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Abstract: Crystalline organic nanoparticles and their amorphous equivalents (ONP) have the potential 

to become a next-generation formulation technology for dissolution-rate limited biopharmaceutical clas-

sification system (BCS) class IIa molecules if the following requisites are met: (i) a quantitative under-

standing of the bioavailability enhancement benefit versus established formulation technologies and a 

reliable track record of successful case studies are available; (ii) efficient experimentation workflows with 

a minimum amount of active ingredient and a high degree of digitalization via, e.g., automation and 

computer-based experimentation planning are implemented; (iii) the scalability of the nanoparticle-

based oral delivery formulation technology from the lab to manufacturing is ensured. Modeling and 

simulation approaches informed by the pharmaceutical material science paradigm can help to meet these 

requisites, especially if the entire value chain from formulation to oral delivery is covered. Any compre-

hensive digitalization of drug formulation requires combining pharmaceutical materials science with the 

adequate formulation and process technologies on the one hand and quantitative pharmacokinetics and 

drug administration dynamics in the human body on the other hand. Models for the technical realization 

of the drug production and the distribution of the pharmaceutical compound in the human body are 

coupled via the central objective, namely bioavailability. The underlying challenges can only be ad-

dressed by hierarchical approaches for property and process design. The tools for multiscale modeling 

of the here-considered particle processes (e.g., by coupled computational fluid dynamics, population bal-

ance models, Noyes–Whitney dissolution kinetics) and physiologically based absorption modeling are 

available. Significant advances are being made in enhancing the bioavailability of hydrophobic com-

pounds by applying innovative solutions. As examples, the predictive modeling of anti-solvent precipi-

tation is presented, and options for the model development of comminution processes are discussed. 

Keywords: nanocrystal; poorly soluble drug; precipitation; comminution; oral bioavailability; mod-

eling and simulation; product design; pharmaceutical material science 

 

1. Introduction 

Modeling and simulation of the full oral delivery process chain for drug formulations 

can serve the ultimate task of accurately predicting in vivo pharmacokinetics of a new 

potential drug [1] by providing a quantitative model for drug manufacturing and deliv-

ery. This is of particular interest for the many new molecular entities identified by phar-

maceutical industry screening programs exhibiting poor water solubility [2], which makes 
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their formulation difficult or even impossible. Applying a range of nano-based solutions 

to improve the drug dissolution and bioavailability of hydrophobic compounds is a prom-

ising approach if specific conditions for the drug delivery challenges are met. For the pur-

pose of this article, organic drug nanoparticles (ONP) are defined as solid organic particles 

with a mean diameter < 1 μm having either a crystalline or amorphous character. Lipo-

somes and micelles as drug nanocarriers are here excluded from the terminology nano-

particle. 

Any comprehensive digitalization of drug formulation requires the combination of 

pharmaceutical material and formulation science coupled to adequate process technolo-

gies on the one hand and quantitative pharmacokinetics and dynamics of drug admin-

istration in the human body on the other side. The combination of process and material 

models in a formulation process leads to the desired property function. Both approaches 

use process models for the technical realization of the drug production and the distribu-

tion of the pharmaceutical compound in the human body and are closely coupled via the 

central objective, namely bioavailability; see Figure 1. 

 

Figure 1. Long-term objective for quantitative prediction of bioavailability via the interplay of 

models for process technologies of active pharmaceutical ingredients (API) production and whole-

body pharmacological modeling. 

The process models for the property function can complement models for bioavaila-

bility based on quantitative structure–property relationship (QSPR), physiologically 

based–pharmacokinetic (PBPK) and rule-of-thumb (RoT) approaches [1,3,4]. These ap-

proaches are currently being utilized independently. Future developments of promising 

tools could be based on combining these process models with hybrid QSPR-PBPK ap-

proaches together with the exploration of ensemble and deep-learning systems for QSPR 

modeling. 

Sole machine learning or artificial intelligence-based algorithms are used in many 

applications along the pharmaceutical development pipeline [5], whereas the prediction 

of physical chemical properties of compounds such as distribution equilibria, solubility, 

or melting point [6], as well as more complex tasks, for instance absorption, distribution, 

metabolism, excretion, and toxicity [7] or retrosynthesis [8], the in silico prediction of for-

mulation performance is far less established. Nevertheless, such data-driven models can 

be utilized to support formulation development in a wide range of different quantities, 

e.g., in vitro performance [9], stability [10], or disintegration time [11]. In particular, for 

nanoformulations, the published data-driven methods range from a linear approach [12] 

to a recent publication [13] that developed multiple machine learning models for the pre-

diction of the nanocrystal size and polydispersity index (PDI) for multiple different man-

ufacturing methods. 
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The objective of the current paper is to discuss the combination of absorption, distri-

bution, metabolism, and excretion (ADME) modeling with the modeling of ONP manu-

facturing processes. Digital pharmaceutics entails modeling of the manufacturing process, 

e.g., the precipitation of ONP with a particle technology-based approach, as well as mod-

eling of gastro-intestinal transit and absorption by a physiologically-based pharmacoki-

netic (PBPK) model for gastro-intestinal transit and absorption combined with a mecha-

nistic dissolution model of the Noyes–Whitney type. The entire modeling approach is 

based on strategies established in product design and engineering, digital pharmaceutics, 

as well as pharmaceutical materials science. 

The outline of the paper is as follows. Section 2 discusses the state-of-the-art in poorly 

soluble drug formulation routes to further clarify the requirements and the application 

scope for nanoparticle-based oral delivery. Critical hurdles and objectives for drug for-

mulation are discussed. The application of the pharmaceutical material science paradigm 

provides strategies to address these requirements. Fundamentals of drug distribution 

modeling in the body via pharmacokinetics and dynamics as well as a highly encouraging 

case study on nanoparticle-based oral delivery are presented in Section 3. Our main focus 

will be on the process technologies for the formation of ONP by top–down and bottom–

up approaches as discussed in Section 4. We highlight the relevance of material and pro-

cess functions as key aspects in process and product design that lead to the desired prod-

uct properties, as depicted in Figure 1. In particular, we introduce a predictive model for 

nanoparticle anti-solvent precipitation. We further shed light on the complex interaction 

of size reduction and ripening during bead milling and discuss promising options to 

model size reduction. Finally, Section 5 concludes the paper by pointing out areas for fu-

ture developments, leveraging hybrid approaches combining first principles-based mod-

els with artificial intelligence. 

2. Background 

Nano-based solutions to improve drug solubility and bioavailability are a promising 

approach if industrial requirements for the drug delivery challenge are met, as will be 

pointed out in Section 2.1. It will become clear that the selection of nano-based solutions 

still is heuristics-based and highly empirical due to the underlying scientific complexity 

and to preference of the pharmaceutical industry for proven methods. The particle tech-

nology approach in this paper—predicting the properties of novel materials from first 

principles using advanced simulation techniques and modern computational tech-

niques—is consistent with the pharmaceutical material science paradigm as laid out in 

Section 2.2. This has the advantages of being both quicker and cheaper than a trial-and-

error experimentation process, and it also yields detailed structural and dynamical infor-

mation that can provide a stringent test of theoretical models. 

2.1. Poorly Soluble Drug Formulation Routes 

In drug delivery, there are various possible administration routes, but none is as pop-

ular and broadly accepted as the oral route owing to the multitude of advantages that are 

associated with it. To realize the efficient bioavailability of orally administered drugs, they 

must have enough aqueous solubility in order to get a therapeutic dose into the blood-

stream of a patient. Unfortunately, due to the tendency of increasing complexity of the 

molecular structure of new drug compounds with their specific combination of hydro-

phobic and hydrophilic components and their location in the molecular structure, they 

often show neither global hydrophobic nor lipophilic properties and hence, they cannot 

be formulated with standard techniques. Thus, already, today, 40% of the top 200 oral 

drugs marketed in the US, 75% of compounds under development, and 90% of new chem-

ical entities are classified as poorly soluble [14]. In the Biopharmaceutical Classification 

System (BCS), see Figure 2, many of these drugs are located either in class II, showing low 

solubility and high permeability through biologic membranes [15]. 
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The limitations of amorphous solid dispersions (ASD) as the current standard drug 

formulation route for BCS II are related to the thermodynamic or kinetic stability of the 

amorphous single phase with the risk of drug phase separation and crystallization upon 

storage and/or limited solubility of the drug in pharmaceutically acceptable solvents with 

the need for huge solvent amounts during production routes. In addition, ASD are not 

applicable to drug forms for intravenous application. It is common to subdivide the BCS 

class II drugs into two subclasses: (a) Subclass IIa, which includes dissolution rate limited 

drug substances with high permeability and moderate solubility and (b) Subclass IIb, 

which includes solubility-limited drugs showing high permeability and low solubility 

[16,17]. Subclass IIa drugs are candidates for a nanocrystal formulation route if several 

industrial requirements are met. 

 

Figure 2. Modified biopharmaceutical classification system (BCS) including the division of class II 

in a dissolution rate limited partition for which nanotechnological approaches may be feasible 

(class IIa) and one that is solubility limited for which amorphous solid dispersions are most prom-

ising as drug delivery strategy (adapted with permission from [16], Springer Nature, 2015). Peff 

denotes average human jejunal permeability. 

Hence, more and more drug candidates are in the pipeline that cannot be treated with 

standard formulation technologies. Many companies are intensively investigating crystal-

line organic nanoparticles and their amorphous equivalents (ONP) process technologies 

that transfer the ONP benefits into tablets. To shorten the time for the formulation devel-

opment and to make it more reliable, the goal is to early derive appropriate process pa-

rameters from distinct knowledge about material properties of the drug and excipients. 

In addition to “classical” laboratory-based work, also machine learning and other digital 

tools will increasingly accompany formulation development in order to achieve better and 

faster results for established but even more for novel formulation routes. Now novel for-

mulation technologies such as nanotechnologies may be integrated into the standard for-

mulation toolbox in the foreseeable future. 

ONP are increasingly gaining interest as an alternative tool even though there are 

only few products on the market yet compared to ASDs [17]. Their advantage resides 

mainly in their high specific surface area and, only to a minor extent, in drug nanoparticle 

solubility increases. The drug nanoparticle solubility effect is small [18,19] even though 

the curvature of particle surfaces and the dissolution pressure increases with smaller par-

ticle size according to the Ostwald–Freundlich equation. For example, suppose the parti-

cle size is 150 nm. In that case, the solubility increases typically by just 15% in comparison 

to the bulk solubility. Consequently, particles must be considerably smaller than 100 nm, 

rather 10 nm, in order to obtain a substantially increased solubility that is comparable to 

that of ASDs [20]. As a positive side effect, it should be noted that the small differences in 

solubility between differently sized ONP in this size regime are responsible for only a little 



Pharmaceutics 2021, 13, 22 5 of 26 
 

 

Ostwald-ripening with slow kinetics that is sometimes observed for nanosuspensions. 

Thus, stability against particle growth by Ostwald ripening can be mostly neglected. 

The available specific surface area of the drug substance is increased by reducing 

particle size, thus improving the dissolution rate in a solvent. The relationship between 

the dissolution rate and the size of drug particles is described by the well-known Noyes–

Whitney equation, which shows that the dissolution rater is proportional to the total sur-

face area of the solid particles. The fast depletion of free drug molecules in the lumen is 

avoided, since a quick re-supply of them from the drug surface. An increase of the disso-

lution rate by a factor of 14 has been demonstrated for the drug Itraconazole when the 

particle size is reduced to 300 nm [21]. 

An additional benefit of nano-based formulations compared to their micro-sized 

counterparts is their strongly reduced food effect, meaning that the drug plasma concen-

tration is much less dependent on food intake when the drug is administered orally and 

is therefore advantageous with respect to patient compliance [22]. The reduced food effect 

is well understood and can even be simulated with pharmacokinetic models [23]. The na-

ture of the surface chemistry of the ONP is also important, which also influences their fate 

in the small intestine [24]. 

The production of ONP can be accomplished by bottom–up and top–down ap-

proaches. While top–down approaches involve comminution-based methods, bottom–up 

approaches are comprised of precipitation methods by adding anti-solvents to the drug 

solution. Crystalline and amorphous nanoparticles can be produced continuously by pre-

cipitation with a very small average size of even below 100 nm and narrow size distribu-

tion at the expense of low concentration of the obtained nanosuspension due to the limited 

solubility in pharmaceutically acceptable solvents. A large control over the particle size 

distribution for different solvents can be accomplished by the bottom–up approaches ei-

ther in liquid [25] or in gaseous phase [26] and with a high throughput if secondary par-

ticle formation steps such as agglomeration and ripening are suppressed. The liquid phase 

must be removed to obtain a dry, fully re-dispersible powder for use in a solid dosage 

form such as a tablet. The numbering up of equipment is an elegant alternative to the 

challenging scale-up of precipitation technology. 

An important exception is the production of Abraxane® (Celgene, Summit, NJ, USA) 

with the anti-cancer drug paclitaxel, which is one of very few particulate drugs that is 

administered intravenously. However, it is not produced by a conventional anti-solvent 

precipitation route but via a special process technology (nanoparticle-albumin-bound™ 

(nab™) technology). In short, hereby, the drug is first dissolved in an organic solvent; 

then, it is emulsified in an aqueous phase that forms the continuous phase and contains 

human serum albumin (HSA) as a stabilizing agent. A following nanonization and high-

pressure homogenization process comminutes the drug containing phase, which is then 

followed by a solvent extraction and drying process. By doing this, a re-dispersible pow-

der with nanocrystals consisting of the drug and the stabilizer HSA only is obtained [27]. 

Top–down techniques such as wet media milling (WMM) and high-pressure homog-

enization (HPH) technologies are amenable to industrial production and are already ap-

plied for marketed products. While the HPH process relies on extreme shear forces and 

possibly cavitation, which are realized by pressing a suspension through gaps or slits and 

are applied to the drug crystals to disperse them [25], the process of WMM bases on forces 

that were generated by the impact of small ceramic balls onto the drug crystals. WWM is 

implemented by using planetary mills, but agitator bead mills are very common, because 

the underlying design can also be used for large-scale application, and the milling energy 

that acts on the material is much better controlled. Early development tests start with mill-

ing screening procedures to select those drug excipient combinations that ensure a stable 

suspension over a period of at least a few weeks. For this, planetary mills or other milling 

equipment is used that only needs tiny amounts of drugs of a few mg per trial, which is 

important due to its limited availability in the early stages [26,28]. Resonant acoustic mix-

ing technology was further proposed as a promising variation of ball milling for which 
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low-frequency acoustic waves are used for the size reduction of the drug particles in the 

suspension [29]. WMM was broadly introduced for drug comminution in 1991 by Sterling 

Winthrop [30]; since then, a huge number of papers discussing these technologies fol-

lowed, and there are already some products on the market [31,32]. 

For more widespread uses, a nano-based technology track record has to be built by 

the community in addition to providing process understanding and ensuring scale up. 

The pharmaceutical industry will only apply well understood and scalable technology 

and continue to apply traditional formulation technologies as long as the dose of a specific 

drug for the needed therapeutic plasma level can be safely provided to the patient. More 

knowledge on the correct handling of nanoformulations along the entire process chain 

from the production of ONP suspensions to tableting of the dried powder on one hand 

and on the fate of the tableted drug in the gastro-intestinal (GI) tract from disintegrating 

of the tablet to absorption in the intestine on the other hand has to be built up to prevent 

dropouts in early formulation screenings. The physical stability of nanosuspensions 

against e.g., agglomeration in water and in biorelevant fluids (e.g., (e.g., fasted state sim-

ulated intestinal (FaSSIF) and gastric fluid (FaSSGF)) should be ensured to demonstrate 

the advantageous properties of nanocrystals in animal tests so that the drug can reach the 

absorbing intestine membranes of the test animal. The performance may be fine-tuned by 

adding further excipients such as ionic surfactants, disintegrants, or others. Very special 

attention must be paid to intravenous administration routes since the usable types of sta-

bilizing excipients are very limited. Furthermore, not only agglomeration must be avoided 

but also the ONP must even dissolve very rapidly after injection to avoid any blockage in 

the bloodstream [33]. This was successfully achieved by EAGLE Pharmaceuticals, Inc. 

with their marketed drug Ryanodex®. 

The physical stability of ONP should be preserved in each processing step through-

out the whole process chain from drying, granulating, and mixing to tableting [34], even 

under GMP conditions. The desired ONP structure should be preserved throughout the 

process chain. Drying as the next step after milling means applying heat to the nanosus-

pension, which will also impact the compound quality. Drying with too low heat will lead 

to a compound with too high residual moisture load that has to be removed in an addi-

tional process step, whereas drying with too much heat will alter the product and respect 

re-dispersibility of the ONP embedded in the amorphous matrix [35]. Therefore, it is evi-

dent that each process step could lead to adverse effects such as the formation of mixed 

morphologies, e.g., crystalline parts consisting of mixed polymorphs or crystalline paired 

with amorphous proportions, which again lead to an undefined material with low repro-

ducibility. In most cases, the industrial use of pharmaceutical forms requires morphology 

in pure form. This means that they must be either completely crystalline or amorphous 

but not a mixture of both, as the latter is not considered reliable for storage and is difficult 

to reproduce. Therefore, maintaining well-defined drug morphology is essential not only 

during production but also beyond, as the drug product must be storable for at least 3 

years. 

Regarding quality tests of a drug product, special attention must be paid to the re-

quired dissolution tests that measure the dissolution kinetics. Here, the separation of dis-

solved from undissolved drug in in vitro dissolution testing with conventional paddle 

tests according to the United States Pharmacopeia (USP 2) is crucial. In case the pore size 

of applied filters is not selected properly, undissolved ONP may pass. Filters with 20 nm 

pore size should be used in order to achieve good separation of undissolved particles as 

dissolved molecules and to avoid overestimating the performance of nanoformulations. 

2.2. Particle Technology Applied to Drug Formulations 

The application of particle technology concepts such as process and material models 

to the modeling and simulation of nanotechnology-based drug formulations in consistent 

with the pharmaceutical material science paradigm in pharmaceutical technology and the 

product design and engineering paradigm in chemical engineering. The combination of 
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process and material models in a formulation process leads to the desired property func-

tion. Property functions of particulate products (property–structure functions) describe 

the desired property in dependence of the disperse properties, i.e., particle size, shape, 

structure, surface, and composition and their respective distributions. (Equation (1)): 

property = f (particle size, shape, structure, surface, composition) (1)

In general, property functions are related to properties of the final product during 

application and to technological aspects, which include particle formation, formulation, 

and handling. With respect to application in pharmaceutical science and technology, 

property functions describe the target function, here bioavailability (see also Figure 1) and 

pharmacological efficacy, e.g., via solubility as function of particle size. In addition, as-

pects of particle formation, powder handling, for instance with respect to powder flow, 

or tableting in continuous production must be considered in any comprehensive ap-

proach. 

The process function (process–structure functions) relates the process parameters to 

the product property (Equation (2)): 

dispersity = g (process parameters, educt concentrations) (2)

Process parameters are the type of unit operations, their interconnection in the pro-

cess, the process conditions under which the unit operations are operated (e.g., tempera-

ture, pressure, mass flow rates, etc.) and the materials that are processed. Structure–prop-

erty as well as process–structure functions must be known in order to design optimal pro-

cess variables and to achieve the desired goal, i.e., to produce well-defined, often multi-

functional product properties. Usually, process chains (with or without recirculation 

loops) are employed during which both handling and end-use properties have to be opti-

mized. The design of unit operations such as grinding, precipitation, granulation, or tab-

leting strongly depends on material properties. These are best summarized in a general 

sense by a material function, which describes the influence of material properties on the 

performance of the respective unit operations. Examples will be discussed below for the 

two exemplary cases of grinding and precipitation. 

Pharmaceutical Materials Science has been defined as follows [36–38]: The essence of 

pharmaceutical materials science is the application of fundamental concepts in the physi-

cal sciences to the challenges of understanding the behavior of soft, mostly organic, crys-

talline, and amorphous materials of relevance to the pharmaceutical industry. With mod-

ern computational techniques, it is now possible to predict the properties of novel mate-

rials from first principles using advanced simulation techniques. A truly holistic strategy 

for drug product development should focus on connecting solid form selection, particle 

engineering, and formulation design to both exploit opportunities to access simpler man-

ufacturing operations and prevent failures [39]. 

The concept of materials science tetrahedron (MST, see Figure 3) concisely depicts 

the inter-dependent relationship among the structure, properties, performance, and pro-

cessing of a drug [40]. It is proposed that a systematic implementation of MST can expe-

dite the transformation of pharmaceutical product development from an art to a science. 

By following the principle of MST, an integration of research among different laboratories 

can be attained. The pharmaceutical science community can conduct more efficient, col-

laborative, and coherent research. Performance is determined by properties of the mate-

rial that are in turn determined by its structure. In fact, the understanding the structure–

property relationship is at the heart of materials science and process engineering. Once 

the relationship is clear, material properties can be modified by changing the structure of 

the matter through process engineering approaches and thereby delivering the desired 

performance. 
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Figure 3. The pharmaceutical materials science tetrahedron. Reproduced with permission from 

[40], Elsevier, 2009. 

Understanding the properties and behavior of pharmaceutical materials is critical to 

the design of a safe and effective dosage form [36]. In the future, product-process model-

ing and optimization will increasingly contribute to pharmaceutical product-process de-

velopment [37]. First-principles and data-driven modeling approaches complement each 

other in pharmaceutical product-process development, for example for property predic-

tion or for the formulation of a dynamic process model. However, a systematic framework 

is needed to work efficiently with product-process models and to fully exploit their po-

tential benefits. 

The concept of Pharmaceutical Materials Science in the pharmaceutical community 

has strong inherent similarities to the concept of product design and engineering (PDE) 

in the chemical engineering community. PDE is concerned with the definition of new 

and/or improved products based on the inputs of customer needs and/or new technolo-

gies [38,41]. PDE is the chemical engineering contribution to the new product develop-

ment (NPD) workflow in the industrial sector such as the pharmaceutical industry. The 

fundamental aspects of product design and engineering have been described based on the 

following key terms: (i) the chemical product pyramid, (ii) a multi-faceted multiscale ap-

proach (nano, micro, meso, macro, mega scale), (iii) product and process design integra-

tion, all supporting (iv) chemical product design. The multifaceted multiscale approach 

enables the integrated view from the nanoscopic (molecular) end-use property up to the 

macroscopic (plant) level [42–44]. It is the beauty of the PDE concept that industrialization 

and manufacturing are explicitly addressed; the discovery does not stop at the lab or 

bench scale. 

3. Modeling Particle Size-Dependent Dissolution and Absorption 

The rate and extent of oral drug absorption in vivo are two key properties that decide the 

success of a drug development candidate. It is well known that a number of factors influence 

drug absorption from the GI tract after administration as a solid oral dosage form. The com-

plex interplay between the events of drug release, dissolution, permeation across the intestinal 

epithelium, and pre-systemic metabolism in the gut wall and liver ultimately determines the 

rate and extent of systemic availability. In the pharmaceutical industry, dissolution testing and 

physiologically based absorption modeling are widely used to study this complex interplay. 

Standardized in vitro dissolution test methods have been established to characterize the 

rate and extent of the drug release and dissolution from oral solid dosage forms. In combina-

tion with biorelevant dissolution media such as fasted (FaSSIF) or fed state simulated intesti-

nal fluid (FeSSIF), these tests can be used to predict the in vivo dissolution behavior of orally 

administered dosage forms. The quantitative relationship between in vitro dissolution data 
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and in vivo pharmacokinetic data is often referred to as “in vitro–in vivo correlation” (IVIVC). 

Several physiologically based models for GI transit and absorption have been developed. 

These aim toward a prediction of the in vivo oral drug absorption from a combination of a set 

of physiological properties such as dimensions and transit times of the GI tract as well as a set 

of physicochemical parameters/in vitro properties of the substance. Some of these models 

have become available in the form of commercial software tools such as GastroPlusTM and 

open-source initiatives such as PK-Sim® [45], which is developed as part of the open systems 

pharmacology community [46]. 

The trigger for the current study was previous work [23] on the development of a mech-

anistic model that simulates the dissolution of a solid dosage form during GI transit under 

physiological conditions. For the evaluation of the model, cilostazol, a BCS class II (low solu-

bility—high permeability) synthetic platelet inhibitor, was chosen because the dissolution and 

absorption behavior of this drug has been intensively studied [47] in vitro and in vivo. The 

authors measured the plasma kinetics of cilostazol after the administration of three different 

suspensions containing cilostazol with varying particle size distributions under fasted and fed 

conditions in beagle dogs. In addition, the in vitro dissolution profiles of the three types of 

suspensions were reported in both water and biorelevant dissolution media. Although the in 

vitro dissolution profiles showed an influence of particle size, the data were not able to quan-

titatively predict either the increase in bioavailability with decreasing particle size or the food 

effect observed in vivo. The aim of the previous work [23] was to demonstrate that the gap 

between the in vitro dissolution tests and the in vivo PK behavior can efficiently be bridged 

with the help of mechanistic, physiologically based pharmacokinetic simulations. 

A previously developed physiologically-based pharmacokinetic (PBPK) model for gas-

tro-intestinal transit and absorption was combined with a mechanistic dissolution model of 

the Noyes–Whitney type for spherical particles with a predefined particle size distribution 

[42]. In the model, the particles are grouped into k particle size groups. The number of particles 

in each group (��) is determined by the respective distribution function and remains constant 

over time. The initial amount of solid drug in each particle size group (��,�) is given by 

(Equation (3)): 

��,� = ���
4

3
���,�

�         � ∈ [1, … , �] (3)

[43], where � denotes the density of the drug material, and � denotes the initial ra-

dius of the i-th particle size group. The sum of all initial drug amounts equals the total 

administered drug mass (��) (Equation (4)): 

� ��,� = ��

�

���

 (4)

The dissolution process is described by a differential equation of the Noyes–Whitney 

type. The kinetics of the amount of solid (������,�) and dissolved (����������,�) drug material 

are given by (Equation (5)): 

�������,�

��
= −����,�

�/�
������,�

�/� (���� − ������) (5)

and Equation (6) 

�����������,�

��
= −���

�,�

�
� �

�����,�

�
� (���� − ������)        � ∈ [1, … , �] (6)

with Equation (7): 

�� =
3 �

� ℎ ��,�

       � ∈ [1. . �] (7)

as derived in [44]. 
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In these equations, ��  denotes a dissolution parameter that is constant for a given 

group of particles with radius ��,�, � is the aqueous diffusion coefficient of the drug, and 

ℎ is the thickness of the unstirred water layer. ���� is the solubility of the drug in the in-

testinal fluid, and Clumen is the luminal concentration of the dissolved drug. Clumen is a func-

tion of time and the spatial coordinate in the intestinal tract and the solubility, which in 

turn can vary with the local pH in the intestinal lumen. This concentration is the driving 

force for passive diffusion across the intestinal epithelium and, consequently, Clumen is also 

dependent on the intestinal permeability, because absorption reduces the amount (and 

thus the concentration) of the drug in the lumen. 

In PK-Sim® [45], the description of oral ADME is fully integrated into one simulation 

model, resulting in a complex model structure with the advantage that all processes can 

be described realistically and ensuring comparability of simulation results with pharma-

cokinetic experiments (see Figure 4). In PK-Sim, oral absorption is simulated as a “plug 

flow with dispersion model” which incorporates the small intestine as a single continuous 

compartment with spatially varying properties. The passage of a substance is described 

by a feeding-state-dependent, gastric-release function for the entrance into the gut and a 

transit function describing the transfer of the substance-containing package through the 

gut. At each point in time, the amount of substance absorbed into the portal vein is calcu-

lated. For solid formulations, the release of the substance into solution can be described 

according to predefined release function e.g., Noyes–Whitney type dissolution kinetics. 

For realistic simulation of the fate of the substance in subsequent ADME steps, the various 

organs are represented with blood flow rates, cross membrane permeation into organ tis-

sue, and well as saturable metabolization processes. 

 

Figure 4. Structure of the whole PK-Sim® simulation model with all organs (reprinted with per-

mission from [48], Springer Nature, 2008). IV = intravenous, PO = oral. 

To validate the combined model, the plasma concentration–time curves for cilostazol 

obtained in beagle dogs using three different types of suspensions with varying particle 

diameters were simulated (see particle size data in Figure 5a). In vitro dissolution infor-

mation was also available for the different formulations, but these data could only predict 

the in vivo outcome qualitatively. The mechanistic PBPK model could predict the influ-

ence of the particle size on the rate and extent of absorption under both fasted and fed 

conditions accurately, and the gap between the in vitro dissolution data and the in vivo 
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outcome could successfully be explained (see Figure 5b). It was concluded that by inte-

grating the processes of particle dissolution, gastro-intestinal transit, and permeation 

across the intestinal epithelium into a mechanistic model, oral drug absorption from sus-

pensions can be predicted quantitatively. The model can be applied readily to typical for-

mulation development data packages to better understand the relative importance of dis-

solution and permeability and pave the way for successful formulation of solid dosage 

forms. 

 

(a) 

 

(b) 

Figure 5. (a) Particle size distribution for the three cilostazol suspensions. Symbols represent the 

data from [47] (reprinted with permission from [23], Elsevier, 2010), the lines show the fit to a log-

normal distribution function. (b) Comparison of the maximum concentration and bioavailability 

predicted from the particle size with the experimentally obtained values (mean and s.d. reprinted 

with permission from [23], Elsevier, 2010) of the three suspensions under fasted and fed condi-

tions. The error bars represent the variability due to the inter-individual variability of the cilosta-

zol clearance. 

4. Process Chain for Particle Formation and Formulation 

Within a collaboration between Bayer and the Erlangen cluster of Excellence “Engi-

neering of Advanced Materials”, located at the university of Erlangen (FAU), five inter-

connected sub-projects studied the process chain from particle formation (see Figure 6) by 

top–down (nanomilling in a stirred media mill [49] and bottom–up nanoparticle for-

mation by precipitation [50]. Particle formation was coupled to post-processing by formu-

lation-supported spray drying and tablet formation [51] and comprehensive characteriza-

tion along the process chain [52]. The latter included in situ techniques by small-angle X-

ray (SAXS) and neuron scattering (SANS) to resolve nanoparticle formation even at short 

time scales and a wide range of methods for nanoparticle material characterization all the 

way up from formation to dissolution studies of formulated tablets. 
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Figure 6. Exemplary process chain. 

4.1. Overview 

The challenge of producing stable particulate dispersions in the smallest possible na-

nometer range can be addressed with two fundamentally different approaches, i.e., either 

by top–down or bottom–up methods as described in Section 2.1. Top–down approaches 

such as media milling can be operated at high particle concentrations while continuous 

operation and scale-up are possible. However, it is still difficult to reach particle sizes of 

a few 10 nm and narrow particle size distributions (PSDs). Furthermore, the risk of con-

taminating the product by the attrition of milling media must be carefully considered. One 

promising bottom–up approach is precipitation, which uses rather simple but continuous 

reactors. Prediction of the evolution of the particle size was demonstrated for organic com-

pounds just recently; scale-up comes within reach and numbering-up by operating several 

reactors in parallel is another option for industrial production. However, the particle con-

centrations are so far rather low to avoid complications with particle stability and suspen-

sion rheology. In both cases, the formed nanoparticles must be stabilized sufficiently fast 

to prevent agglomeration and Ostwald ripening. In formulation technology, electrostatic, 

steric, or electrosteric stabilization is usually employed by applying polymeric additives, 

surfactants, or a combination of the two. Nevertheless, in most published papers and in-

dustry-oriented reports, the obtained particle sizes are larger than 100 nm. Furthermore, 

such stabilizers can cause severe alterations of the fluid flow due to changes in the viscos-

ity and the dampening of turbulence and can impair the desired low solubility of the 

formed small particles by inducing complexation or ripening. 

Recently, we developed a mechanism based on multivalent metal cations, allowing 

stabilizing various hydroxyl groups containing drug nanoparticles (ONP) far below 100 

nm [53] (the ONPs were stable for more than three weeks); see Figure 7. In this approach, 

no polymers or surfactants as stabilizing additives are needed, and hence no alterations 

of the fluid flow are expected. Therefore, the approach is ideally suited for comparison of 

experiments with precise simulations of the fluid mixing underlying the precipitation pro-

cess. The ONP were produced by liquid anti-solvent and pH-shift precipitation utilizing 

in-house build static mixers. The influence of the mixing conditions on the final particle 

size distributions was studied by variation of the energy input during precipitation. Mul-

tivalent cations of a non-toxic metal can be used to achieve superior electrostatic stabili-

zation of the precipitated ONP. For zirconium salts used as stabilizers in particular, the 

dependency of the resulting particle size on the pH and the salt concentration in the anti-

solvent was investigated. Remarkably, our approach allows the continuous production of 

down to a few 10 nm in diameter. The amorphous character of the obtained particles was 

verified using X-ray diffraction and differential scanning calorimetry. To further demon-

strate the broad applicability of our approach, the solvent was varied as well [53]. Re-

markably, these particles are stable for at least several weeks. Currently, this approach is 

extended for bead milling as well. While electrostatic stabilization is rather well under-

stood and predictable in the context of DLVO theory (named after Boris Derjaguin and 

Lev Landau, Evert Verwey and Theodoor Overbeek), steric stabilization is still largely 

developed empirically. Approaches driven by molecular simulations are still at a too early 
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state and therefore mostly used to improve the understanding of interactions at model 

surfaces. In complex multi-component systems, which often are used in industry, any 

quantitative approach based on the prediction of particle interactions is not applicable. 

Artificial intelligence-based approaches in combination with high throughput and even 

automated characterization might offer solutions in future. Semi-empirical Hansen pa-

rameters are accessible and can used to classify the solubility of compounds according the 

well-known principle of similarity. Recently, the Hansen concept was adapted to the dis-

persibility of particles, which is accessible conveniently by sedimentation analysis [54]. 

These data are required for all methods for nanoparticle formation including anti-solvent 

precipitation and or nanogrinding, which are discussed in the following sections. 

 

(a) 

 

(b) 

Figure 7. (a) Four different sub-100 nm, quasi spherical, and uniform amorphous organic drug 

nanoparticles (ONP) obtained by precipitation (SEM micrographs taken 3 weeks after production). 

(b) Tyndall effect to demonstrate the small particle size for Ibuprofen by reduced light scattering, 

particularly for the 33 nm particles. 

4.2. Precipitation 

The precipitation of amorphous and crystalline organic nanoparticles (ONP) is ap-

plied in various fields with a rising interest in the formulation of poorly soluble drugs. 

Key to the formation of ONP is the formation of a sufficiently high supersaturation as a 

thermodynamic driving force. Therefore, anti-solvent or pH-shift precipitation is em-

ployed for the production of ONP. Comprehensive combined experimental–computa-

tional studies in a simple T-shaped mixer for Reynolds numbers up to 4000 were con-

ducted. In the experiments, micromixing times tm were determined for water–water and 

water–ethanol mixtures and compared to the measured mass median particle sizes x50,3 as 

shown in Figure 8a. The micromixing time is mainly determined by the power input as 

assumed in most mixing models. In particular, suitably manipulating the inflow condi-

tions, the power input necessary to achieve a given micromixing time can be reduced by 

an order of magnitude [55]. Clearly, a higher Re number leads to smaller particle size due 

to enhanced mixing, which accelerates both nucleation and particle growth (Figure 8b). 

Particle sizes well below 100 nm can be achieved by proper stabilization against agglom-

eration and ripening. 
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(a) (b) 

Figure 8. (a) Correlation between the experimentally determined mixing time �� and the mean 

particle as function of the Reynolds number Re. Reprinted with permission from [50], Wiley, 2019. 
(b) Measured particle size distributions in dependence of Re. Both results are obtained for Ibu-

profen. Reprinted with permission from [50], Wiley, 2019. 

In general, mass, momentum, and heat transfer processes coupled to chemical reactions 

produce nucleating species. Their distribution in the reactor related to their equilibrium con-

centration (or activity in the general sense) is defined as supersaturation S. It is the thermody-

namic driving force for the phase transition and thus for the formation of a new particle phase. 

Depending on the spatial and temporal distribution of � in the reactor, nuclei form with a 

size distribution. Noteworthy, in the view of classical nucleation theory, the nucleation rate 

strongly depends on �. For instance, a high supersaturation with narrow distribution in time 

and space would lead to small nuclei with narrow PSD since all particles “experience a similar 

history”. After nucleation, several processes may occur sequentially or in parallel. These are 

growth processes for the further reduction of S, coagulation of the particles, their stabilization 

against coagulation, and eventually ripening effects in the liquid phase. This quite general 

framework forms the basis of any modeling approach for particle formation dynamics, which 

includes mixing, global reaction kinetics, nucleation, growth, agglomeration, and stabilization 

and even ripening. 

The formation of ONP depends on the underlying phase diagrams and is controlled by 

chemical thermodynamics. However, equilibrium solubilities of even simple compounds are 

often unknown, in particular for complex molecules in pharmaceutical applications. A clear 

need exists to develop predictive methods for the determination of phase equilibria of parti-

cles. In other words, methods shall be developed to measure the material function of precipi-

tation and crystallization, which then can be coupled to a process function as briefly discussed 

above. 

Particle formation processes can further be subdivided in transport- and reaction-con-

trolled processes. In reaction-controlled systems, e.g., in systems where mixing is much faster 

than the chemical reactions leading to precursor formation, the distribution of all reactions 

and thus of the supersaturation is much more uniform. Therefore, the formation of narrow 

PSDs will mostly occur in reaction-controlled systems. Firstly, particles form in a uniformly 

distributed nucleation burst, which is quickly reduced due to the formation of a new phase 

below the threshold value where homogeneous nucleation can occur. Secondly, the particles 

grow by the further reduction of the supersaturation until equilibrium is reached. 

Typically, mass transfer issues are very common in liquid phase synthesis. The mixing 

intensity determines the local concentration fields and thus the supersaturation as driving 

force [56]. 

The energy dissipation in case of a stirred tank as well as in a continuous mixer such as a 

T- or Y-mixer is directly related to the volume-specific energy consumption. Higher energy 

dissipation will lead to successively smaller eddies in the fluid until the smallest eddy size (the 

Kolmogorov length scale) is reached. Mixing is shifted from macro- to meso-mixing and fi-
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nally to diffusion-controlled micro-mixing [57,58]. The reactor design determines the resi-

dence time of particles and the local distribution of supersaturation. Both effects will control 

the width of the obtained PSD, or in other words, the width of the PSD is a measure of the 

mixing energy distribution. The full PSD can be modeled (at least for well-understood precip-

itation reactions) by a combination of direct numerical simulation (DNS) for complete resolu-

tion of the fluid flow coupled to an appropriate mixing model for mass transfer at the subgrid 

level on the one hand. The combination with a population balance model on the other hand 

[57,59–61] delivers the evolution of the particle size distribution. 

The key aspects for predictive simulations are a detailed description of the spatiotem-

poral mixing process, sufficiently accurate data for equilibrium solubility, and a sufficiently 

large dataset to calibrate the nucleation kinetics by an estimation of the solid–liquid interfacial 

energy. In view of a quantitative agreement, recent findings suggest that in particular, the 

timescale ratio between the mixing process and solid formation, known as the Damköhler 

number, needs to be well captured in the simulations. In what follows, a fundamental concept 

to describe the anti-solvent precipitation on a macroscopic level is introduced, which allows 

predicting very well the trend of the median particle size as well as the entire shape of the 

particle size distribution at various process conditions for different mixing devices and sol-

vent/anti-solvent pairs. The mixing process is described by the governing equations (in a Eu-

lerian framework) for mass (Equation (8)): 

��� + ∇ ⋅ (��) = 0 (8)

the volume fraction � of the solvent/antisolvent pair (Equation (9)): 

���� + ∇ ⋅ (���) = ∇ ⋅ ��∇� (9)

and momentum (Equation (10)): 

���� + ∇ ⋅ (���) = −∇� + ∇ ⋅ � (10)

where u is the velocity field, � is the pressure, and τ is the stress tensor including the 

viscosity [62]. It is important to note that the density (�), the viscosity μ(�), and the Dif-

fusion coefficient Dm(�) depend on the volume fraction � in case of a water–alcohol mix-

ture [62]. The formation of the dispersed phase is governed by a population balance equa-

tion (PBE), Equation (11): 

�����, ��� + ∇ ⋅ (��) + �� ����, ����[�]��, ��, ���

= �(�, �)����[�](�, �)�����,�� + � + � 
(11)

where ���, ��� and �����,�� is the number density of the dispersed phase �� and of the 

critical nucleus size ��,�, respectively, �(�) is the reaction volume, ���� is the homoge-

neous nucleation rate, � is the particle growth rate by diffusion or reaction, and � and 

� refer to birth and death terms due to aggregation, agglomeration, or ripening. The PBE 

is solved along Lagrangian trajectories, Equation (12)): 

���� = � (12)

where �� is the spatial position in Lagrangian space. The coupling between the flow and 

the particle formation is accomplished by the mass balance �� = �����,��� − ��, whereby 

�� is the local concentration in the liquid, ����,��� is the initial concentration of the API, 

and �� is the solid concentration calculated as �� =
���

�
∫ ��

���������
�

�
 with the particle 

density ��. 

In the most general way, the evolution of the whole particle property space can be 

included by additional variables leading to multi-dimensional integro-differential equa-

tions [63]. Current research is directed toward the efficient coupling of PBE with compu-

tational fluid dynamics (CFD) simulations [61,63], to model increasingly complex reac-

tions networks [64], to take several particle coordinates into account (e.g., size and shape), 

and to develop better kernels for agglomeration (e.g., complex fractal aggregates). 
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Figure 9a shows the flow field obtained from assumption-free DNS simulation in a 

T-mixer at different Re-numbers up to 4000. The different flow regimes from laminar to 

intermediate and fully turbulent flow regimes are clearly depicted. Figure 9b shows tra-

jectories of fluid parcels along which the population balance equation (Equation (11)) is 

solved. Along each trajectory, particle evolution is tracked, at the outlet of the mixer, the 

populations along each trajectory are mixed to compute the final particle size distribution. 

  

(a) (b) 

Figure 9. (a) Snapshots of the flow field in a T-mixer with increasing Re. Reproduced with permis-

sion from [55], Royal Society of Chemistry, 2019. (b) Lagrangian trajectories through the T-mixer, 

reprinted with permission from [50], Wiley, 2019. 

The impact of fluid mixing on the precipitation of ONP is analyzed in depth by direct 

numerical simulations to determine the spatiotemporal evolution of the liquid phase com-

position and to estimate the particle evolution along Lagrangian trajectories. The revealed 

impact of mixing on precipitation enables a parameter-free estimation of the mean particle 

sizes and the particle size distributions. The distributions of residence time, supersatura-

tion time, and particle size are self-similar in the turbulent regime and allow the derivation 

of scale-up rules. 

For the case of Ibuprofen for three different Reynolds numbers (Re) and thus mixing 

times, a quantitative comparison of experimental and numerical results is shown in Figure 

10a. Figure 10b shows that the calculated particle size distributions are self-similar, 

providing a sound basis for scale-up. These remarkable results shows that (i) the precipi-

tation of organic drug ONP in the range of a few 10 nm is possible by proper stabilization, 

(ii) that the obtained particle size distributions can be predicted by a knowledge-based 

quantification of mixing and particle formation and that (iii) the obtained size distribu-

tions are self-similar, which is the basis for scale-up to large scale [50]. 

  

(a) (b) 

Figure 10. (a) Comparison of measured and calculated particle size distributions of Ibuprofen pre-

cipitated at three Reynolds numbers Re. An initial ibuprofen concentration of ���� = 30 mg mL−1 

is used, and ibuprofen is dissolved in ethanol. (b) Self-similar size distributions depend on Reyn-

olds number Re. Reprinted with permission from [50], Wiley, 2019. 
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4.3. Stirred Media Milling 

Particle formation by size reduction in stirred media mills allows the continuous and 

scalable production of particles below 1 μm and even nanocrystals. Process parameters 

(stirrer speed, temperature, bead size, and solvent) were systematically varied for various 

drug compounds and organic crystals. Grinding kinetics observed for batch and continu-

ous operation are comparable under similar stressing and formulation conditions. Fur-

thermore, it was found that the use of small grinding media, i.e., stress conditions where 

moderate stress energies but high stress numbers apply, are advantageous with respect to 

fast grinding kinetics and minimum energy consumption. Solubilization is an important 

factor that occurs of organic systems and easily can impair nanoparticle stability. Under 

such conditions, product characteristics are not only determined by pure breakage or col-

loidal stability but also by dissolution and ripening phenomena: Minimum product par-

ticle sizes at similar stressing conditions are observed under conditions where solubiliza-

tion and ripening are minimized. Larger product particles are observed in systems with 

high solubilization capacities [65]. Then, the product particle size is rather determined by 

the (temperature- and solvent-dependent) solid–liquid equilibrium, i.e., dissolution and 

precipitation phenomena than by pure mechanical fracture. The complex interplay be-

tween fracture, surface activation, dissolution and recrystallization, complex formation, 

and stabilization is depicted in Figure 11. 

 

Figure 11. Complex interplay between fracture, surface activation, dissolution, and recrystalliza-

tion, complex formation, and stabilization. 

Mechanochemical effects can be particularly pronounced in organic systems. An in-

creased solubility of stressed particles with respect to the equilibrium solubility of the 

solid has been observed. By means of NMR and RAMAN spectroscopy and thermody-

namic considerations, solubility increases by chemical modification and isomerization of 

the solid can be detected. In fact, mechanical activation leads to an increase in solubility 

of the stressed solid, which was proven by solubility studies at different temperatures. 

The van’t Hoff enthalpy of dissolution of the stressed solid decreased remarkably in com-

parison to the enthalpy of the non-stressed solid as shown by the evaluation of van’t Hoff 

plots [49]. A positive effect of lowering the process temperature with respect to minimum 

product particle size was observed. Remarkably, the smallest product particle sizes were 

found for the lowest process temperature (251 K) at short process times (<30 min) and 

moderate stressing conditions; see Figure 12. In contrast, for the same stressing conditions 

at room temperature (293 K), much larger particles are obtained. Solvents will lower sol-

ubility lead to smaller particles, for instance, Naproxen in ethanol and dichloromethane. 
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Hence, the smallest product particle sizes were obtained using a polymeric stabilizer, 

which exhibits a high affinity to the model drug compound and a low solubilization ca-

pacity. A relationship between polymer affinity, solubilization capacity, and limiting 

product particle size has been observed, which supports the hypothesis that the final 

product particle sizes are rather determined by the solid–liquid equilibrium than by pure 

mechanical fracture [66]. 

The many different types of grinding machines for operation in the gas or liquid 

phase have in common that the design and the operational conditions determine the 

transport of the particles of the grinding zone (i.e., the process function). The transport 

depends on the mode of operation of the mill, i.e., flow rates, rotor speeds for instance, 

and the particles’ size, density, and concentration. The type of stressing can be one-sided 

as in impact mills or jet mills, or two-sided as in ball mills or roller mills operated in the 

gas phase or in bead mills operated in the liquid phase. Upon stressing, energy is trans-

ferred to the particles, which in turn deforms elastically and plastically. Only the elas-

tically stored energy is available for fracture. Fracture typically occurs at internal defects 

in the crystal lattice of the particles. Once the elastically stored energy is larger than the 

energy required for crack opening, fracture occurs. In a meaningful simplification, grind-

ing is characterized by just two variables, namely the stress energy (��) per stress event 

and the number of stress events (��) that a particle experiences in the mill [67]. Then, the 

supplied energy per mass of product �� is given by Equation (13): 

�� ∼ �� ⋅ �� (13)

In principle, the variables �� and �� can be determined for any specific mill by 

proper simulation of the two-phase flow in the mill via CFD simulations. This approach 

is straightforward for sieve or classifier hammer mills operated in the gas phase at particle 

concentrations below a few 100 g/m3 [68]. The situation is more complex in (fluidized bed 

opposed) jet mills in the gas phase or in bead mills in the liquid phase. In the former case, 

high gas velocities are rather difficult to handle due to the compressibility of the gas; in 

the latter case, the filling ratio of the beads of roughly 80 vol-% and the high particle con-

centrations of several 10 vol-% induce a strong phase coupling between the two solid 

phases (beads and product particles) and the liquid phase. Therefore, CFD models must 

be coupled to discrete element method (DEM) simulations to account for the momentum 

transfer between the fluid and the particle phase at elevated concentrations and to deter-

mine �� and ��. 

 

Figure 12. Naproxen particle ripening at varying temperatures in ethanol (upper row) and di-

chloromethane (lower row). 
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Recently, it was shown that the deformation of spherical probe particles can be used 

to directly measure the absorbed stress energy from their plastic deformation detected by 

image analysis. This approach is linked to SEM-based single particle stressing where 

measured stress–strain curves of compressed probe particles, for instance ductile metal 

particles, can be modeled by FEM simulation [69]. This combined experimental–theoreti-

cal approach provides a direct link to the reaction of the stressed particles under the in-

fluence of �� [70]. 

The reaction of a stressed particle can be condensed into a complex material function, 

which depends on several material parameters such as Young’s modulus, Poisson ratio, 

hardness, fracture toughness, or brittle–ductile transition. Since elastic and inelastic de-

formation as well as fracture strongly depend on the particle’s internal defect structure, 

multiscale approaches such as molecular simulations coupled to continuum fracture me-

chanics are of fundamental interest [71] but cannot predict the outcome of a fracturing 

event due to the largely unknown defect structures. However, the outcome of fracture can 

be described by the breakage probability and the breakage function. Both depend on the 

absorbed energy, the particle size, and the intrinsic material parameters. 

The breakage probability � (Equation (14)) of many different types of particles in-

cluding organic crystals has been modeled for the one-sided impaction of particles by a 

unique master curve [72], see Figure 13a: 

� = 1 − exp �−����
∗ �1 +

�

�������

�

��

�� ����� − �1 +
�

�������

� ��,���
∗ �� (14)

For soft particles impacting on hard targets, the relative effects of the Young’s moduli 

of particle � and target �������  can be neglected. The breakage function can be described 

by the superposition of at least two lognormal distributions. The mean sizes, the standard 

deviations of the two sub-distributions, and the coupling parameter between them all de-

pend on the parameters ����
∗  and ��,���

∗  in (Equation (14)) [73]. Interestingly, both pa-

rameters can be modeled as a function of fracture toughness KC and hardness H, i.e., in 

dependence of the intrinsic material parameters (see Figure 13b). In principle, these pa-

rameters can be determined by nanoindentation; however, this approach is rather tedious 

due to the high number of measurements on single particles for statistically reliable data. 

More straightforward is the direct measurements of ����
∗  and ��,���

∗  in single particle 

stressing events in model mills. Taking these different approaches together, the grinding 

behavior of hammer mills can be modeled very well [68]. 

  

(a) (b) 

Figure 13. (a) Master curve for the breakage probability � by impaction (reprinted with permis-

sion from [72], Elsevier, 2009). (b) Material parameter ����
∗  divided by the particle density as 

function of hardness � and fracture toughness ��  (reprinted with permission from [72], 

Elsevier, 2009). 
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4.4. Post-Processing and Modeling of Process Chains 

An industrially feasible formulation approach combining media milling (or precipi-

tation) and spray-drying was applied to improve dissolution characteristics of the poorly 

soluble drug mefenamic acid (MA), for instance (see Figure 14). The approach was studied 

for two MA polymorphs at different stressing and pH conditions. It was found that the 

final MA product particle sizes are rather determined by the solid–liquid equilibrium than 

by mechanical fracture. Obtained drug particles are only composed of the most stable pol-

ymorph. Direct compressed tablets containing MA nanocrystals exhibit a significant im-

provement of in vitro dissolution kinetics as compared to tablets with micronized drug 

particles [74]. 

 

Figure 14. Process chain from nanoparticle formation via spray drying and post processing to in 

vitro dissolution testing. 

The modeling of process chains with or without recirculation requires approaches 

that are known in chemical engineering as flowsheet simulations. These are state-of-the-

art in fluids processing and are firmly based on phase equilibria and reaction rates of flu-

ids. Classical approaches on product design were mostly built on these concepts, while 

distributed particle systems were widely neglected. The reasons can be seen in the diffi-

culties to handle distributed properties, to model unit operations of particle technology 

such as size reduction, granulation, or tableting, and in the lack of available and reliable 

material functions. The modeling and simulation of particle formation and formulation 

must deal with highly complex and often transient two-phase flows and widely distrib-

uted particle phases in turbulent flows. On the one hand, time scales for particle formation 

can be very short in the order of milliseconds, while on the other hand, long-term stability 

must be guaranteed over months, as in pharmaceutical applications. Despite impressive 

progress in a few unit operations such as precipitation as shown above or fluidized bed 

granulation for instance [75,76], comprehensive approaches to handle other unit opera-

tions or their interconnection in complex processes are too often still missing. 

A recent book on Dynamic Flowsheet Simulation of Solids Processes [77] is based on 

a six-years national German program of more than 20 groups and presents the latest ad-

vances in flowsheet simulation of solids processes, focusing on the dynamic behavior of 

systems with interconnected solids processing unit systems but also covering stationary 

simulation. The book includes the modeling of unit operations for the production and 

handling solids, for example by comminution, precipitation, classification, and granula-

tion. New approaches for the description of solids and their property distributions are 

included as well. The mathematical treatment of flowsheets with multivariate population 

balances is a particular focus [77]. 
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5. Conclusions and Unmet Needs 

The overall approach to combine rationally-based and mechanistically-based models 

to address the entire value chain, i.e., multiscale modeling of the particle processes includ-

ing computational fluid dynamics (CFD), discrete element method (DEM), population 

balance modeling (PBE), flowsheet simulation, Noyes–Whitney), and physiologically 

based absorption modeling (e.g., PBPK) will remain a long-term goal. Further improve-

ments of models for unit operations in particle formation and processing are steadily be-

coming available by continuously improving and applying CFD-DEM-PBE models and 

their combination (process function). While the tools are available and “just” need to be 

further improved, their multiscale implementation for the predictive design of unit oper-

ations strongly depends on available material parameters such as mechanical and ther-

modynamic properties in dependence of particle size and shape (material function). The 

systematic characterization of particle properties combined with model-informed ap-

proaches to extract material data from model experiments is required to feed the available 

model “infrastructure”. High-throughput measurements and automated approaches 

might help in the future to reduce time and costs. 

Predictive approaches are already available for well-defined systems with few com-

ponents involved. However, their predictive power is so far limited to a few systems such 

as the precipitation of stabilized ONP in continuous T-mixers or hammer mills, for in-

stance. One potential approach to overcome those limitations in data availability while 

simultaneously utilizing the established mechanistic insights in the future are so-called 

hybrid modeling approaches [78]. This might be realized in data-driven models combined 

with additional mechanistic input, e.g., meaningful chemical descriptors originating from 

quantum mechanical simulations or by directly coupling neural networks with mechanis-

tic equations [79]. An AI-based evaluation of data may be applied to tackle complex issues 

of multi-component systems. The training of such systems can be based on data from all 

sorts of test results and even production plants. We envision that such approaches may 

lead to material property libraries. Once these are established, they are filled and contin-

uously improved over time. These libraries may also contribute to the empirical or molec-

ular property-based relations between the molecular structure and particle properties. For 

instance, a priori predictions of solubility only from molecular properties are currently 

beyond reach. Similar restrictions exist for the selection of molecular components for steric 

or electrosteric particle stabilization. 

Even though the results of machine learning or artificial intelligence-based algo-

rithms are promising, a key gap for a widespread usage seems to be having the data avail-

able to inform such a model. Different formulations, or even different manufacturing pro-

cesses for the same formulation, often need completely separate descriptions, and each of 

them has a high dimensional space of potential influence factors including the active in-

gredient itself, often multiple excipients and manufacturing parameters that all would 

have to be characterized. Inherently, increased amounts of data are necessary to describe 

such a system with a sufficient generalization for future applications. This can be miti-

gated by standardized screenings [29,80] with a high throughput or robotic laboratory 

automation of such formulation assays. In those cases, established data-driven models can 

reduce the future experimental effort for new active pharmaceutical ingredients (API). 

This challenge is even more pronounced for new or not regularly utilized formulations. 

An argument for establishing standardized assays as early as possible for formulations is 

that many data-driven approaches also allow gaining at least rudimentary insights, such 

as the driving features for the formulation performance. This might give valuable insights 

in the further development. 

When finally trying to bridge the gap from formulation in vitro performance to in 

vivo performance, we have to keep in mind that in this regard, in vivo measures also have 

an inherent bias: naturally, only the formulations that showed the best in vitro perfor-

mance enter in vivo trials. This makes it hard for a data-driven model to learn from po-

tentially poor in vivo performances. The gap can be partially addressed by additional 
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mechanistic modeling, e.g., by physiologically based absorption models, as shown in Sec-

tion 2.2, which in turn can be coupled with data-driven models in a hybrid fashion to 

estimate the necessary inputs from the chemical structure of the active pharmaceutical 

ingredients and the utilized formulation. Figure 15 shows exemplary how, given sufficient 

data to inform the black-box part, one might include potential excipients for the nanofor-

mulation whose influence on the dissolution profile via the Noyes–Whitney type kinetics 

Equations (5) and (6) might be hard to characterize in a mechanistic way. 

 

Figure 15. Exemplary model structure to integrate unknown excipients influence to the dissolution 

profile. 

In this case, the data-driven output would modify the dissolution kinetics depending 

on the chosen excipient. This is also an example where the data-driven model part might 

be easier to be informed independently by a sufficient number of in vitro measurements 

of dissolution kinetics in FaSSIF and FeSSIF contrary to few in vivo studies with a suffi-

cient number of different formulations. 

In this overview, we presented the long-term vision to combine modeling of drug 

administration with predictive models for product and process design. Nanoparticle-

based oral delivery has the potential to become a next-generation formulation technology 

for dissolution-rate limited biopharmaceutical classification system (BCS) class IIa mole-

cules if the following requisites are met: (i) quantitative understanding of the bioavaila-

bility enhancement benefit versus established formulation technologies and a reliable 

track-record of successful case studies are available; (ii) efficient experimentation work-

flows with minimum amount of active ingredient and a high degree of digitalization via 

e.g., automation and computer-based experimentation planning are implemented; (iii) 

scalability of the nanoparticle-based oral delivery formulation technology from lab to 

manufacturing is ensured. 

By considering the whole process chain from the production of pharmaceutical ONP 

and the prediction of their properties toward whole body pharmacology, we showed re-

markable progress at various levels but also identified considerable gaps and further 

needs. Only continuous improvements at all levels together with step-changing break-

throughs in predictive models will us bring closer to the long-term goal in pharmaceutical 

technology, i.e., the rigorous model-based development of products and processes for op-

timized bioavailability of a certain drug component. 
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