Supplementary Materials: Pulmonary Targeting of Inhalable Moxifloxacin Microspheres for Effective Management of Tuberculosis Table S1. Model Parameters for the Studied Response Variables. | Source | Sum of Squares | Df | Mean Square | F-Value | <i>p</i> -Value | | | | |---------------------------------|----------------|----|-------------|---------|-----------------|-------------|--|--| | Drug loading (%)(Y1) | | | | | | | | | | Model | 361.17 | 5 | 72.23 | 29.52 | 0.0001 | Significant | | | | X_1 | 354.22 | 1 | 354.22 | 144.74 | < 0.0001 | | | | | χ_2 | 0.2259 | 1 | 0.2259 | 0.0923 | 0.7701 | | | | | X_1X_2 | 2.72 | 1 | 2.72 | 1.11 | 0.3266 | | | | | X_{1^2} | 1.52 | 1 | 1.52 | 0.6219 | 0.4562 | | | | | $X_{2^{2}}$ | 2.96 | 1 | 2.96 | 1.21 | 0.3075 | | | | | Entrapment Efficiency (%)(Y2) | | | | | | | | | | Model | 1614.02 | 5 | 322.80 | 5.04 | 0.0282 | Significant | | | | X_1 | 256.92 | 1 | 256.92 | 4.01 | 0.0853 | | | | | χ_2 | 0.8304 | 1 | 0.8304 | 0.0130 | 0.9126 | | | | | X_1X_2 | 979.69 | 1 | 979.69 | 15.29 | 0.0058 | | | | | X_{1^2} | 135.83 | 1 | 135.83 | 2.12 | 0.1888 | | | | | $X_{2^{2}}$ | 192.20 | 1 | 192.20 | 3.00 | 0.1269 | | | | | Particle size (Y ₃) | | | | | | | | | | Model | 4.08 | 5 | 0.8157 | 6.37 | 0.0154 | Significant | | | | X_1 | 1.88 | 1 | 1.88 | 14.69 | 0.0064 | C | | | | χ_2 | 0.5076 | 1 | 0.5076 | 3.96 | 0.0868 | | | | | X_1X_2 | 0.0025 | 1 | 0.0025 | 0.0195 | 0.8928 | | | | | X_{1^2} | 0.4007 | 1 | 0.4007 | 3.13 | 0.1203 | | | | | $X_{2^{2}}$ | 1.09 | 1 | 1.09 | 8.47 | 0.0226 | | | | **Figure S1.** "Nose-only" Inhalation Apparatus Used for Administering Inhalable Microparticles to Mice. The delivery chamber consisted of a 50-mL plastic centrifuge tube with a hole of \sim 0.5 cm diameter at a distance of about 2.5 cm from the rim. The powder for inhalation was weighed in the cap. A length of tubing (i.d. \sim 2mm) was inserted into the tube from the apex of the taper (through another orifice) to a clearance of about 2.5–5 mm from the inner surface of the cap. The tubing was connected to the air pump to admit a turbulent air stream, at a constant rate, for fluidizing the powder for 60 s. Figure S2. Particle size distribution of Optimized MXF-PLGA-MS. Figure S3. Moxifloxacin amount deposited into different stages of Anderson Cascade. $\label{eq:Figure S4.} Figure S4. \ Anti-tubercular activity of standard drugs; (P) \ Pyrazinamide, (C) \ Ciprofloxacin, (S) \ Streptomycin.$ Table S2. Stability Studies of Optimized MXF-PLGA-MS. | Stability Condition
(Temp./RH) | Time Point | Drug Loading
(%) | Entrapment Efficiency
(%) | |--|------------|---------------------|------------------------------| | | Initial | 21.98 ± 0.23 | 78.00 ± 1.22 | | | 2 weeks | 21.75 ± 0.98 | 77.68 ± 1.10 | | E + 2 °C/ambiant DII | 1 month | 22.09 ± 1.25 | 78.12 ± 1.45 | | 5 ± 2 °C/ambient RH | 2 months | 21.98 ± 2.06 | 77.89 ± 1.73 | | | 3 months | 21.65 ± 1.89 | 77.93 ± 1.59 | | | 6 months | 21.87 ± 1.11 | 77.55 ± 1.92 | | | Initial | 21.98 ± 0.95 | 78.00 ± 0.99 | | | 2 weeks | 21.56 ± 1.65 | 77.98 ± 1.02 | | 25 + 2.9C//O + 5.9/ DII | 1 month | 21.43 ± 1.89 | 78.04 ± 1.10 | | $25 \pm 2 ^{\circ}\text{C}/60 \pm 5 ^{\circ}\text{RH}$ | 2 months | 21.69 ± 1.76 | 78.14 ± 1.07 | | | 3 months | 21.54 ± 1.32 | 77.87 ± 1.17 | | | 6 months | 21.89 ± 1.25 | 77.92 ± 1.10 | | | Initial | 21.98 ± 1.36 | 78.0 ± 1.86 | | | 2 weeks | 20.98 ± 1.89 | 78.06 ± 1.11 | | 40 + 2 °C /7E + E 0/ DII | 1 month | 20.16 ± 2.05 | 77.13 ± 1.33 | | $40 \pm 2 ^{\circ}\text{C}/75 \pm 5 ^{\circ}\text{RH}$ | 2 months | 20.07 ± 1.93 | 77.65 ± 1.75 | | | 3 months | 19.87 ± 1.22 | 76.98 ± 1.32 | | | 6 months | 18.16 1.65 | 73.87 ± 1.65 |