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Abstract: Antimicrobial dosing in the intensive care unit (ICU) can be problematic due to various 

challenges including unique physiological changes observed in critically ill patients and the 

presence of pathogens with reduced susceptibility. These challenges result in reduced likelihood of 

standard antimicrobial dosing regimens achieving target exposures associated with optimal patient 

outcomes. Therefore, the aim of this review is to explore the various methods for optimisation of 

antimicrobial dosing in ICU patients. Dosing nomograms developed from 

pharmacokinetic/statistical models and therapeutic drug monitoring are commonly used. However, 

recent advances in mathematical and statistical modelling have resulted in the development of 

novel dosing software that utilise Bayesian forecasting and/or artificial intelligence. These programs 

utilise therapeutic drug monitoring results to further personalise antimicrobial therapy based on 

each patient’s clinical characteristics. Studies quantifying the clinical and cost benefits associated 

with dosing software are required before widespread use as a point-of-care system can be justified.  

Keywords: nomogram; software; antimicrobials; critical illness; pharmacokinetics; Bayesian 
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1. Introduction 

Sepsis is a leading source of morbidity and mortality among critically ill patients in the intensive 

care unit (ICU) [1–3]. In addition to selecting the most appropriate antimicrobial agent, there is 

increasing awareness of how dosing strategies employed can have profound implications on the 

success of therapy in this patient group [4,5]. Suboptimal antimicrobial dosing reduces the likelihood 

of achieving pharmacokinetic-pharmacodynamic (PK-PD) targets needed for therapeutic success. 

With an increasing appreciation of the importance of achieving these PK-PD targets, regulatory 

bodies are progressively incorporating the use of PK-PD studies through pharmacometrics as part of 

their regulatory assessment of new antimicrobials and their licensed doses [6]. Critically ill patients, 

in particular, are at an increased risk of treatment failure due to the unique physiological changes 

commonly seen in these patients and the interventions they are exposed to that often result in 

alterations to antimicrobial PK and achievement of PK-PD targets. 
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1.1. Altered Pharmacokinetics 

Traditionally, drug dosing takes a “one-size-fits-all” approach whereby pharmacokinetic (PK) 

data is used to define dosing regimens to be used in indications for which the drug is licensed. This 

PK data predicts the likely drug exposure that can be obtained from a chosen antimicrobial dosing 

regimen [7]. As these studies are typically conducted in healthy volunteers and not severely unwell 

patients, extrapolating these dosing recommendations to other patient groups does not account for 

altered PK that is often observed in this such populations, especially in the critically ill [8]. 

A common finding in critically ill patients with sepsis is the presence of large fluid shifts (or the 

third-spacing phenomenon) into the interstitial space, which can alter antimicrobial exposure by 

increasing their volume of distribution. Through movement of drug into this additional 

compartment, there is less drug available in plasma and potentially at the site of infection [9], 

reducing the likelihood of optimal drug exposure and patient outcomes [10]. Hydrophilic 

antimicrobials, such as aminoglycosides and beta-lactams, are more affected by this fluid 

redistribution than lipophilic antimicrobials [11]. Other physiological changes seen in sepsis include 

the presence of organ dysfunction. Given that the hepatic [12–14] and renal systems [15–18] are 

responsible for metabolism and excretion of many antimicrobial agents, derangements in function 

are likely to result in drug accumulation. If antimicrobial dosing is not adapted to organ dysfunction, 

drug-related toxicity from high drug exposures may result [19,20]. 

Alternatively, increased cardiac output from sepsis and inotrope/vasopressor use have been 

shown to increase renal perfusion and induce augmented renal clearance (ARC, defined as a 

glomerular filtration rate above 130 mL/min/1.73 m2 [21]). ARC can dramatically increase the 

clearance of renally-cleared hydrophilic antimicrobials [22,23]. Reduction in plasma albumin 

concentrations is common in critically ill patients which can increase clearance of highly protein-

bound antimicrobials (and reduced concentrations), for example, ceftriaxone and teicoplanin, as there 

is an increase in free drug available for clearance [24]. These collective physiological changes have 

been shown to reduce the likelihood of achieving exposure targets needed for antimicrobial efficacy 

and potentially increasing the risk of treatment failure [10,19,25–28]. 

An additional level of complexity to antimicrobial dosing in critically ill patients stems from the 

treatments used to support failing organs. Extracorporeal interventions such as extracorporeal 

membrane oxygenation (ECMO) and renal replacement therapy (RRT), although lifesaving, can 

profoundly alter antimicrobial exposure in these patients. Adult patients exposed to ECMO can have 

further increases in the volume of distribution of highly protein-bound and/or lipophilic 

antimicrobials through sequestration onto the ECMO circuits [29–31]. Compared to non-dialysed 

patients with renal failure, patients receiving RRT may exhibit significant clearances of hydrophilic 

antimicrobials through losses in the ultrafiltrate and dialysate [32]. With both interventions, the 

impact of drug clearance or distribution is affected by a wide variety of extracorporeal parameters 

including the type of material used for the oxygenator or filter and their surface areas, blood and 

effluent flow rates, configuration or modality of the intervention used as well as replacement fluid 

settings, especially for RRT. Hence, these interventions make it difficult to predict resulting 

antimicrobial exposure given the large variations in extracorporeal parameters used in clinical 

settings. If ECMO and/or RRT are unaccounted for with the dosing regimen selected, this may lead 

to treatment failure or drug toxicity. Collectively, optimising antimicrobial therapy in this patient 

group is critical to ensure positive patient outcomes as these patients are often the sickest cohort in 

the ICU [33–37]. 

1.2. Pharmacodynamic Considerations 

Another major factor that impacts on treatment success is the pharmacodynamics (PD) of an 

antimicrobial. PK-PD describes the optimum unbound exposure to an antimicrobial agent that is 

needed for treatment success and is influenced by the primary PD parameter, the minimum 

inhibitory concentration (MIC) [38]. The MIC is an in vitro measurement that describes the 

susceptibility of an organism to an antimicrobial agent and hence affects the exposure required for 

antimicrobial efficacy. Examples of PK-PD indices used to measure antimicrobial efficacy include the 
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ratio of the area under the curve of the unbound drug (AUC) to the MIC (fAUC0–24/MIC; where f 

denotes free, or unbound exposure), the ratio of the maximal unbound drug concentration to the MIC 

(fCmax/MIC) and the cumulative percentage of a dosing interval that the antimicrobial concentration 

exceeds the MIC (%fT > MIC) [39]. Although not all PK-PD indices in studies are described according 

to the unbound concentration (only total concentration may be measured), it is the unbound 

concentration of drug that is responsible for antimicrobial effect. Table 1 shows the PK-PD indices 

used to describe microbial kill characteristics of commonly used antimicrobial agents. 

Table 1. List of commonly used antimicrobial classes and their pharmacokinetic-pharmacodynamic 

(PK-PD) indices. 

Class PK-PD Index Reference 

Aminoglycosides 
Cmax/MIC 

AUC0–24/MIC 
[40] 

Beta-Lactams fT > MIC [41] 

Fluoroquinolones 
Cmax/MIC 

AUC0–24/MIC 
[33,42] 

Glycopeptides AUC0–24/MIC [43] 

Glycylcyclines AUC0–24/MIC [44,45] 

Lincosamides fT > MIC [46] 

Lipopeptides 
Cmax/MIC 

AUC0–24/MIC 
[47] 

Macrolides 
fT > MIC 

AUC0–24/MIC (azithromycin) 
[48,49] 

Oxazolidinones 
fT > MIC 

AUC0–24/MIC 
[50] 

Polymyxins AUC0–24/MIC [51] 

Triazoles antifungals AUC0–24/MIC [52] 

Echinocandins 
AUC0–24/MIC 

Cmax/MIC 
[53] 

Polyenes Cmax/MIC [54] 

Pathogens isolated in critically ill patients often exhibit higher MICs compared to those isolated 

among ward-based patients [55–61]. This may mean that higher antimicrobial exposures are needed 

to attain PK-PD targets associated with optimal clinical outcome. Together with the altered PK 

observed in these patients, these scenarios are very challenging when faced by ICU clinicians [62]. 

Furthermore, sub-optimal therapy carries an increased risk of developing antimicrobial-resistant 

pathogens which has negative consequences in patients both in and outside of the ICU [63]. 

The pathogen’s MIC can influence the antimicrobial exposure required to achieve a PK-PD target 

as it acts as the denominator in each index. The MIC should be interpreted in the context of the 

microbiological susceptibility testing method used (such broth microdilution versus E-test), the 

pathogen identified and its wild-type distribution. However, it is important to note that the 

measurement process of MICs is susceptible to laboratory assay and microbiological sample 

variations [38]. This may inadvertently result in the MIC being reported incorrectly by one to two 

dilutions and this can affect the achievement of appropriate PD targets, although the clinical outcome 

implications of MIC measurement error remain uncertain. 

Collectively, the dynamic interplay between PK and PD demonstrates how antimicrobial 

exposure impacts on the critical care patient (Figure 1). Clinicians should adopt a PK-PD based 

approach to dosing in order to avoid the risks of sub-optimal exposure associated with using 

standard antimicrobial doses. 

The purpose of this review is to describe tools currently available to assist clinicians to achieve 

therapeutic PK-PD targets by individualising dosing. These include use of dosing nomograms, 
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therapeutic drug monitoring, and dosing software where each tool can function individually or in 

conjunction with each other to optimise the dosing of antimicrobials (see Figure 2). 

 

Figure 1. Dynamic interplay between the critical care patient, antimicrobial agent of choice, and the 

pathogen. 

 

Figure 2. Range of available tools to assist clinicians with optimising the dosing of antimicrobials in 

the intensive care unit (ICU). Simple applications such as dosing nomograms and therapeutic drug 

monitoring (TDM) provide clinicians with basic tools needed to improve probability of achieving PK-

PD targets and determine if they have been successfully achieved. Computerised programs such as 

dosing software (and some nomograms) are able to utilise antimicrobial TDM results to generate 

refined recommendations based on the model underpinning the software. 

Antimicrobial 
agent 

Pathogen Critical Care 
Patient 
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2. Dosing Nomograms 

A simple but systematic approach to guide dosing of antimicrobials is the use of dosing 

nomograms. This is one of the most common approaches taken in non-critical care settings whereby 

doses are based on patient characteristics (typically renal function or weight) or antimicrobial plasma 

concentrations, if available [64]. Nomograms are developed from PK studies or statistical analyses 

(such as multiple linear regression models) in the population of interest and seek to describe the dose-

concentration relationship of an antimicrobial. From these data, a model is generated that then will 

underpin the dosing recommendations of the nomogram using relevant patient characteristics [65]. 

Based on patient characteristics, an individualised starting dose likely to achieve the nominated PK-

PD targets can be generated from the dosing nomogram. Additionally, some nomograms have the 

ability to generate subsequent dosage adjustment recommendations using resulting antimicrobial 

plasma concentrations if available [66]. 

Compared to clinician-guided dosing alone, use of dosing nomograms in the ICU has shown 

some promise. For example, an improvement in target attainment of vancomycin plasma 

concentrations (defined in this study as a trough concentration between 20–30 mg/L) was seen within 

the first day of treatment with 84% of patients achieving therapeutic concentrations when a dosing 

nomogram was used compared to 51% of patients when dosed empirically by clinicians [67]. Other 

nomograms for antimicrobial drugs in the ICU population have also been described for vancomycin 

[68–71], gentamicin [72] and meropenem [73]. 

A limitation to using dosing nomograms in the ICU is its ability to consider only one or two 

patient characteristics at a time, with additional inputs complicating the feasibility of a nomogram 

and impair usability. This reduces the clinician’s ability to include more data such as pathogen-

specific information to further individualise the dosing recommendations of the nomogram. The 

dosing recommendations from these nomograms are typically aimed at achieving pre-defined PK 

targets [66,74] which may not be universally applicable to all ICU patients, given that some patients 

may be infected with pathogens with higher MICs. 

In spite of the limitations described, nomograms may still be a useful tool for improving 

antimicrobial dosing to help achieve PK-PD targets when compared to empiric dosing regimens 

selected by clinicians alone. The use of nomograms generally does not require significant changes to 

pre-existing infrastructure (such as new assays for measuring antimicrobial concentrations) beyond 

clinician education which may make implementation easier, even in ICUs with more limited 

resources such as those in low and middle income countries. 

3. Therapeutic Drug Monitoring in the Intensive Care Unit (ICU) 

The use of therapeutic drug monitoring (TDM) represents one of the earliest forms of 

personalising antimicrobial therapy/dosing [75]. TDM was traditionally used to ensure that patients 

receiving antimicrobials with a narrow therapeutic index were not exposed to toxic exposures 

associated with serious side effects. Examples of antimicrobials that were targeted for this purpose 

include aminoglycosides and glycopeptides where the risk of nephro- and oto-toxicity is higher than 

for other antimicrobials [76]. With an increasing appreciation of how achieving PK-PD targets 

increases the likelihood of treatment success, TDM has now expanded to include optimising 

antimicrobial exposure to increase the likelihood of clinical and microbiological cure, as well as, 

minimise drug toxicity. 

At its simplest, TDM entails obtaining a plasma drug concentration during a course of 

antimicrobial therapy. This concentration is interpreted by the clinician to be either therapeutic or not 

therapeutic, in which case the clinician will adjust the dosing regimen by a magnitude that they 

anticipate will achieve a predefined PK-PD target. Although use of TDM has been shown to increase 

the proportion of patients who achieve PK-PD targets of antimicrobials compared to empiric dosing 

by clinicians alone [77], it is prone to significant inter-clinician variability in dosing recommendation 

selected [78]. This may reduce the consistency of achieving these PK-PD targets when dosing is led 

by different clinicians. Furthermore, variability between countries and healthcare networks with 

respect to their TDM practices and availability may increase variability in dosing recommendations 
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across institutions [79,80]. Importantly, dosing changes may be more challenging in antimicrobials 

where exposures can be influenced by multiple factors such as renal function and plasma protein 

binding. To circumvent these hurdles, TDM results can be integrated with other tools such as dosing 

nomograms and/or software to help improve the likelihood that revised doses will achieve 

predefined PK-PD targets. 

There are several considerations clinicians should be aware of when employing TDM, including 

the availability of appropriate assays needed to generate the TDM results [81]. Not all ICUs have 

access to these assays which may explain the variability across ICUs in antimicrobials that are actively 

monitored using this process [79]. Furthermore, the majority of data and suggested reference ranges 

are based on concentrations obtained from blood (or plasma). These antimicrobial concentrations do 

not always reflect concentrations at the site of infection (e.g., pulmonary epithelial lining fluid for 

pneumonia or cerebrospinal fluid for meningitis) [82]. Although preliminary studies have attempted 

to generate models that predict the antimicrobial concentrations at the site of infection from blood 

plasma concentrations, their predictive performance has been generally poor [83,84]. For an 

antimicrobial to reach the site of infection, it must partition out of circulation, diffuse through the 

interstitial fluid and finally pass into the tissue of interest [85]. Depending on the location of this 

tissue, a wide variety of factors can influence penetration into the infective site. Examples include 

drug-specific parameters such as degree of protein binding and physicochemical properties of the 

drug as well as tissue properties which may include the presence of occluding tissue borders (such 

as the blood-brain barrier) or membrane transporters (which can enhance or hinder the transport of 

antimicrobials to and from the site of infection) [85]. In these clinical scenarios, plasma concentrations 

act as surrogate markers as sampling at the clinical site of infection through procedures such as 

bronchoalveolar lavage in pneumonia or lumbar puncture in central nervous system (CNS) infections 

can often be impractical or too invasive to be conducted on a routine basis. 

Given this, clinicians may choose to aim for higher plasma concentrations to create a larger 

concentration gradient with tissues to drive the antimicrobial into the site of infection if a drug is 

known to have variable penetration. Vancomycin for treating CNS infections is a common example 

whereby in practice trough concentrations are targeted up to 20–25 mg/L (as opposed to 15–20 mg/L 

for other infections) due to reduced penetration across the blood-brain barrier which may also be 

variable depending on the degree of meningeal inflammation [86]. Further studies are needed in this 

area to better define plasma exposure targets of antimicrobials that best correlate with optimal tissue 

concentrations and patient outcomes. 

Additionally, as only the unbound drug is pharmacologically active to exert a therapeutic effect, 

highly protein-bound antimicrobial agents (usually clinically significant when more than 70% of the 

drug is protein bound [87]) warrant additional considerations given the reduction in protein 

concentrations commonly seen in critically ill patients. Plasma concentrations are typically reported 

as ‘total’ drug concentrations as measuring only the unbound concentration is more onerous and 

expensive [88]. However, in ICU patients, measuring total plasma concentrations may not provide 

an accurate reflection of the unbound concentration needed to achieve PK-PD targets. Previous 

studies have demonstrated that highly protein-bound antimicrobials such as ceftriaxone and 

flucloxacillin have poor correlations between their total and unbound concentrations, making it 

difficult to predict if appropriate target unbound exposures have been achieved when only total 

concentrations are measured [89]. In patients prescribed drugs with high and/or variable protein 

binding, adjusting antimicrobial regimens based on total concentrations may result in inaccurate PK-

PD target attainment and unbound concentrations should be measured if available. Assays validated 

to measure the unbound concentration of various antimicrobials have been developed [88]. 

4. Dosing Software 

With advances in the ability of computers to perform complex mathematical modelling and 

statistical analysis, clinicians have access to integrate PK models and/or pharmaco-statistical outputs 

that have been embedded into dosing software to assist with drug dosing. Depending on the model 

underpinning the program, dosing software can be broadly divided into a system that utilises (a) 
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linear regression models, (b) population PK models, and/or (c) models that incorporate Bayesian 

forecasting or artificial intelligence. 

The benefits of using dosing software when compared with dosing nomograms or standard 

TDM processes include simplification of the process of calculating complex PK-PD parameters (such 

as AUC/MIC ratios). These PK-PD indices are being increasingly used in clinical practice to determine 

appropriate antimicrobial exposure targets. Measurement of surrogate targets, such as trough 

concentrations, may be alternatives in the absence of dosing software. However, as evidenced by 

vancomycin, target trough concentrations inconsistently correlate with the actual AUC/MIC targets 

for clinical efficacy, thereby risking drug toxicity [90]. 

Below is a brief description of the different approaches currently available for dosing software 

programs. 

4.1. Linear Regression Based Dosing Software 

A simpler form of dosing software is based on linear regression principles whereby two plasma 

concentrations at different time points are obtained and an algorithm calculates a drug clearance rate. 

This can then be used to calculate a dose adjustment regimen. Aminoglycoside dose optimisation 

with the program Aminoglycoside Levels and Daily Dose Indicator (ALADDIN) is one such example 

of this [91,92]. Outside of the ICU, the use of this program has been shown to produce dosing 

recommendations that are different from dosing nomograms but the predictive performance in terms 

of PK-PD target attainment have yet to be quantified. Interestingly, the use of ALADDIN may be 

associated with a lower incidence of nephrotoxicity compared to dosing with nomograms [92]. This 

potentially suggests linear regression dosing software may be superior to simpler methods such as 

dosing nomograms for dosing aminoglycosides, but this has yet to be prospectively examined in the 

ICU cohort. 

As linear regression programs do not include population PK models, multiple samples of 

measured plasma concentrations are required in order to describe an individual PK profile [65]. These 

programs are unable to generate empiric starting doses based on patient covariates and do not 

consider any other patient data in their analysis and recommendations. As each set of concentrations 

are analysed individually, these programs do not have the ability to consider previous TDM results 

for the patient to further refine the accuracy of dosing recommendations, which may be necessary in 

the event of changes in a patient’s clinical condition. Collectively, this may impair a clinician’s ability 

to make the most accurate dosing recommendations in a timely fashion. 

4.2. Population PK-Based Dosing Software 

Dosing software programs that utilise population PK or statistical models could be considered 

advanced dosing nomograms. Patient covariates, or measured drug concentrations, are entered into 

the software and the program generates a starting dose recommendation or dosage adjustment, that 

aims to achieve a predefined antimicrobial exposure [93]. Unlike linear regression-based programs, 

population PK based models are effective with even one plasma concentration measurement as the 

program is able to utilise the underlying model to predict the necessary dose alterations needed to 

achieve a PK-PD target [92]. Accuracy typically improves if a second (or third) plasma concentration 

is included. 

Thus far, population PK-based dosing software has shown some promise. For example, the 

program DoseCalc produced similar dosing recommendations to clinicians who performed complex 

manual calculations for aminoglycosides dosing when targeting an AUC0–24/MIC target [93]. The 

software also generated recommendations that were closer to manually calculated doses compared 

to a dosing nomogram when used in patients with renal dysfunction. Unfortunately, predictive 

performance using measured plasma concentrations was not evaluated. 

One limitation associated with using population PK-based methods is the inability to use 

measured antimicrobial concentrations from the patient to further individualise the model (i.e., a 

posteriori PK parameter estimates) [94,95]. This may reduce the potential predictive accuracy of the 

program when new dosing recommendations are required in the event there is a change in a patient’s 
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clinical parameters without obtaining further TDM concentrations. Hence, recommendations are 

extrapolated from the population PK model driving the software, not the individual patient’s PK 

parameters, which may potentially delay achievement of PK-PD targets. Additionally, many 

population PK model softwares do not contain models from critical care patients which may 

compromise accuracy when used in the critical care cohort [5]. 

4.3. Bayesian Forecasting Dosing Software 

Software that utilises Bayesian forecasting typically uses population PK data to estimate a 

recommended dose that is likely to help achieve a predefined PK-PD target. However, Bayesian 

forecasting has the added benefit of using data (such as TDM results) to generate a posteriori PK 

parameter estimates that can strengthen and improve the accuracy of future dosing 

recommendations (Figure 3) [96]. They also have the ability to account for pathogen-specific 

parameters such as MIC where variations in the degree of susceptibility will alter the dosing regimens 

that are needed to achieve the PK-PD targets. In this way, Bayesian forecasting is able to account for 

any patient variations from the population that the initial PK model was built on. Similar to 

population PK based methods, Bayesian forecasting removes the need for multiple drug samplings 

as the program is able to utilise population PK data to predict likely antimicrobial concentrations and 

generate dosing requirements needed to achieve the PK-PD targets [97]. 

 

Figure 3. Bayesian forecasting based dosing software (blue) initially utilises patient covariates (red), 

PK properties of the antimicrobial (yellow), and pathogen PD properties (orange) to generate an initial 

recommended dose that is likely to achieve the PK-PD target associated with maximum efficacy. 

Resulting plasma exposure concentrations from this dose can then be used to produce a refined PK 

model that is individualised to a specific patient. A new optimised dose is then produced that is 

specific to the patient and can be further refined if needed with additional TDM data (green cycle). 
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The use of Bayesian methods for optimising drug dosing was first described in the 1970s but 

required complex mathematical calculations that most clinicians were unlikely to be familiar with 

[98]. Combined with the lack of awareness then around the PK differences in patient populations and 

its impact on achieving antimicrobial PK-PD targets, this likely may have led to poor uptake amongst 

clinicians. It was not until advances with computer sciences that enabled dosing software to integrate 

Bayesian forecasting into the analysis were clinicians able to appreciate the potential benefits of using 

it to help optimise antimicrobial treatment in the critical care patient group. Examples of dosing 

software with Bayesian forecasting include but are not exclusive to Best Dose, ID-ODS, DoseMe, and 

TCI Works [5]. Some of these programs include population PK models for antimicrobials specific to 

the critically ill patients with sepsis built into the dosing software. Details of antimicrobial population 

PK models developed from critical care patient groups are provided in Appendix A. 

To date, there are limited studies prospectively evaluating the performance of Bayesian dosing 

software in the ICU. In one prospective study involving critical care patients using cefepime, 

meropenem and piperacillin-tazobactam, the use of the dosing software ID-ODS resulted in 98% of 

patients achieving the predefined PK-PD target of time above MIC of the dosing interval (50% for 

piperacillin, 40% for meropenem and 60% for cefepime) [99]. Though there were no control groups 

to compare target attainment in the absence of dosing software, 22% of dosing software optimised 

patients received a different dose to standard doses that would have been used in the study ICU, 

which raises the possibility of inadequate or excessive antimicrobial exposure in those patients if 

standard doses were used, although MICs were generally low. Studies demonstrating positive 

clinical outcomes associated with attainment of PK-PD targets have been described in critically ill 

patients [10,33,34,100–103]. However, the use of Bayesian dosing software to achieve these targets 

and its impact on clinical outcomes have yet to be evaluated but are still needed. 

4.4. Artificial Intelligence Software 

A relatively new approach to optimising treatment of critically ill patients with sepsis in the ICU 

is with the use of computerised programs that utilise artificial intelligence (AI) in generating their 

recommendations. Unlike dosing software with Bayesian forecasting which uses PK and statistical 

modelling to individualise therapy to patients, AI software uses reinforcement learning to generate 

recommendations on appropriate interventions required to achieve predetermined targets for 

patients [104]. Artificial intelligence software examines data from large patient population databases 

to identify interventions associated with the target outcome and combines this information with an 

individual patient’s characteristics to determine the most appropriate intervention that will maximise 

the probability of achieving the predefined outcome [105,106]. If the predetermined outcome is not 

achieved, clinicians are able to relay this information back to the AI software which will then further 

refine its algorithm to alter recommendations to help achieve the target (similar to a trial-and-error 

approach). 

Although there is preliminary evidence that highlights the potential utility of AI software for 

optimising the treatment of patients in the ICU [107], evidence for AI software use for optimising the 

dosing of antimicrobials in the ICU is lacking. The dosing software InsightRx, which utilises both 

Bayesian forecasting and AI [108], has been observed to accurately predict the AUC of vancomycin 

based on one trough concentration (AUCInsightRx: AUCreference of 0.84 with 25th–75th median percentile 

of 0.77–0.88, accuracy was improved when two concentrations were used) [97]. In this study, 

InsightRx performed similarly well to other dosing software that utilise only Bayesian forecasting for 

predicting vancomycin AUC. InsightRx’s ability to recommend dosing changes and its impact on 

achieving target AUC has not been evaluated in critically ill patients. 

One potential benefit of AI-based dosing programs over other dosing software is the potential 

for AI software to consider the impact of interacting drugs on antimicrobial concentrations (such as 

that mediated by cytochrome enzyme induction or inhibition). If embedded within the electronic 

health records, AI programs may potentially identify medications through its databases where 

concurrent prescribing with an antimicrobial result in alterations to antimicrobial plasma 

concentrations [109,110]. The software could potentially make proactive dosing recommendations to 
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compensate for such drug interactions and maximise the likelihood that antimicrobial PK-PD targets 

could be achieved. However, this has yet to be prospectively evaluated in critically ill patients. 

4.5. Challenges ahead for Widespread Dosing Software 

As described above, there are currently many types of dosing software that utilise different 

models when generating dosing recommendations. This may pose a barrier to clinicians as there is 

insufficient data to support superiority of one model over another. Although complex programs that 

utilise Bayesian forecasting and/or AI may produce dosing recommendations that are more likely to 

achieve PK-PD targets, this has yet to be adequately examined in the critically ill cohort. Studies 

powered to examine the comparative predictive accuracy of dosing recommendations of these 

programs are needed before clinicians are able to confidently adopt one program over another into 

their clinical workflows. Additionally, studies powered to quantify clinical outcomes such as sepsis-

related mortality are needed before widespread use can be recommended. 

Another potential barrier associated with using dosing software in the clinical setting is the 

adequate knowledge and training required by users [111]. This includes familiarisation with the 

software as well as ensuring that they have sufficient understanding of antimicrobial PK-PD. 

Clinicians would need to develop knowledge of concepts related to MICs and the interrelationship 

with antimicrobial PK-PD so that appropriate exposure targets are selected. This may be lacking 

unless clinicians are trained in the areas of microbiology or infectious diseases [112]. Potential 

solutions may include utilisation and integration of specialised clinical pharmacists or 

pharmacologists into the critical care team who are trained in using dosing software to assist with 

complex dosing [113]. Furthermore, not all ICUs have access to the different drug assays needed to 

generate TDM results for antimicrobials which are required by software to generate optimised dosing 

recommendations. 

Currently, most dosing softwares are either web-based or standalone applications [5,108]. This 

potentially detracts from the usability of the dosing programs given clinicians will be required to 

manually extract data from hospital-based medical records, input data into the dosing program, 

generate the recommended doses and then return back to the medical records to amend the dose 

[108]. In health services where clinicians are often time-poor, this may pose a significant barrier to 

wide-spread adoption of this technology. Several dosing software programs have been developed to 

integrate with hospital-based medical records for non-antimicrobial drugs outside of the ICU and 

these programs have been deemed satisfactory as perceived by clinicians [114]. Pleasingly, some 

commercial program developers have highlighted the ability for their dosing software for 

antimicrobials to be integrated with local electronic health record platforms, thus potentially 

improving clinical workflows in the ICU. 

If research shows that dosing software confers patient-centred outcome benefits, then before 

being able to be widely used clinically, several challenges must be addressed. Currently, few dosing 

software programs are registered as medical devices with national regulatory bodies. Although 

clinicians are still responsible for accepting the recommendations from the dosing software program, 

a reliance on this technology for dosing is likely to raise concerns regarding the accuracy and safety 

of these programs if they are unregulated beyond the internal quality control processes of the 

software developers [115]. In the future, software developers may be required to register their dosing 

software with relevant regulatory bodies before health services are able to incorporate this 

technology into their workforce. 

Although favourable cost outcomes from using dosing software have been reported [116,117], 

this analysis has yet to be conducted in critically ill patients. Costs that healthcare networks need to 

consider include the resources needed to train clinicians to use the software, costs associated with 

integrating dosing software with local electronic health records as well as the physical infrastructure 

needed to house dosing software along with the large amount of data that is likely to be generated 

from performing dosing simulations. A potential cost-efficient option for these networks to consider 

when investing in dosing software is to select software capable of providing support across a wide 

range of clinical settings, as opposed to programs that only specialise in one or two clinical areas. 
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5. Conclusions 

Dosing of antimicrobials in critically ill patients with sepsis remains a challenging area. Due to 

the changes in physiology typically seen in these patients, adopting dosing regimens from non-

critical care patients are unlikely to achieve desired PK-PD targets that are associated with optimal 

outcomes. There are several approaches that can be employed by clinicians to increase the likelihood 

of achieving these antimicrobial targets in critically ill patients. Where available, clinicians should 

consider using dosing nomograms and/or TDM to support their dosing strategies to improve the 

likelihood of achieving PK-PD targets that are associated with positive clinical outcomes. Dosing 

nomograms are generally easy to integrate into clinical practice and do not require extensive 

resources beyond clinician training. TDM can help identify patients who have not achieved PK-PD 

targets or who may have developed toxic concentrations which are predisposed to adverse effects. 

Clinicians can then use TDM results to alter dosing regimens by a magnitude they anticipate will 

achieve PK-PD targets or in conjunction with other tools such as dosing nomograms or dosing 

software programs to improve the dosing accuracy of these tools. 

Other dose optimisation strategies that may have increased precision for achieving antimicrobial 

PK-PD targets, of which dosing software is a promising tool. Other dose optimisation strategies exist, 

such as dosing software, which may offer recommendations that achieve PK-PD targets with 

increased precision. Simpler dosing programs that utilise linear regression or population-based 

models may be suitable and are easier to implement, especially in centres that have limited resources. 

In centres with access to clinicians trained to alter antimicrobial dosages to achieve PK-PD targets, 

dosing software with Bayesian forecasting and/or AI may provide additional precision to improve 

antimicrobial dosing. 

Importantly, future studies describing the clinical outcomes and cost-benefits associated with 

using dosing software and AI are needed and it is hoped that this data will help consolidate the 

utilisation of this technology in patients that are high risk of dying from infections. In the meantime, 

clinicians should at least consider using dosing nomograms and/or TDM to support their dosing 

strategies to improve the likelihood of achieving PK-PD targets that are associated with positive 

clinical outcomes. 
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Appendix A 

Table A1. Antimicrobial population PK models developed from critical care patient groups. 

Antimicrobial Study Profile  Reference 

Aminoglycosides 

 Adult medical ICU. 

 N = 102 patients (211 plasma concentration 

samples). 

 Using gentamicin and tobramycin. 

 Exclusion—RRT, loading dose less than 3 mg/kg, 

cystic fibrosis patients and solid organ transplant 

patients. 

 Model covariate—glomerular filtration rate 

(simplified 4-variable Modified Diet in Renal 

Disease) and actual body weight. 

Rea RS et al. 

[118] 
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Amoxicillin and 

clavulanic acid  

 Adult ICU. 

 N = 13 patients (104 plasma samples). 

 Exclusion—RRT. 

 Model covariate—creatinine clearance (24-h urine 

collection). 

Carlier M et al. 

[119] 

Cefazolin  

 Adult trauma ICU. 

 N = 30 patients (150 plasma samples). 

 Exclusion—RRT, renal impairment (plasma 

creatinine > 171 micromol/L). 

 Model covariates—creatinine clearance (method of 

calculation not reported), plasma albumin 

concentration, actual body weight. 

Roberts JA et 

al. [120] 

Cefepime 

 Adult mixed surgical and medical ICU. 

 N = 26 patients (72 plasma samples). 

 Population with ventilator associated pneumonia  

 Exclusion—RRT. 

 Model covariates—creatinine clearance (Cockcroft-

Gault), actual body weight. 

Nicasio AM et 

al. [121] 

Cefotaxime  

 Paediatric ICU (range 0.2—229 months old). 

 N = 49 patients (Total samples reported as median 

of 2 per patient, range = 1–4). 

 Exclusion—kidney or liver transplant within last 2 

weeks, ECMO, RRT. 

 Model covariates—actual body weight and post-

natal age. 

Beranger A et 

al. [122] 

Ceftazidime 

Georges B et al. 

 Adult ICU. 

 N = 49 patients (443 plasma samples). 

 Population with P. aeruginosa infections sensitive to 

ceftazidime. 

 Exclusion—not reported. 

 Model covariates—creatinine clearance (Modified 

Diet in Renal Disease), presence of mechanical 

ventilation, reason for admission (medical vs. 

surgical patients). 

Georges B et al. 

[123] 

Ceftazidime 

(pediatric)  

 Paediatric ICU (range 0.1–2.0 years old). 

 N = 51 patients (90 plasma concentrations). 

 Exclusion – preterm newborns (gestational age < 37 

weeks) with survival times less than treatment 

cycle and other factors deemed unsuitable by 

researchers. 

 Model covariates—actual body weight, creatinine 

clearance (Schwartz). 

Shi ZR et al. 

Shi, Chen [124] 

Ceftolazone and 

tazobactam  

 Adult ICU. 

 N = 12 patients (133 plasma samples). 

 Exclusion—RRT, received piperacillin-tazobactam 

in preceding 7 days, pregnant. 

 Model covariate—creatinine clearance (24-h 

urinary creatinine clearance). 

Sime FB et al. 

[125] 

Ceftriaxone  
Garot D et al. 

 Adult ICU. 
Garot D et al.  
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 N = 54 patients (12 received RRT) (709 plasma 

concentrations). 

 Exclusion—chronic dialysis, life expectancy < 7 

days, treatment with ceftriaxone for more than 24 

h. 

 Model covariate—Creatinine clearance 24-h urine 

collection). 

 RRT was determined to not be a covariate. 

Leegwater E et al. 

 Adult ICU. 

 N = 55 patients (110 plasma samples). 

 Exclusion—RRT, life expectancy < 12 h. 

 Model covariates—adjusted body weight, plasma 

albumin concentration, creatinine clearance 

(Cockcroft-Gault), method of administration 

(continuous infusion or intermittent bolus). 

[126] 

Leegwater E et 

al. [127] 

[126,127] 

Ciprofloxacin  

 Adult ICU. 

 N = 102 patients (588 plasma samples). 

 Exclusion—not reported. 

 Model covariate—creatinine clearance (Cockcroft-

Gault). 

Khachman D et 

al. [128] 

Doripenem  

 Adult ICU. 

 N = 12 patients (140 plasma samples). 

 Exclusion—RRT, pregnant or lactating. 

 Model covariate—creatinine clearance (Cockcroft-

Gault). 

Abdul-Aziz 

MH et al. [129] 

Flucloxacillin  

 Adult ICU. 

 N = 10 patients (67 plasma concentrations and 10 

urine concentrations). 

 Exclusion—not reported. 

 Model covariates—body mass index, creatinine 

clearance (4 or 6-h urine collection). 

Ulldemolins M 

et al. [130] 

Fluconazole 

 Adult ICU. 

 N = 76 patients (295 plasma samples). 

 Exclusion—not reported. 

 Model covariates—Creatinine clearance (Cockroft-

Gault), actual body weight. 

Aoyama T et al. 

[131] 

Fosfomycin 

 Adult ICU. 

 N = 12 patients (515 plasma samples). 

 Exclusion—Fosfomycin use in previous month, 

pregnancy or lactation. 

 Model covariates—creatinine clearance (Cockroft-

Gault), actual body weight. 

Parker SL et al. 

[132] 

Ganciclovir 

 Adult ICU. 

 N = 34 patients (128 plasma samples). 

 Exclusion—Ganciclovir therapy following 

discharge from ICU for > 24 h. 

 Model covariates—estimated glomerular filtration 

rate (Chronic Kidney Disease Epidemiology 

Collaboration). 

Kren SD et al. 

[133] 

Imipenem 
 Adult ICU. 

 N = 26 patients (138 samples). 

De Velde F 

[134] 
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 Exclusion—creatinine clearance < 60 mL/min 

(Cockroft-Gault), BMI < 18 or >30, pregnancy. 

 Model covariate—estimated glomerular filtration 

rate unadjusted for body surface area (Chronic 

Kidney Disease Epidemiology Collaboration). 

Levofloxacin 

 Adult ICU and non-critically ill patients. 

 N = 18 ICU patients and 17 non-critically ill 

patients (total of 329 samples). 

 Exclusion—RRT. 

 Model covariate—creatinine clearance (Cockroft-

Gault). 

 There was no impact from critical illness on final 

model. 

Roberts JA et 

al. [135] 

Linezolid 

 Adult ICU. 

 N = 40 patients (311 plasma samples). 

 Exclusion—Pregnancy, use of medications that 

inhibit monoamine oxidase A or B. 

 Model covariates—creatinine clearance (24-h urine 

collection), ECMO, RRT effluent flow rate. 

Soraluce A et 

al. [136] 

Meropenem  

Crandon JL. 

 Mixed surgical and medical adult ICU. 

 N = 26 patients (67 plasma samples). 

 Exclusion—RRT. 

 Model covariates—creatinine clearance (Cockroft-

Gault), adjusted body weight Braune S. 

 Adult ICU. 

 N = 19 patients (308 plasma samples). 

 Population using meropenem in patients receiving 

RRT (sustained low-efficiency dialysis). 

 Exclusion—not reported. 

 Model covariates—Presence of RRT (on or off), 

amount of residual diuresis. 

Rapp M et al. 

 Paediatric ICU (Range 1.4—187.2 months). 

 N = 40 patients (121 plasma samples). 

 Exclusion—kidney or liver transplant in prior 2 

weeks. 

 Model covariates—RRT, actual body weight, 

estimated glomerular filtration rate (Schwartz). 

Crandon Jl et 

al. [137] 

Braune S et al. 

[138] Rapp M 

et al. [139] 

Micafungin 

 Adult ICU. 

 N = 11 patients (242 plasma samples). 

 Population using micafungin in obese and 

morbidly obese patients. 

 Exclusion—not reported. 

 Model covariates—body weight (normalised to 70 

kg), age (normalised to 60 years). 

Maseda E et al. 

[140] 

Piperacillin and 

tazobactam  

 Adult ICU. 

 N = 146 patients (803 plasma samples). 

 Exclusion—not reported. 

 Model covariates—creatinine clearance (Cockroft-

Gault), actual body weight. 

Felton TW et al. 

[141] 
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Polymyxin B 

 Adult ICU. 

 N = 24 patients (192 plasma samples). 

 Exclusion—not reported. 

 Model covariate—actual body weight. 

 RRT was determined to not be a covariate (samples 

from 2 patients only). 

Sandri AM et 

al. [142] 

Posaconazole 

 Adult ICU. 

 N = 8 patients (112 plasma samples). 

 Exclusion—pregnancy, drugs interacting with 

posaconazole, use of posaconazole in preceding 2 

weeks. 

 Model covariates—plasma albumin concentration 

and body mass index. 

Sime FB et al. 

[143] 

Tigecycline  

 Adult ICU. 

 N = 10 patients (90 plasma samples). 

 Exclusion—not reported. 

 Model covariate—body mass index. 

Xie J et al. [144] 

Vancomycin  

 Adult ICU. 

 N = 47 patients (569 plasma samples). 

 Exclusion—not reported. 

 Model covariate—creatinine clearance (Cockroft-

Gault). 

Neely MN et al. 

[90] 
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