

Supplementary Materials: Development of Mannose Residue-Introduced Curdlan-Modified Liposomes for Antigen Presenting Cell-Specific Antigen Delivery

Eiji Yuba, Yoshiki Fukaya, Shin Yanagihara, Nozomi Kasho and Atsushi Harada

Scheme S1. Synthetic route of 6-amino-4-thiahexyl *α*-D-mannopyranoside.

Figure S1. 1H NMR spectrum for 6-amino-4-thiahexyl α-D-mannopyranoside (D2O + DCl, 400 MHz).

Code	MGlu-Curd-	6-amino-4-thiahexyl α-	DMT-	Yield		MGlu	Anchor	Mannose
	A/mg	D-mannopyranoside /mg	MM/mg	/ g	/ %	/ % *	/ % *	/ %
Man3	154	59.1	51.5	129	79	31	5	3
Man5	153	576	50.9	135	82	48	5	5
Man7	300	59.7	49.3	294	76	49	5	7
Man10	154	97.3	90.1	142	72	45	6	10
Man14	151	130	121	179	98	55	7	14

*Determined by ¹H NMR.

Figure S2. 1H NMR spectra for hydrolyzed MGlu-Curd-A-Man3 (a), MGlu-Curd-A-Man5 (b), MGlu-Curd-A-Man10 (c), and MGlu-Curd-A-Man14 (d) (D2O + NaOD, 400 MHz).

Code	MGlu unit		Anch	or unit	Mannose unit		
	/% for OH	/100 glucose units	/% for OH unit	/100 glucose units	/% for OH unit	/100 glucose units	
	unit						
Man0	43	129	4	12	0	0	
Man3	31	93	5	15	3	9	
Man5	48	144	5	15	5	15	
Man7	49	157	5	15	7	21	
Man10	45	135	6	18	10	30	
Man14	55	165	7	21	14	42	

Table S2. Composition of Polymers.

*Determined by ¹H NMR.

Figure S3. Time courses of pyranine release from EYPC liposome by addition of curdlan derivative-modified liposomes at pH 7.4 (a) and 5.5 (b). (c) pH-Dependence of pyranine release from EYPC liposome by addition of curdlan derivative-modified liposomes at 30 min.

Figure S4. Mean fluorescence intensity of DiI-labeled liposome-treated splenocytes co-stained with anti-CD3 antibody (T lymphocyte), anti-CD11c+-antibody (dendritic cell), or anti-F4/80 antibody (macrophage). Statistical analysis was done using analysis of variance (ANOVA) with Tukey's test. ****P < 0.0001.

Man10

Man14 Red: Dil, Green: FITC-OVA

Figure S5. Confocal laser scanning microscopic (CLSM) images of RAW264.7 macrophages treated with DiI-labeled/FITC-OVA-loaded liposomes modified with curdlan derivatives (0.1 mM) for 4 h at 37 in serum-free DMEM.

Figure S6. Individual tumor volume change of C57BL/6 mice treated with liposomes modified with various curdlan derivatives in Figure 6 (n = 5).