

Supplementary Materials: Radical Dendrimers Based on Biocompatible Oligoethylene Glycol Dendrimers as Contrast Agents for MRI

Songbai Zhang, Vega Lloveras, Daniel Pulido, Flonja Liko, Luiz F. Pinto Fernando Albericio, Miriam Royo and José Vidal-Gancedo *

Synthesis of G0-OEG-NH2 and G1-OEG-NH2 Dendrimers

Synthesis of Compound 1

Dendrimer 1 was prepared by acylation of commercially available diethylenetriaminepentaacetic (DTPA) dianhydride with 1-(*tert*-butoxycarbonyl-amino)-4,7,10-trioxa-13-tridecanamine following described procedures [1].

Synthesis of G0-OEG-NH₂(. 8 HCl) Dendrimer (2)

Compound 1 (126 mg, 66.2 µmol) was dissolved in dioxane (2 mL) and a 4 M solution of HCl in dioxane (2 mL) was added. The resulting mixture was stirred at room temperature for 1 h. Then, the mixture was evaporated to dryness. Finally, the crude was dissolved in water (5 mL) and lyophilized to obtain compound 2 (111 mg, 65.6 µmol, 99%). ¹H NMR (400 MHz, D₂O) δ 4.02 (s, 8H), 3.72 – 3.61 (m, 52H), 3.56 (t, *J* = 6.4 Hz, 10H), 3.48 (t, *J* = 6.4 Hz, 4H), 3.36 – 3.19 (m, 14H), 3.10 (t, *J* = 7.2 Hz, 10H), 2.00 – 1.90 (m, 10H), 1.86 – 1.75 (m, 10H). ¹³C NMR (101 MHz, D₂O) δ 169.5, 166.5, 69.5, 69.4, 69.3, 69.2, 68.2, 56.5, 55.0, 52.6, 50.3, 37.6, 36.6, 28.1, 26.4. LRMS: calculated mass for C₆₄H₁₄₁Cl₈N₁₃O₂₀ (8 HCl) 1691.8, calculated mass for C₆₄H₁₃₄N₁₃O₂₀ (amine) 1405.0 [M+H]⁺, found by HPLC-MS (ESI) 1404.8, 703.3 [M + 2H]²⁺, 469.1 [M + 3H]³⁺, 352.1 [M + 4H]⁴⁺.

Synthesis of Compound 3 and 4

Compound 3 was synthesized described [1], from as in starting 4-benzyloxycarbonylmethyl-1,1,7,7-tetra(carboxymethyl)-1,4,7-triazaheptane, a DTPA synthetic derivative. Compound 3 (444 mg, 277 µmol, 1.0 equiv) was dissolved in DMF (5 mL) and *N*,*N*-Diisopropylethylamine (DIEA) (0.19)mL, 1.12 mmol, 4.0equiv) and 3-[Bis(dimethylamino)methyliumyl]-3H-benzotriazol-1-oxide hexafluorophosphate (HBTU) (132 mg, 348 µmol, 1.2 equiv) were added. Then, after stirring 2 min at room temperature a solution of 1-azido-4,7,10-trioxa-13-tridecanamine hydrochloride (98.1 mg, 347 µmol, 1.2 equiv) in DMF (2 mL) was added. The resulting mixture was stirred at room temperature for 90 min. After this time the solvent was evaporated to dryness. The crude was dissolved in AcOEt (30 mL) and washed with saturated NaHCO₃ (3 × 30 mL), 1 M HCl (3 × 30 mL) and brine (1 × 30 mL). The organic phase was dried over MgSO4 and evaporated to obtain the desired compound 4 (478 mg, 261 µmol, 94%). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (bs, NH), 7.37 (bs, NH), 5.06 (bs, NH), 3.64 – 3.44 (m, 60H), 3.39 – 3.24 (m, 12H), 3.23 – 3.08 (m, 16H), 3.04 (s, 2H), 2.66 – 2.50 (m, 8H), 1.85 – 1.66 (m, 20H), 1.39 (s, 36H). ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 170.7, 156.1, 78.9, 70.6, 70.5, 70.3, 70.2, 70.2, 69.5, 67.9, 59.2, 53.4, 53.3, 48.5, 38.5, 37.2, 29.8, 29.5, 29.1, 28.5. LRMS: calculated mass for C84H164N15O28 1831.2 [M+H]+, found by HPLC-MS (ESI) 1832.2, 916.5 [M + 2H]²⁺.

Synthesis of Compound 5

Compound 4 (218 mg, 119 μ mol) was dissolved in MeOH (15 mL) and 10% Pd/C (22 mg, 10% w/w) was added. The resulting suspension was stirred at room temperature for 2 h under H₂

atmosphere. The catalyst was removed by filtration through Celite and the solvent was evaporated to dryness to afford compound 5 (193 mg, 107 µmol, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.58 (m, NH), 5.07 (bs, NH), 3.633.52 (m, 42H), 3.52 – 3.43 (m, 20H), 3.35 – 3.24 (m, 10H), 3.22 – 3.10 (m, 16H), 3.05 (s, 2H), 2.89 (t, *J* = 6.3 Hz, 2H), 2.67 – 2.51 (m, 8H), 1.82 – 1.67 (m, 20H), 1.40 (s, 36H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 170.9, 156.2, 78.9, 70.6, 70.5, 70.2, 70.2, 70.0, 70.0, 69.8, 69.5, 69.4, 69.1, 59.2, 58.6, 53.4, 53.3, 40.0, 38.5, 37.1, 36.7, 29.8, 29.6, 29.5, 28.5. LRMS: calculated mass for C₈₄H₁₆₆N₁₃O₂₈ 1805.2 [M+H]⁺, found by HPLC-MS (ESI) 1805.2, 903.5 [M + 2H]²⁺, 602.8 [M + 3H]³⁺.

Synthesis of Compound 6

To a solution of diethylenetriaminepentaacetic dianhydride (5.7 mg, 15.9 µmol, 1 equiv) and 5 (193)107 DMF (5 mg, μmol, 6.7 equiv) in mL) were added (Benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyBOP) (37.5 mg, 72.0 µmol, 4.5 equiv) and DIEA (24 µL, 141 µmol, 8.9 equiv). The resulting mixture was stirred at room temperature for 90 min. After this time the crude was evaporated to dryness. The crude was dissolved in CH₂Cl₂ (25 mL) and washed with saturated NaHCO₃ (2 × 25 mL) and brine (1 × 25 mL). The organic phase was dried over MgSO₄ and evaporated. The resulting crude was purified by semipreparative reversed-phase HPLC (70-78% acetonitrile in aqueous 10 mM NH₄HCO₃ in 8 min, XBridge C₁₈ 19 mm × 150 mm 5 µm), affording compound 6 (67.7 mg, 7.26 µmol, 46%). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (bs, NH), 5.08 (bs, NH), 3.63 – 3.40 (m, 322H), 3.40 – 3.05 (m, 186H), 1.80 – 1.62 (m, 100H), 1.36 (s, 180H). ¹³C NMR (101 MHz, CDCl₃) & 170.8, 156.2, 79.0, 70.6, 70.6, 70.3, 70.2, 69.5, 69.3, 58.7, 53.4, 38.5, 37.2, 29.8, 29.5, 28.6. LRMS: calculated mass for C434H839N68O145 9325.0 [M+H]+, found by HPLC-MS (ESI) 1866.7 [M + 5H]⁵⁺, 1555.8 [M + 6H]⁶⁺, 1333.7 [M + 7H]⁷⁺, 1167.1 [M + 8H]⁸⁺, 1037.6 [M + 9H]⁹⁺.

Synthesis of G1-OEG-NH₂(. 38 HCl) Dendrimer (7)

Compound 6 (67.7 mg, 7.26 µmol) was dissolved in dioxane (2 mL) and a 4 M solution of HCl in dioxane (2 mL) was added. The resulting mixture was stirred at room temperature for 2 h. Then, the mixture was evaporated to dryness. Finally, the crude was dissolved in water (5 mL) and lyophilized to obtain compound 7 (63.2 mg, 7.25 µmol, >99%). ¹H NMR (400 MHz, D₂O) δ 3.94 – 3.83 (m, 40H), 3.75 – 3.63 (m, 260H), 3.58 (t, *J* = 6.4 Hz, 68H), 3.45 – 3.37 (m, 20H), 3.37 – 3.24 (m, 80H), 3.13 (t, *J* = 7.2 Hz, 40H), 2.02 – 1.92 (m, 40H), 1.89 – 1.76 (m, 60H). ¹³C NMR (101 MHz, D₂O) δ 168.1, 69.5, 69.5, 69.3, 69.3, 68.2, 56.9, 52.1, 51.2, 37.6, 36.5, 28.2, 26.4. LRMS: calculated mass for C₃₃₄H₇₁₆Cl₃₈N₆₈O₁₀₅ 8690.1 (38 HCl), calculated mass for C₃₃₄H₆₇₉N₆₈O₁₀₅ (amine) 7324.0 [M+H]⁺, found by HPLC-MS (ESI) 1047.7 [M + 7H]⁷⁺, 916.9 [M + 8H]⁸⁺, 815.1 [M + 9H]⁹⁺, 733.7 [M + 10H]¹⁰⁺, 667.2 [M + 11H]¹¹⁺, 611.6 [M + 12H]¹²⁺, 564.7 [M + 13H]¹³⁺, 524.5 [M + 14H]¹⁴⁺, 489.6 [M + 15H]¹⁵⁺.

Synthesis of G0-OEG-PROXYL Radical Dendrimers

3-carboxy-proxyl (25.312 mg; 1.3 eq. per group) and HATU (52.19 mg; 1.3 eq. per group) were dissolved in anhydrous DCM (2 mL) in a 25 mL round flask. Then, triethylamine (71 μL; 25 eq.) was added with a syringe and it was let to stir at room temperature for 15 minutes. In another 25 mL round flask under an argon atmosphere, G0-OEG-NH₂(.8 HCl) (2) dendrimer (50.0 mg; 1 eq.) was dissolved in anhydrous DCM (2 mL). Then, triethylamine (80 μL; 28 eq.) was added with a syringe and was let to stir for 15 minutes. Subsequently, the mixture of the first flask containing 3-carboxy-proxyl was transferred to the second one containing the G0-OEG-NH₂ dendrimer. The reaction mixture was let to stir at room temperature overnight. The reaction was monitored by TLC using ninhydrin. The product was purified by ultrafiltration in a mixture of water/acetone (10%/90%), and obtained with a 61% yield. The full radical functionalization was verified by EPR and its purity by SEC (see Section 3.2 and 3.3. and the supporting information). For ¹H NMR characterization see Figure S3 and S4. MALDI-TOF MS (dithranol, linear mode m/z): calculated mass for C₁₀₉H₂₀₃N₁₈O₃₀: 2245.92; found: 2247.31 [M+H]⁺. IR (ATR, cm⁻¹): 3303 (-N-H-)st; 1650 (C=O)st; 1364 (N-O.)st; 1290 (-C-H-)bend; 1100 (-C-O-C-)st.

Synthesis of G1-OEG-PROXYL Radical Dendrimers

3-carboxyl-PROXYL (13.00 mg, 1.5 eq. per group) and HATU (26.1 mg, 1.5 eq. per group) were dissolved in 3 mL of anhydrous DCM in a round flask, then triethylamine (50 μ L; 154 eq.) was added and it was let to stir at room temperature for 30 min. G2-OEG-NH₂(. 38 HCl) (7) dendrimer (17 mg; 1 eq.) was dissolved in 3 mL of DCM in another round flask. The solution containing 3-carboxyl-PROXYL was transferred into the flask containing G2-OEG-NH₂ dendrimer and the reaction mixture was let to stir at room temperature overnight. The reaction was monitored by TLC using ninhydrin. The product was purified by ultrafiltration in water, and obtained with a 54% yield. The full radical functionalization was verified by EPR and its purity by SEC (see Section 3.2 and 3.3. and the supporting information). IR (ATR, cm⁻¹): 3303 (-N-H-)st; 1650 (C=O)st; 1364 (N-O.)st; 1290 (-C-H-)bend; 1100 (-C-O-C-)st.

SEC-GPC of G0-OEG-PROXYL and G1-OEG-PROXYL

Figure S1. SEC-GPC of G0-OEG-PROXYL and G1-OEG-PROXYL.

FT-IR (ATR) of G0-OEG-PROXYL and G1-OEG-PROXYL

Figure S2. FT-IR (ATR) spectra of G0-OEG-PROXYL and G1-OEG-PROXYL.

DLS of G0-OEG-PROXYL and G1-OEG-PROXYL

Figure S3. Mean diameters of G0-OEG-PROXYL (**a**) and G1-OEG-PROXYL (**b**) determined by DLS, from the size distribution by volume (**A**), by number (**B**) and by intensity (**C**) at 25 °C in PBS.

MALDI-TOF of G0-OEG-PROXYL

Figure S4. MALDI-TOF of G0-OEG-PROXYL using dithranol matrix.

Reaction of G0-OEG-PROXYL with Ascorbic Acid and ¹H NMR of G0-OEG-PROXYL-H

Scheme S1. Reaction of G0-OEG-PROXYL with ascorbic acid.

G0-OEG-PROXYL radical dendrimer (25.86 mg; 1 eq.) was dissolved in H₂O (2mL) in a 10 mL round flask. Subsequently, ascorbic acid excess (103.6 mg; 10 eq. per group) was added and it was let stirring for around 6 h. The product (G0-OEG-PROXYL-H) was purified by ultrafiltration in water/acetone mixture (10%/90%) giving quantitative yield.

In Figure S5b it is shown the corresponding ¹H NMR spectrum obtained compared with the initial G0-OEG-NH₂.(8 HCl) dendrimer. It can be observed the appearance of new peaks between 0.8 and 1.5 ppm in the G0-OEG-PROXYL-H spectrum that are absent in the initial G0-OEG-NH₂.(8 HCl), which correspond to the protons of PROXYL units (Figure S5a). In addition, the ratio of the relative integral values between the group of protons (A,B,C + a,b) and the rest of protons (c-m) was the same than the theoretical one: theoretical 18: 22; found 18:21.1, as can be observed in Figure S6.

Figure S5. a) Structure of G0-OEG-PROXYL with the protons labelling. b) ¹H NMR spectra of G0-OEG-NH₂(8 HCl) dendrimer (up) and G0-OEG-PROXYL-H dendrimer (down) with their corresponding peaks assignment.

Figure S6. ¹H NMR spectrum of G0-OEG-PROXYL-H dendrimer with their corresponding peaks assignment and relative integral values. The relative integral value for the group of protons (**A**,**B**,**C** + **a**,**b**) was found to be 18 and for the group of protons (c-m) 21.1, the same than the theoretical one 18: 22.

Variable T EPR spectra of G0- and G1-OEG-PROXYL

Figure S7. Variable temperature EPR spectra of G0-OEG-PROXYL from 300 to 220 K in CH2Cl2.

Figure S8. Variable temperature EPR spectra of G1-OEG-PROXYL from 300 to 220 K in CH2Cl2.

MRI Data

Table S1. MRI data of PROXYL in PBS.

Conc. radical (mM)	T 1 (ms)	SD (±)	R1 (s-1)
2.83	1049	46	0.953
2.12	1176	44	0.850
1.42	1342	49	0.745
0.71	1651	58	0.606
0.09	2182	103	0.458

Figure S9. Plots of R1 of water molecules versus PROXYL concentration.

Table S2. MRI data of G0-OEG-PROXYL in PBS.

Conc. radical (mM)	Conc. molecule (mM)	T 1 (ms)	SD (±)	R1 (s-1)
2.99	0.60	1023	38	0.978
2.24	0.45	1175	48	0.851
1.49	0.30	1489	101	0.672
0.75	0.15	1765	91	0.567
0.37	0.075	1960	85	0.510

Figure S10. Plots of R₁ of water molecules versus the nitroxyl radical unit (PROXYL) concentration (left) and the G0-OEG-PROXYL molecular concentration (right).

Conc. molecule (mM)	Conc. radical (mM)	T 1 (ms)	SD (±)	R1 (s ⁻¹)
0.303	6.062	690	26	1.449
0.152	3.031	1050	39	0.952
0.114	2.273	1186	46	0.843
0.038	0.758	1935	133	0.517

1950

114

0.513

0.379

_

0.019

Table S3. MRI data of G1-OEG-PROXYL in PBS.

Figure S11. Plots of R₁ of water molecules versus the nitroxyl radical unit (PROXYL) concentration (left) and the G1-OEG-PROXYL molecular concentration (right).

Figure S12. In vitro XTT cell viability assays conducted with African green monkey kidney (Vero) cells incubated with G0-OEG-PROXYL (up) and G1-OEG-PROXYL (down) dendrimers in a concentration of A) and B) 2mM per radical unit, C) 1mM, D) 0.5 mM, E) 0.25 mM, F) 0.125 mM, G) 0.0625 mM, for 24 h.

References

1. Pulido, D.; Albericio, F.; Royo, M. Controlling Multivalency and Multimodality: Up to Pentamodal Dendritic Platforms Based on Diethylenetriaminepentaacetic Acid Cores. *Org. Lett.* **2014**, *16*, 1318–1321.