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Abstract: We report on the preparation, characterization, and bioavailability properties of three
new crystal forms of ethionamide, an antitubercular agent used in the treatment of drug-resistant
tuberculosis. The new adducts were obtained by combining the active pharmaceutical ingredient
with three dicarboxylic acids, namely glutaric, malonic and tartaric acid, in equimolar ratios.
Crystal structures were obtained for all three adducts and were compared with two previously reported
multicomponent systems of ethionamide with maleic and fumaric acid. The ethionamide-glutaric
acid and the ethionamide-malonic acid adducts were thoroughly characterized by means of solid-state
NMR (13C and 15N Cross-Polarization Magic Angle Spinning or CPMAS) to confirm the position
of the carboxylic proton, and they were found to be a cocrystal and a salt, respectively; they were
compared with two previously reported multicomponent systems of ethionamide with maleic and
fumaric acid. Ethionamide-tartaric acid was found to be a rare example of kryptoracemic cocrystal.
In vitro bioavailability enhancements up to a factor 3 compared to pure ethionamide were assessed
for all obtained adducts.

Keywords: ethionamide; cocrystal; solid-state NMR; dissolution; kryptoracemate; salt cocrystal;
antitubercular; API; drug; crystal engineering

1. Introduction

The obtainment of novel crystal forms is a well-consolidated strategy in the quest for solid molecular
materials with enhanced physicochemical properties with respect to those of the pure components.
The crystal engineering approach, i.e., the rational design and synthesis of new crystal forms [1],
is viable for any molecule that is employed in the solid state, ranging from pigments to explosives [2],
from pharmaceuticals to energy storage materials [3]. In the case of active pharmaceutical ingredients (APIs),
crystal engineering has proved to be successful in modulating and improving their performances in terms
of water solubility [4,5], dissolution rate [6,7], hygroscopicity [8], thermal stability [9], flow properties [10],
etc. An important point of this strategy is the fact that some APIs are often doomed to obsolescence because
of their poor biopharmaceutical and/or physicochemical properties [11]. Improving them represents a
way to restore their value, in some cases even to reduce side effects due to a decrease in the administered
doses and to extend rights on the intellectual property. This aspect gains particular importance in
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today’s economic and scientific context, where the R & D costs in the pharmaceutical industry increase
annually [12], yet the number of approved drugs kept constant throughout 60 years [13,14]. Therefore,
the revamping of old drugs represents a chance to reduce costs and also introduce new therapies [15].

The crystal engineering approach can deliver many different crystal forms, namely polymorphs,
salts, solvates/hydrates and cocrystals. The latter, in particular, are more and more commonly pursued
as an alternative to salts in the quest for performance enhancement of APIs, because cocrystallization
offers greater opportunities than salification: (i) it is viable for molecules that do not display any
ionizable moiety; (ii) the possible coformers (i.e., molecules selected to cocrystallize with the API)
are more numerous than the possible counterions; (iii) cocrystallization can significantly improve the
solubility of the APIs without altering their permeability. As of today, many pharmaceutical cocrystals
have been successfully prepared and reported in the literature [7,16–20].

This work focuses on the preparation and solid-state characterization of multicomponent crystal
forms of ethionamide (2-ethylpyridine-4-carbothioamide, ETN) (Scheme 1). ETN is an anti-tubercular
drug used in the treatment of drug-resistant tuberculosis; hence, it is frequently administered
in association with other antibacterial agents. Indeed, multidrug- and extensively drug-resistant
tuberculosis are addressed by the World Health Organization as major global issues [21]. Since ETN
belongs to class II of the BCS (Biopharmaceutical Classification System), comprising of compounds with
low solubility and high permeability, efforts in the improvement of the dissolution properties of ETN
clearly become crucial to help the treatment of such aggressive forms of the disease. ETN crystallizes
in space group Cc [22], without any polymorphic forms known to date. On the other hand, there are
several examples in the literature of salts and cocrystals of ETN, namely ETN hydrochloride [23],
hydrobromide [24], nitrate [25], oxalate [26,27], maleate [27] and saccharinate [27]; ETN·adipic acid [26],
ETN·fumaric acid [26] and ETN·suberic acid [26]. Notably, in all salts reported in the literature, N5 of
ETN appears to be protonated, while in all cocrystal structures of ETN with carboxylic acids, the COOH
group is involved in hydrogen bond (HB) contacts with both N5 (COOH···N) and N10 (C=O···HN).
Most recently, some of us managed to selectively obtain both a salt and a cocrystal for the ETN−salicylic
acid system, which display remarkable in vitro bioavailability properties [16]. This further proves
ETN to be a very feasible molecule to undergo the crystal engineering approach. In this paper,
three new crystal forms of ETN were obtained by solution or mechanochemical techniques through the
combination with glutaric (GLU), malonic (MAL) and tartaric (TAR) acid (see Scheme 1). Notably,
the cocrystallization of ETN with TAR yielded a rare kryptoracemic cocrystal: to date, only one
kryptoracemic cocrystal has been reported [28]. Notably, all three new crystal forms are characterized
by significantly higher dissolution rates than pure ETN.

These three novel forms were compared with two previously reported crystal forms of ETN
with dicarboxylic acids fumaric (FUM) and maleic (MLE) acid [26,27], to observe similarities and
differences with respect to our novel forms in terms of spectroscopic and physicochemical properties.
All five forms were analyzed by single-crystal X-ray diffraction (SCXRD), while all but ETN·TAR,
which could not be reproduced as a bulk powder (see Materials and Methods section), underwent
solid-state NMR (SSNMR). The latter technique was instrumental in clarifying the nature (neutral or
ionic) of the obtained products, since the position of the H atoms along the HB axis was in general
not clearly detected in SCXRD structures. Finally, the thermal stability and the dissolution rate
were evaluated for all crystal forms (except for ETN·TAR) by means of DSC and TGA analyses and
dissolution kinetic tests (DKTs), respectively.
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2. Materials and Methods

FUM, GLU, MLE, MAL and all solvents were purchased from Sigma-Aldrich (Milan, Italy,);
ETN was purchased from Alfa Aesar (Thermo Fisher Scientific, Kendal, Germany); TAR was purchased
from Schiapparelli (Carlo Erba, Cornaredo, Italy). All reagents were used without further purification.

2.1. Synthesis

ETN·GLU: A yellow microcrystalline powder was obtained by manually dry grinding 30 mg
(0.18 mmol) of ETN and 24 mg (0.18 mmol) of GLU for 60 min. Crystals were obtained through seeding
crystallization of the ground product in ethanol.

ETN·MAL: An orange microcrystalline powder was obtained by the slurry technique: 50 mg
(0.3 mmol) of ETN and 31 mg (0.3 mmol) of MAL were stirred for 4 h with a few drops of ethanol.
Crystals, suitable for SCXRD, were obtained through seeding crystallization of the slurried product in
ethyl acetate.

ETN·TAR: Crystals were obtained through slow evaporation at room temperature of a methanol
solution containing 30 mg (0.18 mmol) of ETN and 27 mg (0.18 mmol) of TAR. Despite many attempts,
ETN·TAR could not be reproduced in pure form to undergo further analyses.

ETN·FUM: Crystals were obtained through slow evaporation at room temperature of a methanol
solution containing 30 mg (0.18 mmol) of ETN and 21 mg (0.18 mmol) of FUM.

ETN·MLE: An orange microcrystalline powder was obtained by manually dry grinding 30 mg
(0.18 mmol) of ETN and 21 mg (0.18 mmol) of MLE for 30 min. Crystals, suitable for SCXRD,
were obtained through slow evaporation at room temperature of an acetone solution containing 15 mg
(0.09 mmol) of ETN and 10.5 mg (0.09 mmol) of MLE.
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2.2. Screening Techniques

Raman Spectroscopy

Raman spectra were registered with a Bruker Vertex 70 instrument (Bruker, Billerica, MA, USA),
equipped with a RAM II module. An excitation source at 1064 nm was used, with a laser power
between 10 and 50 mW and a number of scans between 80 and 500, depending on the analyzed sample,
with a resolution of 4 cm−1. The employed spectral range is comprised between 50 and 4500 cm−1,
using a CaF2 beam splitter. Raman spectra are not discussed as they were used only for screening
purposes, but they are reported in Figures S1–S4.

2.3. Characterization Techniques

2.3.1. X-Ray Diffraction (SCXRD and PXRD)

Single crystals of ETN·GLU, ETN·MAL and ETN·TAR were analyzed with a Gemini R Ultra
diffractometer (Rigaku Oxford Diffraction, Abingdon, Oxfordshire, UK) operating at 293(2) K, using a
Mo Kα source (λ = 0.71073 Å). Data collection and reduction were performed using the CrysAlisPro
software (Rigaku Oxford Diffraction, Abingdon, Oxfordshire, UK). The crystal structure was solved by
direct methods and refined with the full matrix least-squares technique on F2 using the SHELXS-97 and
SHELXL-97 programs (Structural Chemistry Department at the University of Göttingen, Germany).
All non-hydrogen atoms were refined anisotropically; hydrogen atoms bonded to unambiguous sites
were placed in geometrical positions and refined using the riding model. Hydrogen atoms between
pyridinic nitrogen and carboxylic oxygen sites of nearby molecules have been detected in the Fourier
maps, and their position has been further confirmed through SSNMR. See Table 1 for the crystal data
and structure refinement parameters for ETN·GLU, ETN·MAL and ETN·TAR, and Tables S2–S7 for the
measured crystallographic distances and angles (refer to Scheme 1 for atom numbering).

Table 1. Crystal data and structure refinement parameters for ETN·GLU, ETN·MAL and ETN·TAR.

ETN·GLU

Empirical formula C13H18N2O4S

Formula weight 298.35

Temperature/K 293(2)

Crystal system triclinic

Space group P-1

a/Å 5.3818(3)

b/Å 11.4336(6)

c/Å 13.2901(9)

α/◦ 78.196(5)

β/◦ 80.618(5)

γ/◦ 77.435(5)

Volume/Å3 775.28(8)

Z 2

%calcg/cm3 1.278

µ/mm−1 0.222

F(000) 316.0

Crystal size/mm3 0.50 × 0.22 × 0.21
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Table 1. Cont.

ETN·GLU

Radiation Mo Kα (λ = 0.71073)

2Θ range for data collection/◦ 6.74 to 50.06

Index ranges −6 ≤ h ≤ 6, −13 ≤ k ≤ 13, −14 ≤ l ≤ 15

Reflections collected 5457

Independent reflections 2739 (Rint = 0.0228, Rsigma = 0.0543)

Data/restraints/parameters 2739/25/238

Goodness-of-fit on F2 1.043

Final R indexes [I >= 2σ (I)] R1 = 0.0448, wR2 = 0.1131

Final R indexes [all data] R1 = 0.0593, wR2 = 0.1236

Largest diff. peak/hole/e Å−3 0.18/−0.18

ETN·MAL

Empirical formula C11H14N2O4S

Formula weight 270.30

Temperature/K 293(2)

Crystal system triclinic

Space group P-1

a/Å 7.0008(12)

b/Å 8.8110(13)

c/Å 11.1507(13)

α/◦ 88.116(11)

β/◦ 77.358(12)

γ/◦ 68.930(15)

Volume/Å3 625.48(16)

Z 2

%calcg/cm3 1.435

µ/mm−1 0.267

F(000) 284.0

Crystal size/mm3 0.256 × 0.210 × 0.203

Radiation Mo Kα (λ = 0.71073)

2Θ range for data collection/◦ 6.66 to 50.04

Index ranges −8 ≤ h ≤ 7, −10 ≤ k ≤ 10, −13 ≤ l ≤ 10

Reflections collected 4108

Independent reflections 2204 (Rint = 0.0343, Rsigma = 0.0743)

Data/restraints/parameters 2204/0/170

Goodness-of-fit on F2 1.038

Final R indexes [I >= 2σ (I)] R1 = 0.0422, wR2 = 0.0974

Final R indexes [all data] R1 = 0.0551, wR2 = 0.1065

Largest diff. peak/hole/e Å−3 0.19/−0.23

ETN·TAR

Empirical formula C24H32N4O12S2

Formula weight 632.66
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Table 1. Cont.

ETN·GLU

Temperature/K 293(2)

Crystal system monoclinic

Space group P21

a/Å 4.8561(3)

b/Å 24.2003(13)

c/Å 12.1304(6)

α/◦ 90.00

β/◦ 92.671(5)

γ/◦ 90.00

Volume/Å3 1424.00(14)

Z 2

%calcg/cm3 1.475

µ/mm−1 0.257

F(000) 664.0

Crystal size/mm3 0.42 × 0.41 × 0.21

Radiation Mo Kα (λ = 0.71073)

2Θ range for data collection/◦ 6.72 to 50.04

Index ranges −4 ≤ h ≤ 5, −28 ≤ k ≤ 26, −14 ≤ l ≤ 14

Reflections collected 11036

Independent reflections 4925 (Rint = 0.0420, Rsigma = 0.0)

Data/restraints/parameters 4925/1/395

Goodness-of-fit on F2 1.036

Final R indexes [I >=2σ (I)] R1 = 0.0475, wR2 = 0.0852

Final R indexes [all data] R1 = 0.0659, wR2 = 0.0918

Largest diff. peak/hole/e Å−3 0.23/−0.22

Flack parameter 0.07(7)

ETN·TAR presents a kryptoracemic structure, and the absence of an inversion center (although
quite certain from the near 0 Flack parameter) [29] or other second-type symmetry elements has been
checked by pseudosymmetry search using the PSEUDO program [30] of Bilbao Crystallographic
Server, and no centrosymmetric supergroup compatible with the experimental atomic positions has
been found.

Powder diffractograms were obtained on the same Gemini R Ultra diffractometer (Rigaku Oxford
Diffraction, Abingdon, Oxfordshire, UK), equipped with an X-ray source using Cu Kα radiation
(λ = 1.54 Å). Data were collected and processed through the CrysAlisPro software.

CCDC accession codes 2019883, 2019884 and 2019885 contain the supplementary crystallographic
data for ETN·MAL, ETN·GLU and ETN·TAR, respectively. These data can be obtained free of
charge via www.ccdc.cam.ac.uk/data_request/cif, or by e-mailing data_request@ccdc.cam.ac.uk, or by
contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK;
fax: +44-1223-336033.

www.ccdc.cam.ac.uk/data_request/cif
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2.3.2. Solid-State NMR Measurements

13C CPMAS and 15N CPMAS SSNMR spectra were collected on a Bruker Avance II 400 Ultra
Shield instrument (Bruker, Billerica, MA, USA), working at 400.23, 100.63, and 40.56 MHz for 1H, 13C
and 15N, respectively. Samples were packed in cylindrical zirconia rotors (4 mm o.d., Bruker, Billerica,
MA, USA), with a sample volume of 80 µL. 13C and 15N spectra were acquired at room temperature
with a rotation frequency of 12 and 9 kHz, respectively. All 13C and 15N experiments employed the
RAMP-CP pulse sequence (1H 90◦ pulse = 3.6 µs; contact time = 4 ms) with the TPPM 1H decoupling
(rf field = 69.4 kHz) during the acquisition period. Detailed acquisition parameters (number of scans,
relaxation delays, contact times) may be found in Table S7. All employed relaxation delay values
were optimized on each sample by means of 1H saturation recovery experiments and obtained by
multiplying the measured T1

1H values by 1.27, to ensure full relaxation. 13C and 15N chemical shift
scales were referenced with the resonance of glycine (13C methylene signal at 43.5 ppm), (NH4)2SO4

(15N signal at 24.6 ppm with respect to NH3), respectively, as external standards.

2.3.3. Thermal Analyses

TGA measurements (TA Instruments, New Castle, UK) were performed over a temperature range
of 30–350 ◦C under a 50 mL·min−1 N2 flow, on a Q600 SDT TA instrument equipped with a DSC heat
flow analyzer. Samples (5–10 mg of weight) were placed into the furnace inside alumina crucibles
and heated with a ramp of 10◦C·min−1. DSC curves were collected on a DSC Q200 TA Instrument
(TA Instruments, New Castle, UK). Samples were accurately weighed (5–10 mg) and put into sealed
aluminum pans. Calibration for temperature and heat flow was performed using high purity standards
of n-decane, benzene and indium. All measurements were performed in a 30–350 ◦C temperature
range, with heating rates of 10 ◦C·min−1.

2.3.4. Dissolution Kinetic Tests (DKTs)

DKTs were carried out in phosphate buffer (pH = 7.4). For each measurement, 4 mg of either
ETN or its adducts were added to 100 mL of the thermostatically controlled (at 37 ◦C) dissolution
medium. Dissolution parameters were evaluated for 60 min. The solution was kept homogeneous
by continued stirring at 100 rpm, and concentrations were measured using an optical fiber system
(HELLMA, Milan, Italy) linked to a spectrophotometer. UV measurements (ZEISS, Wetzlar, Germany)
were performed at the maximum absorption wavelength of ETN, namely 288 nm. A calibration curve
(Figure S5) was obtained with five diluted ETN solutions in phosphate buffer (the concentrations used
were the following: 8, 10, 16, 20 and 40 mg/L), while pure phosphate buffer was used as the blank.

3. Results and Discussion

Three novel crystal forms were obtained by means of solution or mechanochemical techniques.
These are a salt of ETN with malonic acid (ETN·MAL), a cocrystal between ETN and glutaric acid
(ETN·GLU) and a salt cocrystal of ETN with tartaric acid (ETN·TAR). Two crystal forms of ETN were
reproduced from the literature, namely a salt of ETN with maleic acid (ETN·MLE) [27] and a cocrystal
between ETN and fumaric acid (ETN·FUM) [26]. Table 2 summarizes the techniques used for preparing
the new crystal forms and the outcome, in terms of stoichiometry and ionization state.

Table 2. Summary of the employed techniques used for the solid-state preparations, with final
stoichiometry and ionization state for all obtained adducts.

Crystal Form Preparation Technique Final Stoichiometry Outcome

ETN·GLU Dry grinding 1:1 Cocrystal

ETN·MAL Slurry in ethanol 1:1 Salt

ETN·TAR Slow evaporation from methanol 1:1 Salt cocrystal
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The crystal structures of all the adducts were obtained through SCXRD. Moreover, for each adduct,
except ETN·TAR, which, despite several attempts, could not be reproduced to undergo further analysis,
the XRD powder patterns calculated from crystal structures were compared to the experimental powder
diffractograms obtained from bulk powders to confirm that the selected crystals were representative of
the whole product (see Figures S6–S9).

3.1. SCXRD

3.1.1. ETN·GLU

ETN·GLU crystallizes in the centrosymmetric triclinic space group P1. The asymmetric unit
(Figure 1) includes one molecule of ETN and one of GLU, which interact with each other through a HB
between pyridinic N5 and one of the carboxylic moieties (d N5–O7′ = 2.654 (4) Å). The neutral nature
of the adduct is confirmed by the C–O (d C1′–O6′ = 1.203 (3) Å, d C1′–O7′ = 1.295 (3) Å, d C5′–O9′ =

1.315 (3) Å, d C5′–O8′ = 1.217 (2) Å) distances, consistent with the distribution of distances obtained by
the CSD results for neutral COOH groups; this is supported by the 15N CPMAS NMR spectrum as
well (see the SSNMR paragraph). Notably, ETN displays rotational disorder around the axis formed by
atoms C1, C2, N5 and O7′, as represented by the doubling of the thermal ellipsoids (Figure 1).Pharmaceutics 2020, 12, x FOR PEER REVIEW 8 of 18 
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3.1.2. ETN·MAL

ETN·MAL crystallizes in the centrosymmetric triclinic space group P1. The asymmetric unit
(Figure 3) contains one ETN molecule, protonated on N5 (d N5–O7′ = 2.657(4) Å) and one MAL
molecule, characterized by a carboxylate group (d C3′–O7′ = 1.264(3) Å and C3′–O6′ = 1.234(3) Å) and
a carboxylic moiety (d C1′–O4′ = 1.196 (3) Å and d C1′–O5′ = 1.329 Å).Pharmaceutics 2020, 12, x FOR PEER REVIEW 9 of 18 
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The HB pattern (Figure 4) is characterized by the presence of two O–H···O− interactions between
two molecules of MAL through their COOH and COO− groups, which form a centrosymmetric R2

2(12)
dimer (d O6′–O5′ = 2.653 (3) Å). The carboxylate group also interacts with the N5 and N10 centers of
ETN molecules forming N5+–H···O− and N10–H···O contacts (d N5–O6′ = 2.657 (4) Å; d N10–O7′ =

2.844 (4) Å), leading to the formation of the R4
4(22) cyclic motifs already observed in ETN·GLU.
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3.1.3. ETN·TAR

ETN·TAR crystallizes in a monoclinic non-centrosymmetric P21 space group. It is a kryptoracemate,
i.e., a compound that crystallizes in a non-centrosymmetric space group containing only symmetry
elements of the first type (Sohnke group), despite containing both the enantiomers of a molecule in the
same lattice [31]. This phenomenon is still rarely detected in both organic [31] and organometallic [32]
crystals (0.1% of all the structure reported in the CSD database), although some attempt to
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rationally develop some functional material based on this peculiarity has been considered [33,34].
Its explanation is deeply debated, although it is clearly related to the existence of high Z’ structures and
pseudosymmetry [35]. However, the existence of the first kryptoracemic cocrystal has been reported
only in 2016 [28], making our result quite peculiar. In the asymmetric unit (Figure 5), four molecules
are present: two ETN molecules and two TAR molecules (both enantiomers).
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The two crystallographically independent TAR molecules significantly differ in the C–O distances
of the carboxylic moieties. Indeed, for one molecule (top in Figure 5), d C4′–O7′ = 1.215 (2) Å,
d C4′–O8′ = 1.291 (2) Å, d C1′–O6′ = 1.325 (2) Å and d C1′–O5′ = 1.211 (2) Å, while, for the other
one (bottom in Figure 5), d C1′–O5′ = 1.188 (2) Å, d C1′–O6′ = 1.327 (2) Å, d C4′–O7′ = 1.228 (2) Å
and d C4′–O8′ = 1.260 (2) Å. This introduces a degree of uncertainty in the position of the H atoms
along the HB axes, which makes it complicated to assess the neutral or ionic nature of the adduct.
Unfortunately, it was not possible to confirm it by means of SSNMR. As far as the X-ray analysis is
concerned, the structure can be defined as a salt cocrystal as ETN is present is in both its neutral and
ionic forms. In the HB pattern (Figure 6), chains of alternated ETN and TAR molecules are present.
They are linked by HB N5+–H···O− interactions and R2

2(8) motifs involving the thioamidic (ETN) and
the carboxylic (TAR) groups. Since TAR is present in both its enantiomeric forms, the two strands differ
in terms of chirality, making the distances not equivalent. The bottom molecule in Figure 5 displays
the following distances: d N5–O8′ = 2.571 (4) Å, d S11–O6′ = 3.144 (2) Å and d N10–O5′ = 3.025 (4) Å.
The top molecule in Figure 5 presents the following distances: d N5–O8′ = 2.549 (4) Å, d S11–O6′ =

3.088 (2) Å and d N10–O5′ = 2.960 (4) Å.
The chains interact with a complex pattern of HBs involving all OH and carboxylic groups of TAR

and the thioamidic group of ETN.
The presence of both enantiomers of TAR distinguishes the chains in the disposition of the OH

groups, generating a double layer (Figure 7).
The structures of ETN·FUM and ETN·MLE are already discussed in [26] and [27]. For the sake of

clarity, the asymmetric units and the HB networks are reported in Figures S10–S13.
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3.2. SSNMR

SSNMR was useful to verify the neutral or ionic nature of all adducts, except ETN·TAR,
strengthening the X-ray evidence [36–39]. Indeed, the position of the H atoms along the HB axis was
not always clearly detected from X-ray analyses. Through 1D 13C CPMAS (Figure 8) and 15N CPMAS
(Figure 9) experiments, the SSNMR analysis focused on the 13C resonances of the carboxylic groups of
the acids and the 15N signals of N5 (pyridinic) and N10 (thioamidic) of ETN. Indeed, these chemical
shifts are very sensitive to the protonation state of the corresponding moieties [37]. All 13C and 15N
chemical shifts with their relative assignments are reported in Table 3.

13C CPMAS spectra offer the chance to assess the involvement of the carboxylic groups of the
coformers in deprotonation or HB contacts. The spectrum of ETN·GLU exhibits two carboxylic
resonances at 182.7 and 177.8 ppm. This can be explained by the variation in the network of interactions
engaging the two COOH moieties. The former is assigned to a COOH group (182.7 ppm) forming
a homodimeric R2

2(8) synthon with neighboring GLU molecules, as also observed in pure GLU
(181.4 ppm) [40]. This translates into high-frequency chemical shifts for carboxylic groups, comparable
to those typical of carboxylate moieties [37]. In ETN·GLU, the second resonance (177.8 ppm) is
typical of neutral COOH groups, in this case engaging in a COOH···N HB. This nicely agrees
with X-ray data as in the case of ETN·MAL. As a matter of fact, pure MAL displays carboxylic
homodimers (δ = 174.3/174.8 ppm) [41], while, in ETN·MAL, we attribute the signal at 173.6 ppm to a
COO− group and the remaining peak (169.8 ppm) to a COOH moiety involved in a R2

2(12) dimeric
COOH···O HB. Homodimers are also characteristic of pure FUM [42] (172.3 ppm); on the contrary,
in ETN·FUM [26], both COOH groups stay protonated and are no longer involved in homodimeric
interactions, which explains the low-frequency shift of their resonances (170.0 and 167.9 ppm).
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Pure MLE represents an exception, since it does not exhibit homodimeric synthons [43], which justifies
the relatively low chemical shift of one of the COOH groups (169.2 ppm); the other COOH is involved in
a COOH···O intramolecular interaction, bringing its chemical shift up to 172.7 ppm. In ETN·MLE [27],
a single resonance can be observed, at 172.5 ppm. This can be traced back to the high symmetry of the
hydrogenmaleate group, which leads the two carboxylic groups to be very similar (d C4′–O8′= 1.272 Å;
d C4′–O7′= 1.241 Å and d C1′–O6′= 1.285 Å; d C1′–O5′= 1.233 Å, atom numbering in Figure S12)
despite the deprotonation of one of them. Notably, the spectrum of the salt exhibits extra peaks in the
aliphatic and aromatic regions with lower intensity, specifically those centered at about 17, 27, 142 and
151 ppm (highlighted with red ovals in Figure 8). These are due to disorder associated to the ethyl and
pyridyl groups, as also observed in the crystal structure (see Figure S12).Pharmaceutics 2020, 12, x FOR PEER REVIEW 12 of 18 
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Figure 9. 15N CPMAS spectra of the analyzed compounds. Dashed lines highlight the chemical shift of
N5 in pure ETN.

In SSNMR, the 15N chemical shift is recognized as being particularly sensitive and highly
reliable on the position of neighboring protons [37]. As indicated by the drastic low-frequency shift
(∆δ > 80 ppm) of the N5 signal of ETN from 308.9 ppm (pure ETN) to 215.4 ppm (ETN·MAL) and
212.7 ppm (ETN·MLE), the two adducts are confirmed to be salts, in fair agreement with X-ray
measurements [27]; in ETN·FUM and ETN·GLU, the N5 signal shifts to lower frequencies as well
(276.9 and 287.4 ppm, respectively), but the variation is lower than for ETN·MAL or ETN·MLE (∆δ ≈ 32
and 21 ppm), and it is consistent with the formation of a HB involving N5 rather than a proper proton
transfer [26]. This indicates the neutral nature of ETN·FUM and ETN·GLU, which are to be considered
cocrystals, confirming the X-ray findings.
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Table 3. 13C and 15N SSNMR chemical shift values for all analyzed powders. The atom numbering is
referred to as Scheme 1.

Atom ETN
(ppm)

MAL
(ppm)

GLU
(ppm)

MLE
(ppm)

FUM
(ppm)

ETN·MAL
(ppm)

ETN·GLU
(ppm)

ETN·MLE
(ppm)

ETN·FUM
(ppm)

13C

1 199.7 198.1 196.0 193.8 195.3

2 149.6 152.8 147.0 148.6 146.4

3 122.9 125.9 125.1 128.5 126.6

4 161.0 158.0 163.6 159.0 163.5

6 144.4 146.4 146.4 144.7 144.9

7 114.6 122.9 115.7 121.1 117.6

8 29.7 29.1 29.9 29.5 31.3

9 11.1 17.2 15.2 14.9 17.6

1’ 174.3 181.4 169.2 172.3 169.8 177.8 172.5 167.9

2’ 40.6 33.8 133.1 136.2 44.5 34.9 136.8 133.7

3’ 174.8 18.7 140.0 136.2 173.6 20.6 138.2 136.4

4’ 33.8 172.7 172.3 34.9 172.5 170.0

5’ 181.4 182.7
15N

5 308.9 215.4 287.4 212.7 276.9

10 153.8 154.6 153.8 146.2 146.2

3.3. Thermal Analyses

Thermal analyses were run to evaluate the thermal behavior of the adducts with respect to pure
ETN, which melts at 165.6 ◦C. The corresponding curves are reported in Figures S14–S21. Table 4
reports all the obtained values. In all cases, endothermic DSC peaks, corresponding to lower melting
points than for pure ETN, are observed. This behavior is recurrent for ETN as all the adducts reported
in literature are characterized by lower melting points [16,25–27].

Table 4. TGA onset points and DSC signal max values for pure ETN and all obtained adducts.
See Figures S14–S21.

TGA Onset Points (◦C) DSC Signal Max (◦C)

ETN 195.1 ETN 165.6

ETN·FUM 183.6 ETN·FUM 148.9

ETN·GLU 191.0 ETN·GLU 105.6

ETN·MLE 162.8 ETN·MLE 142.3

ETN·MAL 165.2 ETN·MAL 95.2

3.4. Dissolution Kinetic Tests

The dissolution rate for all obtained adducts, except for ETN·TAR, was evaluated in order to
assess its variation with respect to pure ETN. Dissolution tests were already performed at pH = 1.2 for
ETN·FUM [23] and ETN·GLU [23]. To the best of the authors’ knowledge, this is the first time they are
conducted at physiological pH values (7.4). Concentrations (mg/L) were plotted against time (min),
as shown in Figure 10. The dissolution rate of ETN in ETN·MLE is the highest among the obtained
adducts. Nonetheless, a significant improvement in the dissolution rate of ETN is observed for all of
them. The ratios between the Area Under the Curve (AUC) values of each adduct and pure ETN are
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reported in Table 5. This parameter allows one to assess the increase in the in vitro bioavailability of
ETN in the crystal forms [44]. In all cases, a remarkable increase from two up to eight times is observed.
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Table 5. Normalized Area Under the Curve (AUC) values obtained by the dissolution curves of the
obtained ETN adducts.

AUC/AUCETN

ETN·FUM 2.7

ETN·GLU 2.3

ETN·MLE 7.8

ETN·MAL 2.6

4. Conclusions

ETN proved promising to engineer new crystal forms with enhanced physicochemical properties.
The presence in its molecular structure of a thioamidic moiety and of a heterocyclic N atom makes it
easy to salify or cocrystallize with dicarboxylic acids. Three new crystal forms were obtained—namely,
a salt (ETN-MAL), a cocrystal (ETN-GLU) and a salt-cocrystal (ETN-TAR). As in all cases reported in the
literature, in ETN-MAL and ETN-TAR, N5 is protonated, while, in ETN-GLU and ETN-TAR, COOH···N
and C=O···HN contacts are present. The salt cocrystal with TAR presents the rare characteristic to
be a kryptoracemic cocrystal, a racemate that crystallizes into a Sohnke group; this behavior can be
attributed to the concomitant presence of both the enantiomers in the asymmetric unit with some
degree of distortion between each other, preserving their generation through an inversion center,
a mirror plane or a glide.

The solid-state characterization of all the adducts was performed by SCXRD analyses and
supported by 13C and 15N CPMAS SSNMR experiments. The latter are particularly informative,
since they provide unambiguous results. These made it possible to assess the purity, the degree of
crystallinity and the ionic/neutral nature, clarifying the exact position of protons, which were often
uncertain in the obtained X-ray structures.

As for their physicochemical properties, all analyzed adducts show lower melting points than
pure ETN. In this sense, by also comparing literature data (more than 10 adducts), we can affirm that
cocrystallization systematically decreases its melting point. The dissolution profile for each analyzed
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adduct was evaluated. Their dissolution rates all proved significantly higher than for the pure API.
In particular, ETN·MLE stands out as eight times more bioavailable (in vitro) than pure ETN.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/12/9/818/s1,
Figures S1–S4: Raman spectra, Tables S1–S6: Crystallographic distances and angles for the crystal structures of
ETN·MAL, ETN·GLU and ETN·TAR; Table S7: SSNMR acquisition parameters; Figure S5: DKT calibration curve;
Figures S6–S9: PXRD patterns; Figures S10–S13: Asymmetric units and hydrogen bond patterns for ETN·MLE
and ETN·FUM; Figures S14–S17: TGA curves; Figures S18–S21: DSC thermograms; The CIF and the checkCIF
output files are included in the Supplementary Materials.
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