribution of central compartment for PTX in the form of PLGA-NPs
TVVPHENP = THETA(4) ;typical volume of distribution of peripheral compartment for PTX in the form of PLGA-NPs
TVFUPLNP $=$ THETA(5) ;typical plasma to blood ratio for PTX in the form of PLGA-NPs
TVKREL = THETA(6) ;typical PTX release rate constant
TVPNP = THETA(7) ;typical permeability rate constant for PTX in the form of PLGA-NP s
TVDNP = THETA(8) ;typical diffusion rate constant for PTX free drug in the form of PLGA-NPs
TVENP = THETA(9) ; typical tumor fraction accessible by PTX free drug in the form of PLGA-NPs

CLNP = TVCLNP ; mL/hr
CLDNP = TVCLDNP ; mL/Hr
VPLNP = TVVPLNP ; mL
VPHENP = TVVPHENP ; mL
FUPLNP = TVFUPLNP ;unitless

KREL	$=$ TVKREL	$; 1 / \mathrm{hr}$
PNP	$=$ TVPNP	$; \mathrm{cm} / \mathrm{hr}$
DNP	$=$ TVDNP	$; \mathrm{cm}^{\wedge} 2 / \mathrm{hr}$
ENP	$=$ TVENP	$;$ unitless

RTUMOR $=0.42 \quad ; \mathrm{cm}$ tumor radius
RKROGH $=0.0008 ;$ cm average distance between two tumor associated capillaries
RCAP $=0.0075 ; c m$ average radius of tumor associated capillaries
VT $=0.3$; mL tumor volume
CL $\quad=0.909 \quad ; \mathrm{mL} / \mathrm{hr}$ typical clearance for PTX free drug
CLD $=0.336$; mL/hr typical distribution Clearance for PTX free drug
VPL $=6.64$; mL typical volume of distribution of central compartment for PTX fre
e drug
VPHE = 18.5
; mL typical volume of distribution of peripheral compartment for PTX
free drug
FUPL $=0.0237$; unitless typical plasma to blood ratio for PTX free drug
PDRUG $=0.0875 \quad ; \mathrm{cm} / \mathrm{hr}$ typical permeability rate constant for PTX free drug
DDRUG $=0.01 \quad ; \mathrm{cm}^{\wedge} 2 / \mathrm{hr}$ typical diffusion rate constant for PTX free drug
EDRUG $=0.44$; unitless typical tumor fraction accessible by PTX free drug

S1=(1/FUPLNP)*VPLNP ;FUPLNP: scaling factor PB ratio for PTX in the form of PLGA-NPs

S2=VT
S4=(1/FUPL)*VPL ;FUPL: scaling factor PB ratio for PTX free drug
S5=VT

A_0(7) = 5000/S1 ;initialize concentration in concentration summation of central compartments
\$DES
CPLNP $=A(1) / V P L N P$
CTNP $=A(2) / V T$
CPHENP $=\mathrm{A}(3) / \mathrm{VPHENP}$
$C P L=A(4) / V P L$
$\mathrm{CT}=\mathrm{A}(5) / \mathrm{VT}$
CPHE $\quad=\mathrm{A}(6) / \mathrm{VPHE}$

DADT (1) $=$ CLDNP*(CPHENP-CPLNP)-CLNP*CPLNP-(2*PNP*RCAP)/(RKROGH*RKROGH)*(CPLNP*ENP-CTN
P)*VT-(6*DNP)/(RTUMOR*RTUMOR)*(CPLNP*ENP-CTNP)*VT-KREL*CPLNP*VPLNP ;PLNP

DADT (2) $=(2 * P N P * R C A P) /(R K R O G H * R K R O G H) *(C P L N P * E N P-C T N P) * V T+(6 * D N P) /(R T U M O R * R T U M O R) *(C P$
LNP*ENP-CTNP)*VT-KREL*CTNP*VT

```
DADT(3) = CLDNP*(CPLNP-CPHENP)-KREL*CPHENP*VPHENP
;PERINP
DADT(4) = CLD*(CPHE-CPL)-CL*CPL-(2*PDRUG*RCAP)/(RKROGH*RKROGH)*VT*(CPL*EDRUG-CT)-(6*DD
RUG)/(RTUMOR*RTUMOR)*VT*(CPL*EDRUG-CT)+KREL*CPLNP*VPLNP
    ;PL
DADT(5) = (2*PDRUG*RCAP)/(RKROGH*RKROGH)*(CPL*EDRUG-CT)*VT+(6*DDRUG)/(RTUMOR*RTUMOR)*
(CPL*EDRUG-CT)*VT+KREL*CTNP*VT
    ;T
DADT(6) = CLD*(CPL-CPHE)+KREL*CPHENP*VPHENP
                                    ;PERI
```



```
$ERROR
CC1 = A(1)
CC2 = A(2)
CC3 = A(3)
CC4 = A(4)
CC5 = A(5)
CC6 = A(6)
CC7 = A(7)
CC8 = A(8)
IF(CMT.EQ.7) THEN
IPRED = A(1)/S1+A(4)/S4
Y = IPRED*(1+ERR(1))
ENDIF
IF(CMT.EQ.8) THEN
IPRED = A(2)/S2+A(5)/S5
Y = IPRED*(1+ERR(2))
ENDIF
```

\$THETA

$(0,0.2)$; CLNP	$\mathrm{mL} / \mathrm{hr}$
$(0,0.1)$; CLDNP	$\mathrm{mL} / \mathrm{hr}$
$(0,1.3)$; VPLNP	mL
(0,42.8)	;VPHENP	mL
(0,0.003)	; FUPLNP	unitless
(0.0085 FIX)	; KREL	$1 / \mathrm{hr}$
(0.00035 FIX)	; PNP	$\mathrm{cm} / \mathrm{hr}$
(0.0000036 FIX)	; DNP	$\mathrm{cm}{ }^{\wedge} 2 / \mathrm{hr}$
(0.055 FIX)	; ENP	unitless

\$OMEGA
0.385
0.326
\$ESTIMATION METHOD=0 MAXEVAL=30000000 NOABORT NSIG=3 SIGL=9 PRINT=5 MSF=0010.msf
\$COV
\$TABLE ID TIME DV CMT MDV IPRED PRED CWRES CTOTC CTOTT CLNP CLDNP VPLNP FUPLNP VPHENP K REL PNP DNP ENP VPLNP CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 ONEHEADER NOPRINT FILE=sdtab0010 \$TABLE ID CLNP CLDNP VPLNP FUPLNP VPHENP KREL PNP DNP ENP VPLNP ONEHEADER NOPRINT FILE= patab0010

nano-MSCs PK Model NONMEM code

Shen Cheng

11/6/2020

```
$PROB nano-MSCs COMPARTMENT MODEL
$INPUT C ID TIME DV AMT CMT EVID MDV OV
$DATA MSCNGML.csv IGNORE=C
$SUBROUTINES ADVAN8 TRANS=1 TOL=12
$MODEL NCOMP=11
COMP(CMSC) ; central compartment for PTX in the form of nano-MSCs
COMP(TMSC) ; tumor compartment for PTX in the form of nano-MSCs
COMP(PMSC) ;peripheral compartment for PTX in the form of nano-MSCs
COMP(CNP) ; central compartment for PTX in the form of PLGA-NPs
COMP(TNP) ; tumor compartment for PTX in the form of PLGA-NPs
COMP(PNP) ; peripheral compartment for PTX in the form of PLGA-NPs
COMP(CPTX) ; central compartment for PTX free drug
COMP(TPTX) ;tumor compartment for PTX free drug
COMP(PPTX) ;peripheral compartment for PTX drug
COMP(CTOT) ; concentration summation for central compartments
COMP(TTOT) ; concentration summation for tumor compartments
```

\$PK
TVK12 $=$ THETA(1) ; typical rate constant describing central compartment to tumor co mpartment transfer for PTX in the form of nano-MSCs
TVK13 $=$ THETA(2) ; typical rate constant describing central compartment to peripher al compartment transfer for PTX in the form of nano-MSCs
TVKEXO = THETA(3) ; typical first order exocytosis rate constant for PTX-PLGA-NPs fr om nano-MSCs

TVVPLMSC = THETA(4) ; typical central compartment volume of distribution for PTX in th e form of nano-MSCs

TVVPHEMSC = THETA(5) ; typical peripheral compartment volume of distribution for PTX in the form of nano-MSCs

K12	$=$ TVK12	$; 1 / \mathrm{hr}$
K13	$=$ TVK13	$; 1 / \mathrm{hr}$
KEXO	$=$ TVKEXO	$; 1 / \mathrm{hr}$
VPLMSC	$=$ TVVPLMSC	$; \mathrm{mL}$
VPHEMSC	TVVPHEMSC	$; \mathrm{mL}$

RTUMOR $=0.42$; cm tumor radius
RKROGH $=0.0008$; cm average distance between two tumor associated capillaries
RCAP $=0.0075$; cm average radius of tumor associated capillaries
$\mathrm{VT}=0.3$; mL tumor volume
$\mathrm{CL}=0.909$; mL/hr typical clearance for PTX free drug
CLD $=0.336$; mL/hr typical distribution Clearance for PTX free drug
VPL $=6.64$; mL typical volume of distribution of central compartment for PTX f
ree drug	
VPHE $=18.5$; mL typical volume of distribution of peripheral compartment for PT
X free drug	
FUPL $=0.0237$; unitless typical plasma to blood ratio for PTX free drug
PDRUG $=0.0875$; cm/hr typical permeability rate constant for PTX free drug
DDRUG $=0.01$; cm^2/hr typical diffusion rate constant for PTX free drug
EDRUG $=0.44$; unitless typical tumor fraction accessible by PTX free drug
CLNP $=0.241$; mL/hr typical clearance for PTX in the form of PLGA-NPs
CLDNP $=0.0627$; mL/hr typical distribution clearance for PTX in the form of PLGA-N
Ps	
VPLNP $=1.32$; mL typical volume of distribution of central compartment for PTX i
n the form of PLGA-NPs	
VPHENP $=43.2$; mL typical volume of distribution of peripheral compartment for PT
X in the form of PLGA-NPs	
FUPLNP $=0.003$; unitless typical plasma to blood ratio for PTX in the form of PLGA
-NPs	
KREL $=0.0085$;1/hr typical PTX release rate constant
PNP $=0.00035$;cm/hr typical permeability rate constant for PTX in the form of PL
GA-NPs	
DNP $=0.0000036$; cm^2/hr typical diffusion rate constant for PTX free drug in the f
orm of PLGA-NPs	
ENP $=0.055$; unitless typical tumor fraction accessible by PTX free drug in the
form of PLGA-NPs	

S1=VPLMSC
S2=VT
S4=(1/FUPLNP)*VPLNP ;FUPLNP: scaling factor PB ratio for PTX in the form of PLGA-NP S
S5=VT
S7=(1/FUPL)*VPL ;FUPL: scaling factor PB ratio for PTX free drug
S8=VT

A_0(10) $=5000 /$ VPLMSC \quad;initialize concentration in concentration summation in centra l compartments

```
$DES
CPLMSC = A(1)/VPLMSC
CTMSC = A(2)/VT
CPHEMSC = A(3)/VPHEMSC
CPLNP = A(4)/VPLNP
CTNP = A(5)/VT
CPHENP = A(6)/VPHENP
CPL = A(7)/VPL
CT = A(8)/VT
CPHE = A(9)/VPHE
```


DADT(2) $=$ K12*CPLMSC*VPLMSC-KEXO*VT*CTMSC-KREL*VT*CTMSC
DADT (3) $=$ K13*CPLMSC*VPLMSC-KEXO*VPHEMSC*CPHEMSC-KREL*VPHEMSC*CPHEMSC
DADT (4) = CLDNP*(CPHENP-CPLNP)-CLNP*CPLNP-(2*PNP*RCAP)/(RKROGH*RKROGH)*(CPLNP*ENP-CTN
P)*VT-(6*DNP)/(RTUMOR*RTUMOR)*(CPLNP*ENP-CTNP)*VT-KREL*CPLNP*VPLNP+KEXO*VPLMSC*CPLMSC
DADT $(5)=(2 * P N P * R C A P) /(R K R O G H * R K R O G H) *(C P L N P * E N P-C T N P) * V T+(6 * D N P) /(R T U M O R * R T U M O R) *(C P$
LNP*ENP-CTNP)*VT-KREL*CTNP*VT+KEXO*VT*CTMSC
DADT (6) $=$ CLDNP*(CPLNP-CPHENP) -KREL*CPHENP*VPHENP+KEXO*VPHEMSC*CPHEMSC
$\operatorname{DADT}(7)=$ CLD* $($ CPHE-CPL) - CL*CPL- $(2 * P D R U G * R C A P) /(R K R O G H * R K R O G H) * V T *(C P L * E D R U G-C T)-(6 * D D$
RUG)/(RTUMOR*RTUMOR)*VT* (CPL*EDRUG-CT) +KREL*CPLNP*VPLNP+KREL*VPLMSC*CPLMSC
DADT $(8)=(2 * P D R U G * R C A P) /(R K R O G H * R K R O G H) *(C P L * E D R U G-C T) * V T+(6 * D D R U G) /(R T U M O R * R T U M O R) *$
(CPL*EDRUG-CT)*VT+KREL*CTNP*VT+KREL*VT*CTMSC
DADT $(9)=$ CLD* $(C P L-C P H E)+K R E L * C P H E N P * V P H E N P+K R E L * V P H E M S C * C P H E M S C ~$
$\operatorname{DADT}(10)=\operatorname{DADT}(1) / S 1+D A D T(4) / S 4+D A D T(7) / S 7$; SUM OF CENT COMP CONC NO MASS TRANSFER
$\operatorname{DADT}(11)=\operatorname{DADT}(2) /$ S2+DADT(5)/S5+DADT(8)/S8 ;SUM OF TUMOR COMP CONC NO MASS TRANSFER

CTOTC = A(1)/VPLMSC+A(4)/VPLNP+A(7)/VPL ;total plasma concentration without account for $B P$ ratio

CTOTT $=\mathrm{A}(2) / \mathrm{VT}+\mathrm{A}(5) / \mathrm{VT}+\mathrm{A}(8) / \mathrm{VT}$

```
$ERROR
IF(CMT.EQ.10) THEN
IPRED = A(1)/S1+A(4)/S4+A(7)/S7
Y = IPRED*(1+ERR(1))
ENDIF
IF(CMT.EQ.11) THEN
IPRED = A(2)/S2+A(5)/S5+A(8)/S8
Y = IPRED*(1+ERR(2))
ENDIF
$THETA
( \(0,1.17\) ) ; K12 \(1 / \mathrm{hr}\)
(0,8.24) ;K13 1/hr
(0.081 FIX) ; KEXO 1/hr
(0,0.0000000672) ;VPLMSC mL
(0,15800) ;VPHEMSC mL
$OMEGA
0.769
0.339
```

\$ESTIMATION METHOD=0 MAXEVAL=30000000 NOABORT NSIG=3 SIGL=9 PRINT=5 MSF=0011.msf \$COV
\$TABLE ID TIME DV CMT MDV IPRED PRED CTOTC CTOTT CWRES ONEHEADER NOPRINT FILE=sdtab0011 \$TABLE ID K12 K13 KEXO VPLMSC VPHEMSC ONEHEADER NOPRINT FILE=patab0011

PK-PD Model NONMEM code

Shen Cheng

11/6/2020
\$PROB PKPD MODEL
\$INPUT C ID TIME AMT DV CMT TVO MDV EVID ORIDV TIMEDAY TYPE DVLOG CENSOR UPLL
\$DATA CTR_PTX_NP_MSC_M3_3.csv IGNORE=C
\$SUBROUTINES ADVAN13 TRANS=1 TOL=12
\$MODEL NCOMP=10
COMP (CMSC) ; central compartment for PTX in the form of nano-MSCs
COMP (TMSC) ;tumor compartment for PTX in the form of nano-MSCs
COMP (PMSC) ; peripheral compartment for PTX in the form of nano-MSCs
COMP (CNP) ; central compartment for PTX in the form of PLGA-NPs
COMP (TNP) ; tumor compartment for PTX in the form of PLGA-NPs
COMP (PNP) ; peripheral compartment for PTX in the form of PLGA-NPs
COMP (CPTX) ; central compartment for PTX free drug
COMP (TPTX) ; tumor compartment for PTX free drug
COMP(PPTX) ; peripheral compartment for PTX free drug
COMP(M1) ;tumor compartment(fit with tumor bioluminescence)
\$PK
K12 = 1.45 ;1/hr rate constant describing central compartment to tumor comp artment transfer for PTX in the form of nano-MSCs
K13 = $10.2 \quad ; 1 / \mathrm{hr}$ rate constant describing central compartment to peripheral compartment transfer for PTX in the form of nano-MSCs
KEXO = 0.081 $\quad ; 1 / h r$ first order exocytosis rate constant for PTX-PLGA-NPs from nano-MSCs
VPLMSC $=0.000000071$
; mL central compartment volume of distribution for PTX in the fo rm of nano-MSCs

VPHEMSC= 15021
;mL peripheral compartment volume of distribution for PTX in the form of nano-MSCs
RKROGH $=0.0008 \quad ; c m$ average distance between two tumor associated capillaries
RCAP $=0.0075$; cm average radius of tumor associated capillaries
$C L \quad=0.909 \quad ; m L / h r$ clearance for PTX free drug
CLD $=0.336$; mL/hr distribution Clearance for PTX free drug
VPL $=6.64 \quad ; \mathrm{mL}$ volume of distribution of central compartment for PTX free dr
ug
VPHE $=18.5 \quad ; m L$ volume of distribution of peripheral compartment for PTX free drug

FUPL $=0.0237$
PDRUG $=0.0875$
DDRUG $=0.01$
EDRUG $=0.44$
CLNP $=0.241$
CLDNP $=0.0627$
VPLNP $=1.32$
form of PLGA-NPs
VPHENP $=43.2$
he form of PLGA-NPs
FUPLNP $=0.003$
KREL $=0.0085$
PNP $=0.00035$
DNP $=0.0000036$
PLGA-NPs
ENP $=0.055$
of PLGA-NPs
; unitless plasma to blood ratio for PTX free drug ;cm/hr permeability rate constant for PTX free drug ; cm^2/hr diffusion rate constant for PTX free drug ;unitless tumor fraction accessible by PTX free drug ; mL/hr clearance for PTX in the form of PLGA-NPs ; mL/hr distribution clearance for PTX in the form of PLGA-NPs ; mL volume of distribution of central compartment for PTX in the ; mL volume of distribution of peripheral compartment for PTX in t ; unitless plasma to blood ratio for PTX in the form of PLGA-NPs ;1/hr PTX release rate constant
;cm/hr permeability rate constant for PTX in the form of PLGA-NPs ; $\mathrm{cm}^{\wedge} 2 / \mathrm{hr}$ diffusion rate constant for PTX free drug in the form of ; unitless tumor fraction accessible by PTX free drug in the form
MU_1 = LOG(THETA(1)) ;KMAXPTX
MU_2 = LOG(THETA(2)) ;KMAXNP
MU_3 = LOG(THETA(3)) ;KMAXMSC
;; ;LKg0 START
IF(TYPE.EQ.1) LKg0 = LOG(THETA(4)) ;no treatment
IF (TYPE.EQ.2) LKg0 = LOG(THETA(5)) ;PTX Solution
IF(TYPE.EQ.3) LKg0 = LOG(THETA(6)) ;PTX PLGA NPs
IF(TYPE.EQ.4) LKg0 = LOG(THETA(7)) ;nano-MSCs
;;;LKg0 END
MU_4 = LKg0
;;;LTVBL START
IF (TYPE.EQ.1) LTVBL = LOG(THETA(8)) ; no treatment
IF (TYPE.EQ.2) LTVBL $=$ LOG(THETA(9)) ;PTX Solution
IF (TYPE.EQ.3) LTVBL $=$ LOG(THETA(10)) ;PTX PLGA NPs
IF (TYPE.EQ.4) LTVBL = LOG(THETA(11)) ;nano-MSCs
;;;LTVBL END
MU_5 = LTVBL

IC50PTX = 1.5 ; ng/mL concentration of PTX free drug can introduce 50\% KMAXPTX
IC50NP $=5.7$; ng/mL concentration of PTX in the form of PLGA-NPs can introduce 50\% KMA XNP

```
KMAXPTX = DEXP(MU_1 + ETA(1)) ;1/hr maximal tumor killing rate induced by PTX free d
rug
KMAXNP = DEXP(MU_2 + ETA(2)) ;1/hr maximal tumor killing rate induced by PTX in the
    form of PLGA-NPs
KMAXMSC = DEXP(MU_3 + ETA(3)) ;1/hr first order tumor killing rate constant induced
by PTX in the form of nano-MSCs
Kg0 = DEXP(MU_4 + ETA(4)) ;1/hr tumor growth rate constant
TVBL = DEXP(MU_5 + ETA(5)) ;1000000 photon/sec baseline tumor volume
```

A_0(10) = TVBL ;initialize tumor compartment
\$DES
TV = A(10)
IF (TV.LE.0) TV=0.001 ; prevent the existance negative tumor bioluminescence
$\mathrm{VT}=0.2749^{*}\left(\mathrm{TV}^{* *} 0.2722\right) ; \mathrm{mL}$ convert tumor bioluminescence predicted to tumor volume
RTUMOR $=\left(V^{* *}(1 / 3)\right) / 1.6 ; c m$ calculate tumor radius based on tumor volume calculated
CPLMSC $=A(1) / V P L M S C$
CTMSC $=A(2) / \mathrm{VT}$
CPHEMSC $=A(3) / V P H E M S C$
CPLNP $=A(4) / V P L N P$
CTNP $=\mathrm{A}(5) / \mathrm{VT}$
CPHENP $=A(6) / V P H E N P$
$\mathrm{CPL} \quad=\mathrm{A}(7) / \mathrm{VPL}$
$\mathrm{CT}=\mathrm{A}(8) / \mathrm{VT}$
CPHE $=\mathrm{A}(9) / \mathrm{VPHE}$
$\operatorname{DADT}(1)=-K 12 * C P L M S C * V P L M S C-K 13 * C P L M S C * V P L M S C-K E X O * V P L M S C * C P L M S C-K R E L * V P L M S C * C P L M S C ~$
DADT (2) $=$ K12*CPLMSC*VPLMSC-KEXO*VT*CTMSC-KREL*VT*CTMSC
DADT (3) $=$ K13*CPLMSC*VPLMSC-KEXO*VPHEMSC*CPHEMSC-KREL*VPHEMSC*CPHEMSC
DADT (4) $=$ CLDNP*(CPHENP-CPLNP)-CLNP*CPLNP $-(2 * P N P * R C A P) /($ RKROGH*RKROGH) * (CPLNP*ENP-CTN
P)*VT-(6*DNP)/(RTUMOR*RTUMOR)* (CPLNP*ENP-CTNP)*VT-KREL*CPLNP*VPLNP+KEXO*VPLMSC*CPLMSC
DADT $(5)=(2 * P N P * R C A P) /(R K R O G H * R K R O G H) *(C P L N P * E N P-C T N P) * V T+(6 * D N P) /(R T U M O R * R T U M O R) *(C P$

```
LNP*ENP-CTNP)*VT-KREL*CTNP*VT+KEXO*VT*CTMSC
```

$\operatorname{DADT}(6)=$ CLDNP* $($ CPLNP - CPHENP $)-$ KREL*CPHENP*VPHENP+KEXO*VPHEMSC*CPHEMSC
$\operatorname{DADT}(7)=$ CLD* $(C P H E-C P L)-C L * C P L-(2 * P D R U G * R C A P) /(R K R O G H * R K R O G H) * V T *(C P L * E D R U G-C T)-(6 * D$
DRUG)/(RTUMOR*RTUMOR)*VT*(CPL*EDRUG-CT)+KREL*CPLNP*VPLNP+KREL*VPLMSC*CPLMSC
DADT $(8)=(2 *$ PDRUG*RCAP $) /($ RKROGH*RKROGH $) *(C P L * E D R U G-C T) * V T+(6 * D D R U G) /(R T U M O R * R T U M O R) *$
(CPL*EDRUG-CT)*VT+KREL*CTNP*VT+KREL*VT*CTMSC
DADT(9) = CLD*(CPL-CPHE)+KREL*CPHENP*VPHENP+KREL*VPHEMSC*CPHEMSC
CTOTC $=\mathrm{A}(1) / \mathrm{VPLMSC}+\mathrm{A}(4) / \mathrm{VPLNP}+\mathrm{A}(7) / \mathrm{VPL}$; total plasma drug concentration without acco
unting for $B P$ ratop in plasma
CTOTT $=\mathrm{A}(2) / \mathrm{VT}+\mathrm{A}(5) / \mathrm{VT}+\mathrm{A}(8) / \mathrm{VT}$
KkillPTX = KMAXPTX*CT/(IC50PTX + CT)
KkillNP = KMAXNP*CTNP/(IC50NP + CTNP)
KkillMSC = KMAXMSC*CTMSC
DADT(10) $=$ Kg0*A(10)-KkillPTX*A(10)-KkillNP*A(10)-KkillMSC*A(10)
\$ERROR
$A A 1=A(1)$
$A A 2=A(2)$
$A A 3=A(3)$
$A A 4=A(4)$
$A A 5=A(5)$
$A A 6=A(6)$
$A A 7=A(7)$
$\mathrm{AA} 8=\mathrm{A}(8)$
AA9 $=A(9)$
AA10 = A(10)
$\mathrm{Ew}=\mathrm{A}(10)$
IF (Ew.LE.0) Ew=0.001 ; prevent the existance negative tumor bioluminescence
;;;DUMMY VARIABLE START
TYPE1=0

TYPE2=0
TYPE3=0
TYPE4=0

```
IF(TYPE.EQ.1) TYPE1=1 ; no treatments
IF(TYPE.EQ.2) TYPE2=1 ;PTX Solution
IF(TYPE.EQ.3) TYPE3=1 ;PTX PLGA NPs
IF(TYPE.EQ.4) TYPE4=1 ; nano-MSCs
```

;;;DUMMY VARIABLE END
; ; ; SDSL START
SDSL1=THETA(12) ;proportional error for no treatment group
SDSL2=THETA(13) ;proportional error for PTX solution group
SDSL3=THETA(14) ;proportional error for PTX PLGA NPs group
SDSL4=THETA(15) ;proportional error for nano-MSCs group
SDSL=SDSL1*TYPE1+SDSL2*TYPE2+SDSL3*TYPE3+SDSL4*TYPE4
;;;SDSL END
UPL=UPLL ; set upper limit for each animal
IPRED = Ew
IF (COMACT==1) PREDV = IPRED ; carryout PRED
$A Q L=1$
IF ($D V>U P L$) $A Q L=2$
IF (MDV==1) $A Q L=0$

IF (AQL.EQ.1) THEN
F_FLAG=0
Y=IPRED + IPRED*SDSL*ERR(1) ;ELS for observations below quantification limit ENDIF

IF (AQL.EQ.2)THEN
F_FLAG=1
Y=1-PHI((UPL-IPRED)/(SDSL*IPRED)) ; MLE for observations above quantification limit MDVRES=1
ENDIF
\$THETA
(0,0.0031) ;KMAXPTX 1
(0,0.0014) ;KMAXNP 2

$(0,0.000001)$;KMAXMSC	3
$(0,0.0034)$;Kg0 no treatment	4
$(0,0.0036)$;Kg0 PTX solution	5
$(0,0.0042)$;Kg0 PTX PLGA NPs	6
$(0,0.0049)$;Kg0 nano-MSCs	7
$(0,0.36)$;TVBL no treatment 8	
$(0,0.25)$;TVBL PTX solution 9	
$(0,0.6)$;TVBL PTX PLGA NPs 10	
$(0,0.1)$;TVBL nano-MSCs	11
(0.5)	;ERR no treatment	12
(0.7)	;ERR PTX solution	13
(0.6)	ERR nano-MSCs	15

\$OMEGA
0 FIX ; KMAXPTX 1
0 FIX ; KMAXNP 2
0 FIX ; KMAXMSC 3
0 FIX ; Kg0 4
0.7 ;TVBL 5
\$SIGMA
1 FIX
\$EST METHOD=1 INTER LAPLACIAN NUMERICAL SLOW MAXEVAL=9999 NOABORT NSIG=3 SIGL=9 PRINT=5 MSF=0050.msf
\$COV SLOW
\$TABLE ID TIME DV TYPE TVBL Kg0 KMAXPTX KMAXNP KMAXMSC KkillMSC KkillPTX KkillNP CT CTNP CTMSC CTOTT TV VT RTUMOR IC50PTX IC50NP
AA1 AA2 AA3 AA4 AA5 AA6 AA7 AA8 AA9 AA10
IPRED PRED PREDV CWRES ONEHEADER NOPRINT FILE=sdtab0077
\$TABLE ID TYPE TVBL Kg0 KMAXPTX KMAXNP KMAXMSC
ONEHEADER NOPRINT FILE=patab0077

