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Abstract: Nanofibrous biomaterials have huge potential for drug delivery, due to their structural
features and functions that are similar to the native extracellular matrix (ECM). A wide range of natural
and polymeric materials can be employed to produce nanofibrous biomaterials. This review introduces
the major natural and synthetic biomaterials for production of nanofibers that are biocompatible and
biodegradable. Different technologies and their corresponding advantages and disadvantages for
manufacturing nanofibrous biomaterials for drug delivery were also reported. The morphologies
and structures of nanofibers can be tailor-designed and processed by carefully selecting suitable
biomaterials and fabrication methods, while the functionality of nanofibrous biomaterials can be
improved by modifying the surface. The loading and releasing of drug molecules, which play a
significant role in the effectiveness of drug delivery, are also surveyed. This review provides insight
into the fabrication of functional polymeric nanofibers for drug delivery.

Keywords: nanofibrous biomaterials; nature fiber biomaterials; biopolymers; drug delivery;
nanofiber technology

1. Introduction

Nanofibers are a significant kind of biomaterial that could be used for biomedical applications,
due to their special structure and properties such as high surface area [1], superior mechanical
properties [2], high porosity [3], and low density [4]. Drug delivery is one of the most important
emerging applications of nanofibers [5,6], because nanofibers have similar structural features and
functions to those of extracellular matrix (ECM). The ideal drug delivery system can deliver and release
a well-controlled amount of drug for a suitable period of time into a target site of the human body [7].

Nanofibrous biomaterials can be prepared from a wide range of polymers for drug delivery [8].
Polymeric biomaterials can be divided into natural and synthetic polymeric biomaterials. Natural
polymeric biomaterials include chitosan, chitin, cellulose, gelatin, collagen, pectin, proteins, gelatin,
and lignin [9]. These natural polymers are biocompatible and can be used to mimic ECM [10].
However, they are very difficult to form into continuous nanofibers [5]. Therefore, synthetic polymeric
biomaterials with biodegradable properties have been composited with those natural polymeric
biomaterials, due to their molecular weights being long enough to fabricate continuous nanofibers
after elongation. Polymers that have been approved as biomaterials such as polyethylene oxide (PEO),
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polycaprolactone (PCL), poly(lactic-co-glycolic) acid (PLGA) and Poly(N-vinylpyrrolidone) (PVP) are
usually utilized to form composites with natural polymers for nanofiber fabrication and for sustainable
and controlled drug release [11].

Due to the superior properties of nanofibers, various nanofiber production technologies have
been studied and utilized by many studies, including electrospinning, centrifugal spinning, solution
blowing, phase separation, and self-assembly. Recently, electrospinning has been one of the major
methods for nanofiber production, because of its numerous advantages, such as simple principles
and equipment, broad material choice, and fabrication of nanofibers with versatile and uniform
morphologies [12–14]. Other technologies for nanofiber production have also been reported and
studied by many researchers [15]. The advantages and disadvantages of those technologies for
fabrication of functional nanofiber scaffolds for drug delivery are reported.

Morphology and structure of nanofibrous biomaterials also significantly influence the function
and effectiveness of drug delivery [16]. The morphology and structure involve fiber diameter, fiber
cross-section shape, directionality, porosity and dimensionality of scaffold. For example, natural ECMs
are usually highly 3D porous collagen nanofibers with diameters in the range of 50–500 nm [11].
In addition, many tissues (like tendon, muscle tissues, ligament and tympanic), cells and ECMs are
highly aligned. Therefore, the fabricated nanofiber scaffolds should have similar morphology and
structure to mimic the native ECM during delivery of drugs and regenerate damaged tissue.

The drug loading methods and drug release rate significantly influence the effect of drug delivery.
Drug loading methods can be divided into chemical and physical adsorptions. Drug release rate from
nanofibers is determined by various factors, including drug diffusion, fiber erosion and biodegradation.
This review introduces the current state of development in the field of drug loading molecules on
nanofibers for drug delivery. It will be followed by discussion and comparison of various nanofiber
production technologies. The current challenges and perspectives of nanofiber scaffolds for drug
delivery are presented, and the future research directions of the field are also highlighted.

2. Variety of Polymeric Biomaterials

Over 200 polymers can be utilized to spin nanofibers; however, only those that are biocompatible
and biodegradable have been utilized as biomaterials to load drugs for tissue engineering [17]. Table 1
presents various biocompatible and biodegradable polymers that have been used to produce nanofibers
for different biomedical applications. Cellulose, chitosan, chitin and collagen are the major nature
biopolymers; poly lactic-co-glycolic acid (PLGA), polyethylene oxide (PEO) and polycaprolactone
(PCL) are popular synthetic biopolymers. Natural and synthetic polymeric biomaterials are usually
composited to produce nanofiber scaffolds for various biomedical applications, as shown in Figure 1.
Natural polymeric biomaterials are native extracellular matrixes (ECMs); however, they are very
difficult to form into continuous nanofibers. Synthetic polymeric biomaterials are used to improve the
spinnability and dimensional stability of nanofibers. In addition, the biodegradation rate of nanofibers
also can be controlled by varying the ratio of nature biopolymers and synthetic biopolymers, so as to
control the drug release rate during drug delivery.
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Table 1. Fibers from different polymeric biomaterials for biomedical applications.

Polymer(s) Solvent Concentration Applications Ref.

Collagen-PCL HFIP 6 w/v% Tissue engineering [18]
Gelatin-PCL HFIP 6 w/v% Tissue engineering

PEO Colloidal silica 6–10 wt.% Biosensors [19]

Collagen-PEO Hydrochloric acid 1 wt.% Wound healing, tissue engineering,
and hemostatic agents

[20]
1–2 wt.% [21]

Silk-PEO HFIP 4.8–8.8 w/v% Biomaterial scaffolds [22]
Chitosan-PEO Acetic acid 2.5 w/v% Wound healing [23]

PLA DMF 4–9 wt.% Tissue engineering [24]
PMMA-SWCNTs N/A 2–5 wt.% Biosensor [25]

PAM Colloidal silica 6–10 wt.% Biosensors [19]
PLLA-PLGA THF/DMF 1–15 wt.% Tissue engineering [26]

PLGA-collagen THF/DMF 20 wt.% Bioengineered skin [27]

PLGA

HFIP 24 w/v% Tissue engineering [28]
HFIP 5wt.% Peripheral nerve regeneration [29]

Chloroform 5wt.% Tissue engineering [30]
THF/DMF 10 w/v% Bone tissue engineering [31]

PLGA-gelatin-MSNPs HFIP 17 wt.% Cell culture and tissue engineering [32,33]
Dox-MWCNTs-PLGA THF/DMF 1–3 wt.% Drug delivery [34]
Chitosan-PEG-PLGA Ethyl acetate 18 wt.% Tissue engineering [35]

PLGA-PU DCM or HFIP 50 w/v% Drug delivery [36]
PLGA-SF-CL HFIP 5wt.% Peripheral nerve regeneration [29]
PCL-PLGA HFIP 15 w/v% Drug delivery [37]
XN-PLGA Chloroform 10 wt.% Tissue engineering [30]

Cellulose-Chitosan DMF 1 w/v% Bone tissue engineering [38]
Chitosan-PVP Acetic acid, sodium hydroxide 2.5 w/v% Wound healing [39]

Cellulose-TCMC-PEO Acetone, DMF, chloroform 3 w/v% Drug delivery [40]
Cellulose-chitosan-PEO Sulfuric acid 1.2 w/v% Tissue engineering scaffolds [41]

Chitin-chitosan Sodium hydroxide and acetic acid 0.75 w/v% Wound dressing [42]
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[44] (Copyright 2011, Elsevier); (c) cross-section of PCL/collagen nanofiber scaffolds [45] (Copyright 
2009, Elsevier); (d) TEM image of highly aligned poly lactic-co-glycolic acid (PLGA)–gelatin 
nanofibers with 10 wt.% mesoporous silica nanoparticles [33] (Copyright 2015, Elsevier). 
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acetate (CA) is obtained from acetylating cellulose, the most abundant natural polymer [47]. CA has 
huge potential for drug delivery. CA fiber mats produced via electrospinning were utilized to release 
three ester prodrugs of naproxen [52] and to load tetracycline hydrochloride and slowly release the 
drug for antibacterial activity [48]. CA nanofibers also showed their antioxidant characteristics via 
loading 6-gingerol for transdermal drug delivery [53]. Ethyl cellulose (EC) was used as the shell layer 
of core–shell nanofibers to protect the core layer and release bioactive agents during in-vitro cell 
culture studies [54]. In addition, cellulose triacetate, methyl cellulose and hydroxypropyl cellulose 
were also investigated for tissue engineering applications [55–57]. 
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Chitin is a linear 1, 4-linked polymer composed of N-acetyl-D-glucosamine residues, which can 
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Figure 1. SEM images of different composite nanofibers for various biomedical applications:
(a) chitosan–polyethylene oxide (PEO) composite nanofibers [43] (Copyright 2019, MDPI); (b) L929 cell
seeded on carboxyethyl chitosan/polyvinyl alcohol (PVA) nanofibrous membrane after 48-h culture [44]
(Copyright 2011, Elsevier); (c) cross-section of PCL/collagen nanofiber scaffolds [45] (Copyright 2009,
Elsevier); (d) TEM image of highly aligned poly lactic-co-glycolic acid (PLGA)–gelatin nanofibers with
10 wt.% mesoporous silica nanoparticles [33] (Copyright 2015, Elsevier).
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2.1. Natural Polymeric Biomaterials

2.1.1. Cellulose

Cellulose is a popular polysaccharide and exists throughout the world. Due to their excellent
biodegradability and chemical resistance, cellulose nanofibers show a great potential for biomedical
applications [46,47]. The process of cellulose is limited by the solubility of cellulose in common organic
solutions, due to vast intermolecular and intramolecular hydrogen bonds [48]. Therefore, cellulose has
to be dissolved into single or mixed solvents before producing nanofibers. Various solvents have been
used to dissolve cellulose, including ethanol, water, chloroform, dioxin, N,N-dimethylacetamide (DMA),
dimethylformamide (DMF) and dichloromethane (DCM) (cellulose is quite difficult to dissolve) [46,49–51].
Initially, cellulose fibers were produced by wet spinning, but, currently, cellulose nanofibers are usually
fabricated via electrospinning [46]. Cellulose derivatives are also widely used to deliver drugs or
growth factors in tissue engineering applications. Cellulose acetate (CA) is obtained from acetylating
cellulose, the most abundant natural polymer [47]. CA has huge potential for drug delivery. CA fiber
mats produced via electrospinning were utilized to release three ester prodrugs of naproxen [52]
and to load tetracycline hydrochloride and slowly release the drug for antibacterial activity [48].
CA nanofibers also showed their antioxidant characteristics via loading 6-gingerol for transdermal
drug delivery [53]. Ethyl cellulose (EC) was used as the shell layer of core–shell nanofibers to protect
the core layer and release bioactive agents during in-vitro cell culture studies [54]. In addition, cellulose
triacetate, methyl cellulose and hydroxypropyl cellulose were also investigated for tissue engineering
applications [55–57].

2.1.2. Chitin and Chitosan

Chitin is a linear 1, 4-linked polymer composed of N-acetyl-d-glucosamine residues, which can be
obtained from seafood wastes and invertebrate skeletons [58]. Chitin is one of the largest abundant
natural polysaccharide polymers in the world [59]. It is also one of the most promising natural
polymers for tissue engineering applications, due to its biocompatible, biodegradable, antibacterial,
nontoxic, and adhesive properties [44]. Chitin and its derivatives have been prepared to produce
various forms of materials (including nanofibers, membranes and sponges) for wound dressing and
burn dressing. Chitin-based dressings could accelerate contraction of wounds, promote repairing
of damaged tissues, and regulate secretion of inflammatory mediators. Chitin nanofibers have been
seen as an ideal substitute for traditional inorganic nanofillers for drug delivery applications, not only
because of their biodegradability and biocompatibility, but also their excellent mechanical properties.
However, chitin cannot be dissolved into common organic solvents or diluted aqueous, and the weak
solubility of chitin hinders its industrialization [60]. Therefore, finding a suitable dissolution system
for chitin is essential for further extending the applications of chitin.

Chitosan is a linear polymer composed of β (1-4) linked d-glucosamine units, which is derived
from N-deacetylation of chitin. As a significant derivative of chitin, chitosan is also biodegradable,
biocompatible and nontoxic. Moreover, due to its antibacterial and antifungal properties, chitosan
has great potential for tissue engineering applications. Recently, chitosan-based nanofibers have been
utilized as matrix molecules for drug delivery [61]. Their application in drug delivery is significantly
influenced by the degree of acetylation and molecular weight because these properties influence
hydrophobic ability and can change the drug encapsulation efficiency. although chitosan can hardly
be dissolved in neutral aqueous solvents, its solubility improves with increasing acidic solvents
because of its amino groups [62]. As a vehicle of drug delivery, the mucoadhesive ability of chitosan
has attracted much attention. Chitosan has been used to load and deliver drugs through various
epithelia, including buccal [63], ocular [64], intestinal [65], and nasal [66]. The spinnability of pure
chitosan is poor; therefore, many synthetic polymers are used to composite with chitosan to produce
chitosan-based nanofibers [67]. Chitosan cannot be dissolved into most organic solvents; therefore,
various chitosan derivatives have been prepared to improve the encapsulation ability of hydrophobic
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drugs. For example, carboxylated chitosan (CCS) is used as a water-soluble chitosan to fabricate
chitosan-based nanofibers for delivery of drugs in skin regeneration [68]. In addition, water-soluble
chitosan could be used for wound healing applications, rather than being restricted by toxic or acidic
solvents [69].

2.1.3. Collagen

Collagen is not only the primary structural element of ECM, but also the most abundant protein
of the human body [45]. Collagen is organized into insoluble fibers to support tensile strength.
For example, muscle fibers transmit forces, consume energy and protect tissues from external forces,
due to numerous collagens in them. If collagen is insufficient, the tissue is weak and might rupture [70].
Moreover, collagen also provides biological cues to nearby cells and regulates various bio-functional
responses [20]. The collagen family involves at least 30 different gene products and concentrates into
over 20 collagen types. The molecular structure of these collagen types is the triple helical. Additionally,
collagen types I, II and III are the most abundant fibrillar collagens in the human body [11]. Collagen
has been applied into a large number of tissue engineering applications, due to its excellent properties
in the ECM, low antigenicity, non-immunogenicity and cell compatibility [71]. Collagen was used in
orthopedic surgeries as an implantable ECM to accelerate bone growth [72]. Extracted collagen is
quite difficult to process into artificial nanofibers. Therefore, researchers usually dissolve collagen
with other spinnable polymers into solvents and produce collagen composite nanofibers for drug
delivery in tissue engineering. Collagen type I was coated on PCL–chitosan nanofiber to bind fiber
scaffolds and as an agent for healing burn injuries during skin regeneration [73]. Collagen and
PLLA were blended into HFIP and produced nanofibers via electrospinning as wound dressing [74].
Three-dimensional (3D) PLGA nanofiber scaffolds loaded with collagen I were utilized to promote
primary hepatocyte function [75]. A novel collagen-mimetic peptide amphiphile has also been
produced to make collagen-based nanofibers for tissue regeneration [76].

2.1.4. Other Natural Polymeric Biomaterials

Other natural polymeric biomaterials, such as silk fibroin, keratin, alginate, and chondroitin,
are also broadly studied for drug delivery and tissue engineering. For example, silk fibroin is
derived from cocoons, which is a promising biopolymer due to its excellent biocompatibility and low
biodegradation rate in the human body [77]. Ang et al. produced silk fibroin composite nanofibers to
deliver osteogenic marker genes, osteocalcin and alkaline phosphatase for bone tissue engineering [78].
For drug delivery applications, these biopolymers are frequently produced for implantation as porous
nanofiber scaffolds or nanofiber membranes into nontoxic ending products in vivo.

However, the disadvantages of natural biopolymers include inconsistent compositions and weak
mechanical strength [79]. Additionally, the kinetics of these natural biomaterials might be hard to
control when the long-term responsive action is insufficient.

2.2. Synthetic Polymeric Biomaterials

2.2.1. Poly Lactic-co-Glycolic Acid (PLGA)

Poly lactic-co-glycolic acid (PLGA) is a co-polymer material from poly lactic acid (PLA) and
poly glycolic acid (PGA) with different ratios, such as 75:25, 65:35, 50:50 and 25:75 [11]. The melting
point and crystallinity degree of polymers are ultimately related to their molecular weight. The glass
transition temperature of PLGA has been demonstrated to decrease with decreasing lactide content
and molecular weight [80]. The mechanical strength of PLGA nanofibers is significantly influenced by
their physical properties, including polydispersity index, ratio of poly lactic acid and poly glycolic
acid, and molecular weight. These properties also impact the shape and size of PLGA production
for delivery of drug and controlling the degradation rate [81]. PLGA is one of the most attractive
synthetic polymers, and is frequently employed to prepare materials for drug delivery, due to its
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biocompatible, biodegradable and tunable mechanical properties. PLGA has been widely investigated
and processed into any morphology for development of biomedical materials for delivery, control and
release of bioactive agents, drugs and proteins in the academic community and industry. PLGA has
been combined with other materials, including bioactive glass or ceramics, to improve biomimetic
ability and accelerate bone regeneration. Porous silica nanoparticles are random loaded into PLGA
nanofibers via the electrospinning method for improving mechanical properties in cell proliferation [32].
PLGA is widely dissolved into many common solvents, such as HFIP [32,37], DMF [30,34], THF [31],
chloroform [75] and ethyl acetate [35], for drug delivery in biomedical applications. However, the
potential residual toxic solvents might pose a negative influence for drug release and cell proliferation.

2.2.2. Polycaprolactone (PCL)

Polycaprolactone (PCL) has been widely explored due to its excellent properties (biocompatibility,
biodegradation, non-toxicity, low melting point (60 ◦C) and semi-crystallinity) and low cost. In addition,
PCL can be dissolved into many common solvents, such as HFIP, chloroform, acetic acid, methanol
and dichloromethane [37,82,83]. Due to these advantages, PCL is frequently utilized to produce
multi-functional nanofibers for drug delivery in tissue engineering applications. Some common
solvents are usually mixed to combine PCL with hydrophilic drugs, because PCL is a hydrophobic
biomaterial [8]. For example, PCL–gelatin composite nanofibers were used to load metronidazole for
anti-infection of skin tissue regeneration [84]. Additionally, smooth, homogeneous and hydrophilic
PCL–gelatin nanofibers were used to grow and proliferate human umbilical arterial smooth muscle cells.
PCL has also been blended with chitosan to promote the biocompatible and hydrophilic properties of
nanofibers to mimic ECM and guide cell proliferation [85,86].

2.2.3. Polyethylene Oxide (PEO)

Polyethylene oxide (PEO) is a crystalline synthetic polymer with thermoplastic properties. It is a
water-soluble polymer with a simple chemical formula, H-(OCH2CH2)n-OH. Compared with other
water-soluble synthetic polymeric biomaterials, PEO is unique in its linear structure. This special linear
structure represents an excellent polymer–solvent interaction in water. For nanofiber production, the
molecular weight of PEO is usually between 300,000–7,000,000. PEO is a particularly effective synthetic
polymer for protein resistance because of its hydrophilicity [87]. Moreover, PEO is frequently employed
into drug delivery due to its biocompatibility, biodegradability, and non-toxicity [88]. Qu et al.
produced PEO nanofibers to deliver the targeted enzyme for meniscus repair [89]. Additionally, PEO
could be used to improve dimensional stability of nanofiber meshes [90]. Sadri et al. blended PEO
with chitosan to enhance the spinnability of chitosan for antimicrobial agents in wound healing [91].

2.2.4. Other Synthetic Polymeric Biomaterials

Other biocompatible and biodegradable synthetic polymers are also extensively studied for
drug delivery in tissue engineering applications, such as PVA and PVP. Polyvinyl alcohol (PVA) is a
water-soluble polymer and widely utilized by blending with other biopolymers. It has been combined
with chitosan to enhance cell attachment and biocompatibility of the composite nanofibers [92].
Poly(N-vinylpyrrolidone) (PVP) is also a water-soluble polymer with low toxicity and chemical stability.
PVP has been employed as a blood plasma substitute in drug delivery systems, due to its blood
compatibility and physiological inactivity [93].

3. Nanofiber Production Methods

In order to develop a more effective and higher production rate method for fabrication of nanofibers,
various kinds of nanofiber fabrication techniques have been researched, such as electrospinning,
centrifugal spinning, airbrushing, wet spinning, simple freeze-drying and jet-rapid freezing. A great
diversity of methodologies has encouraged a wide range of research on producing nanostructures
with advantageous properties for a vast number of engineering applications [15,94,95].
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3.1. Electrospinning

Electrospinning was used for fabricating continuous fibers, which was first patented and developed
by Farmhals in 1934 [96]. In 1969, Taylor researched the shape of the droplet at the tip of the spinneret
in the electric field, before the solution jet ejecting from the orifice of the spinneret [97]. Since then,
the droplet is known as “Taylor cone”, as shown in Figure 2. Electrospinning is currently the most
significant technology for manufacturing polymer nanofibers [98].
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(Copyright 2004, John Wiley and Sons).

In electrospinning, a strong electric field (usually in the range of 5 to 30 kV) is generated between
the polymer solution and a grounded collection plate by connecting the needle of the spinneret with a
high voltage power, and connecting the collector with the ground (Figure 2). When a high voltage is
supplied, the pendent drop of polymer liquid in the orifice of the spinneret becomes highly electrified
and the induced charges are equally distributed on the surface of the spinneret, then the Taylor cone
forms. Therefore, the liquid drop experiences electrostatic repulsion and Coulombic force at the same
time [98]. There are various electrospinning parameters which can be divided into two categories:
fluid intrinsic properties and operational conditions. The fluid intrinsic properties mainly include
surface tension, solution viscosity, solution conductivity, molecular weight, and solvent evaporation
rate. The operational conditions are voltage value, solution flow rate, nozzle diameter, collector
distance, and spinning environment. The production rate of traditional electrospinning is too low to
satisfy industrialization; therefore, various designs and equipment have been developed to improve
productivity in the past decades.

Currently, the electrospinning system is mainly divided into two categories: needle electrospinning
and needleless electrospinning. Needle electrospinning involves single-needle electrospinning
(traditional electrospinning), multi-needle electrospinning and multiaxial electrospinning. The production
rate of single-needle electrospinning is only around 0.1 mL/h; therefore, a straightforward method
to improve the productivity is to increase the number of needles [99], and a waterfall geometry
electrospinning setup with three needles was produced [100], as shown in Figure 3. However, in the
multi-needle electrospinning system, strong electric field interference among the jets may reduce
the production rate and form fibers of poor morphology and diameter distribution. Multiaxial
electrospinning is designed to produce multiaxial nanofibers, even though the production rate is as low
as traditional needle electrospinning, as shown in Figure 4. Various cross-section shapes of nanofibers
can be produced via multiaxial electrospinning, to prevent bioactive agents from reaching the wound
environment and load multiple drugs to improve the functionalization of nanofibers.
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A needleless electrospinning system dramatically improves the productivity of the electrospinning
method, compared with needle electrospinning. In a needleless electrospinning system, Taylor cones
are created on the surface of the polymer solution which cover the fiber generator [101]. For this reason,
the inter-molecular interactions in the solution have to be strong enough to stabilize these Taylor
cones, to make sure that Taylor cones can be stretched into ideal jets and collected on the collector
wall [102]. In the setup, polymer jets had been created on the surface of a positively charged rotating
roller electrode which was half-immersed in a polymer solution reservoir. As a further development
of the technology, the rotating roller has been replaced by a stationary wire electrode (Figure 5).
However, needleless electrospinning has its drawbacks in guided tissue regeneration (GTR), as the
needleless system cannot fabricate multiaxial nanofibers to protect bioactive agents and control drug
release. Hence, the drug delivery abilities of needless electrospinning are lower than of multiaxial
nanofiber electrospinning.
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Electrospinning is the most popular nanotechnology. However, the low production rate (needle
electrospinning) and high energy consumption limit the extensive range of commercial applications
of nanofibers to take advantage of the unique properties. For these reasons, it is highly necessary to
develop more effective approaches to produce nanofibers.

3.2. Centrifugal Spinning

Centrifugal spinning is an alternative technological method to fabricate polymer nanofibers
at a high production rate but a low energy consumption, even though it is not a novel technology.
This technique was evolved from a fabrication technology for cotton candy invented in 1897 [104].
Centrifugal spinning utilizes the centrifugal force to overcome the surface tension between the polymer
solution and the nozzle wall, then the polymer jet is ejected and stretched by various forces (including
centrifugal force, aerodynamic force, elastic viscous force and the Coriolis force), and the solvent
continuously evaporates until the jet solidifies, and, finally, nanofibers are collected on a collector,
as shown in Figure 6a. Similar to electrospinning, the parameters of centrifugal spinning can also
be divided into two categories: fluid intrinsic properties and operational conditions. And these
two nanofiber fabrication methods have some common parameters. The fluid intrinsic properties
of centrifugal spinning are almost shared with electrospinning, except for solution conductivity.
Therefore, the material choice of centrifugal spinning is broader than electrospinning because any
polymer solution can be used to produce nanofibers via centrifugal spinning, even if the solution has
no conductivity.

Centrifugal spinning is an emerging nanofiber fabrication method because it not only has a high
production rate with a low cost, but can also produce multiaxial nanofibers to improve the functions
of nanofibers [16,105]. Multiaxial structural nanofibers can be fabricated by different multiaxial
nozzles, as shown in Figure 6b. This demonstrates that the centrifugal spinning method combines the
advantages of needle electrospinning and needleless electrospinning. However, understanding the
flow field of the technology and customizing the nanofiber structures for various applications are still
to be further studied and investigated.Pharmaceutics 2020, 12, x 10 of 23 
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3.3. Solution Blowing

Solution blowing is a simple alternative method for nanofiber fabrication, due to the setup of
this technology being simple, as shown in Figure 7. The solution blowing method is optimized from
melt blowing [107]. In melt blowing system, polymer has to be melted at high temperatures, which
significantly restricts its application in tissue engineering, due to the bioactive agents rapidly losing
bioactivity in the environment. In order to overcome this disadvantage, polymer solution replaces
melted polymer and the solution blowing method is introduced. Currently, non-woven nanofiber
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meshes for biomedical applications are frequently produced via solution blowing [108]. Singh et al.
utilized solution blowing to fabricate core–shell PCL-PEO isotropic nanofibers for controlled sustainable
release of dual drugs (bovine serum albumin and bFGF) [109]. However, how to produce aligned
nanofibers in solution blowing system still needs to be solved, because numerous aligned artificial
ECMs also have to be produced for respective applications.
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3.4. Other Nanofiber Fabrication Techniques

Self-assembly is a process by which nanofibers are manufactured by holding molecules without
external guidance or management. The technology of self-assembly can be divided into two types,
intramolecular and intermolecular self-assembly, respectively [76,110]. In self-assembly approach,
various mechanisms can be utilized to produce nanofibers depending on the polymer chemical
structures. The mechanism of producing hydrogel is widely utilized to form network structural
nanofibers via self-assembly of hydrogelator molecules.

Phase separation is another technique to fabricate polymeric nanofibers. The process of phase
separation includes polymer dissolution, gelation, phase separation, solvent removal, and drying [26].
First of all, the polymer material is dissolved into a solvent, so as to form a homogeneous polymer
solution. Then, the solution is sustained at the gelation time for several hours, so as to become
nanofibrous matrix. Finally, nanofibers will be formed after evaporation of the solvent. It is clear that
this kind of nanotechnology cannot produce aligned and multiaxial fibers; besides, the uniformity of
nanofiber diameters cannot be guaranteed.

4. Morphologies of Nanofibers

The native ECM has a dynamic and 3D porous structure with a diameter at the range of 50–500 nm.
Therefore, the morphologies of artificial nanofibers for tissue engineering and drug delivery should be
similar to native ECM, so as to provide an ideal microenvironment for cell adhesion and proliferation.
The morphologies of nanofibers mainly involve fiber orientation and cross-section shape.

4.1. Fiber Orientation

The fiber orientation can be divided into isotropic and anisotropic fibers, as shown in Figure 8.
Different orientation morphologies can be used to mimic different native ECMs for specific tissue
regeneration. The orientations of isotropic nanofibers (or unaligned nanofibers) are chaotic and
random, which means that the mechanical properties of this nanofiber are uniform in all orientations.
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This morphology of nanofibers can be employed to repair skin tissue in wound healing, as the ECM
fibers of skin are also unaligned. For example, isotropic PCL nanofibers have been used to adsorb
chitosan nanoparticles containing human granulocyte colony stimulating factor (G-CSF) for skin tissue
regeneration [111]. Additionally, heparin mimetic peptide nanofibers with unaligned morphology
dramatically promoted the tissue regeneration of burn injury [112]. Besides, anisotropic nanofibers
imply different properties in different orientations. Anisotropic nanofibers also have a broad application
in tissue engineering because they can be used to mimic aligned native ECM, such as muscle and nerve
fibers. Aligned nanofibrous scaffolds possess unique electrical, optical, and mechanical properties
and are excellent materials to guide cell growth with the desired anisotropy [17]. The mechanical
properties of aligned collagen–PCL nanofiber scaffolds were similar to heart valve leaflet and cardiac
muscle [113]. Zhang et. al fabricated gelatin/PLLA nanofibrous scaffolds and demonstrated that the
anisotropic nanofibrous scaffolds were very valuable in corneal tissue engineering [114].
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4.2. Fiber Cross-Section

The cross-sectional shapes of nanofibers are various, including single nanofibers and multiaxial
nanofibers (such as coaxial nanofibers, hollow nanofibers and islands-in-the-sea nanofibers), as shown
in Figure 9. Single nanofibers are the most common nanofibers for drug delivery in tissue engineering.
As reported in Section 3, simple physical adsorption, nanoparticle assembly and chemical adsorption
of drugs and bioactive agents are usually loaded on the surface of single nanofibers because the
production process of single nanofibers is much easier than for other structural nanofibers. However,
the disadvantages of single nanofibers are also obvious. For example, bioactive agents on the surface of
single nanofibers will lose bioactivity rapidly in wound healing applications, due to the initial wound
environment being severe for bioactive agents. In addition, it is very difficult to control the release rate
of drugs or bioactive agents, when they are simply adsorbed on the surface of single nanofibers.

Multiaxial nanofibers are able to encapsulate the drug into the nanofiber core, so as to provide
protection from the surrounding environment and control drug release [116]. Many common polymers (such
as cellulose, chitosan, PVA and PEO) can be used to produce multiaxial nanofibers, and various drugs
(including growth factors, DNA, antibodies and proteins) have been loaded into multiaxial nanofibers
with different layers for different purposes [117–119]. Successful drug encapsulation is dependent
on accurately distributing the drug into the fiber core. Drug encapsulation efficiency is significantly
influenced by drug properties (like stability and solubility) and nanofiber morphologies [120]. Several
nanofiber production methods have successfully been used to fabricate multiaxial nanofibers for
drug delivery in tissue engineering, such as electrospinning [121], airbrush [109] and centrifugal
spinning [105]. Multilayer nanofibers can load multi-drugs to satisfy multifunction of the nanofibers
for tissue engineering. Core–shell nanofibers provided dual drug release profiles with adjustable doses
in the second phase of tissue regeneration [122]. In order to investigate the potential advantages of
multilayer nanofibers, other types of structures have also been produced, including triaxial structural
nanofibers, hollow structural nanofibers and islands-in-the-sea nanofibers. Triaxial structural nanofibers
have provided various drug release profiles for different model drugs (Keyacid uranine and Keyacid
blue) separately loaded into the shell layer and core layer of the fiber, with a PCL intermediate layer
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for slowing release of the drug in the core layer [116]. Resveratrol and gentamycin sulfate have been
encapsulated by PCL hollow nanofibers and exhibited a sustainable release without drug bursting [123].
Islands-in-the-sea (multichannel structural) nanofibers might have unique advantages, including
independent channels for individual drugs and better mechanical stability, for vessel devices and
multi-drug delivery in tissue engineering applications [124].
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Figure 9. SEM images of various structural nanofibers: (a) single nanofibers, (b) core–shell
nanofibers [125] (Copyright 2010, American Chemical Society); (c) hollow nanofibers [126] (Copyright
2017, Elsevier) and (d) islands-in-the-sea nanofibers [124] (Copyright 2007, American Chemical Society).

5. Drug Loading in Nanofibers

5.1. Chemical Adsorption

Chemical adsorption: drugs and bioactive agents are modified onto the surface of nanofibers
through various functional groups, including carboxyl groups, amine groups, hydroxyl groups and
hydrophilic linkers, as shown in Figure 10. In fact, the chemical adsorption method is more favored
than the physical adsorption method in biomedical applications, due to the bioactive agents being
covalently immobilized to nanofibers [127]. Therefore, these bioactive agents are not easily split away
from the nanofibers during the incubation period. However, it is notable that the modified agents will
incur partial inactivation upon the chemically modified covalent positions.
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Carboxyl groups have been frequently used to immobilize bioactive agents onto the surface
of nanofibers. Carboxyl groups, for example, were successfully grafted onto the surface of PLGA,
PLLA and PGA nanofiber scaffolds for conjugation with collagen, to improve cell adhesion and
proliferation [128]. Carboxylic acid groups were employed to load rosuvastatin and heparin on
the surface of cellulose acetate nanofibers for endovascular procedures [129]. Amine groups are
also extensively used for covalent modification of polymeric nanofibers due to their high reactivity.
Epidermal growth factor (EGF) has been chemically modified onto the surface of polymeric composite
nanofibers for promoting the effect on the wound healing process [130]. Gold nanoparticles–SBA-15
composite has been bonded with Schiff bases via amine groups for improving the stability of
biomaterials [131]. Hydroxyl groups are another kind of significant functional group, which also have
been widely employed for chemical adsorption of drugs and bioactive agents. Hydroxyl groups of
mesoporous silica nanoparticles (MSNPs) strongly interact with the nitrogenous groups of gelatin and
the functional groups of PLGA to form a strong intermolecular network between those biomaterials
for cell attachment and proliferation in wound healing [32,33].

However, direct modification of drug molecules on the surface of nanofibers might exhibit some
limitations for cell attachment and proliferation. For example, cells cannot easily recognize the modified
bioactive agents, as these agents are not entirely exposed to cells. Therefore, hydrophilic linkers
are introduced to combine bioactive agents and nanofibers for promotion of cellular recognition.
For example, EGF has been chemically modified onto the surface of amine-terminated block polymer
composite nanofibers via polyethylene glycol (PEG) linkers [132].

5.2. Physical Adsorption

Currently, there are mainly three methods for physical adsorption of drugs in nanofibers or on the
surface of nanofibers: simple physical adsorption, nanoparticle assembly, and multilayer assembly,
as shown in Figure 11.Pharmaceutics 2020, 12, x 14 of 23 
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Simple physical adsorption: nanofibers have an extremely high porosity and surface area, allowing
for a great number of drugs to be adsorbed on the surface of nanofibers. This is the simplest method
for the delivery of drug via nanofibers, which can be used for burst release of drugs from the surface of
nanofibers. PCL-gum tragacanth–curcumin nanofibers have been produced via dissolving curcumin
into PCL-gum tragacanth solution, for preventing bacterial infection within a few hours during wound
healing [133]. Heparin was successfully loaded on the surface of PEO/PLGA composite nanofibers by
electrospinning [134]. In addition, anti-adhesion barrier application also requires loading drugs on the
nanofiber surface, due to the adhesion between internal tissues often occurring after surgery [135].

Nanoparticles assembly: drugs are encapsulated into polymer nanoparticles, before these
nanoparticles are adsorbed on the nanofibers. This method can effectively promote the drug loading
capacity [136]. PVP nanofiber meshes containing silver nanoparticles have improved antibacterial
properties in wound dressing [137]. Moreover, combining nanofibers and polymeric nanoparticles
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can enhance the multi-functional performance of nanoparticle-on-nanofiber structures [138]. Vascular
endothelial growth factor (VEGF) has been relatively rapidly released on the surface of chitosan–PEO
nanofibers, while platelet-derived growth factor-BB (PDGF-BB) is sustainably released from PLGA
nanoparticles within the nanofibers [23]. A nanoparticle-on-nanofiber structure is a relatively stable
system, which provides a one-step surface modification approach for drug loading.

Multilayer assembly: coaxial and triaxial micro–nano fibers with unique features (including
reinforced core and hollow structure) can be utilized to sequester stimulants in different compartments
and control the release of various drugs through changing drug positions and thickness of layers [8].
This drug delivery method has great potential for biomedical applications due to the generalization of
any complex structure and the possibility of utilizing any composition for the core layer. For example,
plasmid DNA has been embedded into the core layer of core–shell nanofibers for preventing enzyme
attack before being released [139]. In addition, many bioactive agents have also been loaded into
multilayer nanofibers. For instance, bovine serum albumin and basic fibroblast growth factor (bFGF)
enjoyed sustained release from PCL-PEO composite core–shell structural nanofibers [109]. Notably,
the thickness of multilayer fibrous structure also impact the drug release profile.

6. Drug Release from Nanofibers

Drugs or bioactive molecules are transported through the drug delivery system, which is controlled
by the random movement of drug molecules and actuated by chemical potential gradients. A classical
drug release in nanofibers refers to the drug being transported from its initial position in nanofibers to
the outer surface of the nanofibers; then, the drug is released into its surroundings [140]. Additionally,
drugs could be released through nanofibrous biomaterials by the matrix erosion effect, which results in
porous formation. This section briefly discusses the selected examples of drug release mechanisms
based on nanofibrous biomaterials. The mechanisms of drug release in nanofibers depend on drug
diffusion, polymer nanofiber biodegradation, and nanofiber erosion [141].

6.1. Drug Diffusion

Drug molecules could be transported from nanofibers via diffusion through pores of nanofibers.
It is known that nanofibers are highly porous; when nanofibers are filled with liquid, drug molecules
randomly move through liquid-filled pores due to them being driven by the chemical potential
gradients [142]. As time goes on, the size of pores becomes larger and more pores appear due to
the degradable properties of the biomaterial matrix. More water will be immediately absorbed by
porous nanofibers with pore size increasing, because the water absorption process is faster than drug
movement [143]. Eventually, the drug release rate is increased. Drug molecules could also diffuse out
from polymeric nanofibers because of their permeability and thickness [144]. In nondegradable matrix,
diffusion is the major factor for drug release. Osmotic pumping is another approach to transport
drug molecules via liquid-filled pores. Osmotic pressure drives the influx of liquid; as a result, drug
molecules are diffused into surroundings by the force [145,146].

6.2. Nanofiber Erosion

The erosion of nanofibers can be divided into surface erosion and bulk erosion. Surface erosion
means that the polymeric nanofibers degrade from the surface by slowly reducing the size from the
outside towards the inside [147]. Surface erosion is an ideal drug release mechanism for drug delivery
application, due to the erosion kinetics being controllable as well as reproducible. It is notable that
surface erosion occurs when the polymeric nanofiber erosion rate is higher than the liquid penetration
rate into the bulk nanofibers [148]. Besides, bulk erosion occurs when the liquid penetration rate is
higher than the polymeric nanofiber erosion rate. Therefore, bulk erosion is similar to hydrolyzing the
polymeric nanofibers. Compared with surface erosion, bulk erosion is hard to control and the drug
molecules cannot be protected from the environment [147].
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6.3. Drug Release Profile

The models of various drug release profiles are shown in Figure 12. A zero-order release model
is an ideal profile for drug release-rate-controlling. It means that the drug release rate is constant at
any moment during the period of release. A controlled drug release system can not only provide
temporal and spatial control of drug release, but also protect the drugs or bioactive molecules with
therapeutic efficiency. Designed drug delivery formulations can be used to improve drug efficiency so
as to minimize drug dose in patients.Pharmaceutics 2020, 12, x 16 of 23 
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However, the most common drug release is a tri-phasic profile, and it sometimes represents a
bi-phasic [142]. In a classical tri-phasic, phase I is often described as a burst release, which usually
involves non-capsulation of drug molecules on the surface of the nanofibers; phase II usually shows
a slow release, which is dominated by slow drug diffusion; phase III will be a faster release because
of nanofiber erosion, compared with phase II. For example, PLGA-based nanofiber is an excellent
biodegradable polymer material with a typical tri-phasic profile [142]. In PLGA micro/nano systems,
polymer concentration and the morphology of the nanofibers are the key parameters in controlling drug
release in phase I and II, and the drug release in phase III is determined by the degradation rate [149].
The drug release profiles of polymeric nanofibers are dependent on their individual physicochemical
properties; therefore, the drug release profile needs to be studied for each polymeric matrix [141].

7. Conclusions and Future Prospects

Functional polymeric nanofibrous biomaterials are a critical class of artificial ECM for drug
delivery in biomedical applications. Biomaterials from different polymers have been employed to load
various drugs and produce multi-functional nanofibers. In order to control drug release rate while
maintaining the bioactivity of agents, many approaches to adsorbing drugs have been investigated.
Multiaxial nanofibers might be the best method for loading multiple drugs and delivering them with
controllable release, because different drugs can be encapsulated into different layers to satisfy the
multi-functionalization of nanofibers. The development of nanofiber production technology also
has improved dramatically, and various methods are employed to fabricate multiaxial nanofibers
with multiple functions for drug delivery. However, no technology has been used to produce
multi-functional nanofibers for drug delivery at an industrial scale.

In the future, the mass, stable, and efficient production of multi-functional nanofibrous biomaterials
should be the main the focus of technology development to translate the advanced nanofibers from the
laboratories to industry implementation and eventually to clinical application. In addition, further
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studies should focus on combining nanofiber production and 3D printing technology. Therefore,
the produced nanofibers can mimic both the micro and macro structures of different native ECMs,
so as to apply functional nanofibers into individual tissues effectively and improve the functions of
nanofibers in biomedical applications.

Author Contributions: Z.L. and L.K. conceived the concept of the review article and prepared the content outline.
Z.L., Y.D., F.S., P.L. and Y.L. contributed to the review writing for different sections. S.M. and L.K. supervised the
writing of this review paper and guided the major review and editing of the manuscript. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by Science and Technology Program of Hubei Province (No. 2018AAA036),
National Natural Science Foundation of China (No. 51175385) and Central Public-interest Scientific Institution
Basal Research Fund for Innovative Research Team Program of CATAS (No. 1630122017009).

Acknowledgments: This work was performed in part at the Deakin Hub in the Victorian Node of the Australian
National Fabrication Facility (ANFF).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ketabchi, N.; Naghibzadeh, M.; Adabi, M.; Esnaashari, S.S.; Faridi-Majidi, R. Preparation and optimization
of chitosan/polyethylene oxide nanofiber diameter using artificial neural networks. Neural Comput. Appl.
2017, 28, 3131–3143. [CrossRef]

2. Zhang, S.; Tang, N.; Cao, L.; Yin, X.; Yu, J.; Ding, B. Highly Integrated Polysulfone/Polyacrylonitrile/

Polyamide-6 Air Filter for Multilevel Physical Sieving Airborne Particles. ACS Appl. Mater. Interfaces 2016, 8,
29062–29072. [CrossRef] [PubMed]

3. Yanilmaz, M.; Lu, Y.; Li, Y.; Zhang, X. SiO2/polyacrylonitrile membranes via centrifugal spinning as a
separator for Li-ion batteries. J. Power Sources 2015, 273, 1114–1119. [CrossRef]

4. Marano, S.; Barker, S.A.; Raimi-Abraham, B.T.; Missaghi, S.; Rajabi-Siahboomi, A.; Craig, D.Q.M. Development
of micro-fibrous solid dispersions of poorly water-soluble drugs in sucrose using temperature-controlled
centrifugal spinning. Eur. J. Pharm. Biopharm. 2016, 103, 84–94. [CrossRef] [PubMed]

5. Cheng, J.; Jun, Y.; Qin, J.H.; Lee, S.H. Electrospinning versus microfluidic spinning of functional fibers for
biomedical applications. Biomaterials 2017, 114, 121–143. [CrossRef] [PubMed]

6. Habibi, N.; Kamaly, N.; Memic, A.; Shafiee, H. Self-assembled peptide-based nanostructures: Smart
nanomaterials toward targeted drug delivery. Nano Today 2016, 11, 41–60. [CrossRef]

7. Zamani, M.; Prabhakaran, M.P.; Ramakrishna, S. Advances in drug delivery via electrospun and
electrosprayed nanomaterials. Int. J. Nanomed. 2013, 8, 2997–3017.

8. Khalf, A.; Madihally, S.V. Recent advances in multiaxial electrospinning for drug delivery. Eur. J. Pharm.
Biopharm. Off. J. Arb. Fur Pharm. Verfahr. 2017, 112, 1–17. [CrossRef]

9. Rasouli, R.; Barhoum, A.; Bechelany, M.; Dufresne, A. Nanofibers for Biomedical and Healthcare Applications.
Macromol. Biosci. 2019, 19, 27.

10. Figueiredo, P.; Lintinen, K.; Kiriazis, A.; Hynninen, V.; Liu, Z.H.; Bauleth-Ramos, T.; Rahikkala, A.; Correia, A.;
Kohout, T.; Sarmento, B.; et al. In vitro evaluation of biodegradable lignin-based nanoparticles for drug
delivery and enhanced antiproliferation effect in cancer cells. Biomaterials 2017, 121, 97–108. [CrossRef]

11. Barnes, C.P.; Sell, S.A.; Boland, E.D.; Simpson, D.G.; Bowlin, G.L. Nanofiber technology: Designing the next
generation of tissue engineering scaffolds. Adv. Drug Deliv. Rev. 2007, 59, 1413–1433. [CrossRef] [PubMed]

12. Chen, S.X.; Li, R.Q.; Li, X.R.; Xie, J.W. Electrospinning: An enabling nanotechnology platform for drug
delivery and regenerative medicine. Adv. Drug Deliv. Rev. 2018, 132, 188–213. [CrossRef] [PubMed]

13. Pant, B.; Park, M.; Park, S.J. Drug Delivery Applications of Core-Sheath Nanofibers Prepared by Coaxial
Electrospinning: A Review. Pharmaceutics 2019, 11, 305. [CrossRef]

14. Wang, S.; Ju, J.P.; Wu, S.X.; Lin, M.; Sui, K.Y.; Xia, Y.Z.; Tan, Y.Q. Electrospinning of biocompatible
alginate-based nanofiber membranes via tailoring chain flexibility. Carbohydr. Polym. 2020, 230, 115665.
[CrossRef]

15. Zhang, X.; Lu, Y. Centrifugal Spinning: An Alternative Approach to Fabricate Nanofibers at High Speed and
Low Cost. Polym. Rev. 2014, 54, 677–701. [CrossRef]

http://dx.doi.org/10.1007/s00521-016-2212-0
http://dx.doi.org/10.1021/acsami.6b10094
http://www.ncbi.nlm.nih.gov/pubmed/27700022
http://dx.doi.org/10.1016/j.jpowsour.2014.10.015
http://dx.doi.org/10.1016/j.ejpb.2016.03.021
http://www.ncbi.nlm.nih.gov/pubmed/27012901
http://dx.doi.org/10.1016/j.biomaterials.2016.10.040
http://www.ncbi.nlm.nih.gov/pubmed/27880892
http://dx.doi.org/10.1016/j.nantod.2016.02.004
http://dx.doi.org/10.1016/j.ejpb.2016.11.010
http://dx.doi.org/10.1016/j.biomaterials.2016.12.034
http://dx.doi.org/10.1016/j.addr.2007.04.022
http://www.ncbi.nlm.nih.gov/pubmed/17916396
http://dx.doi.org/10.1016/j.addr.2018.05.001
http://www.ncbi.nlm.nih.gov/pubmed/29729295
http://dx.doi.org/10.3390/pharmaceutics11070305
http://dx.doi.org/10.1016/j.carbpol.2019.115665
http://dx.doi.org/10.1080/15583724.2014.935858


Pharmaceutics 2020, 12, 522 17 of 23

16. Vocetkova, K.; Buzgo, M.; Sovkova, V.; Rampichova, M.; Staffa, A.; Filova, E.; Lukasova, V.; Doupnik, M.;
Fiori, F.; Amler, E. A comparison of high throughput core-shell 2D electrospinning and 3D centrifugal
spinning techniques to produce platelet lyophilisate-loaded fibrous scaffolds and their effects on skin cells.
RSC Adv. 2017, 7, 53706–53719. [CrossRef]

17. Kong, B.; Mi, S.L. Electrospun Scaffolds for Corneal Tissue Engineering: A Review. Materials 2016, 9, 614.
[CrossRef] [PubMed]

18. Badrossamay, M.R.; Balachandran, K.; Capulli, A.K.; Golecki, H.M.; Agarwal, A.; Goss, J.A.; Kim, H.;
Shin, K.; Parker, K.K. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning.
Biomaterials 2014, 35, 3188–3197. [CrossRef]

19. Lim, J.M.; Yi, G.R.; Moon, J.H.; Heo, C.J.; Yang, S.M. Superhydrophobic films of electrospun fibers with
multiple-scale surface morphology. Langmuir 2007, 23, 7981–7989. [CrossRef]

20. Huang, L.; Apkarian, R.P.; Chaikof, E.L. High-resolution analysis of engineered type I collagen nanofibers by
electron microscopy. Scanning 2001, 23, 372–375. [CrossRef]

21. Huang, L.; Nagapudi, K.; Apkarian, R.P.; Chaikof, E.L. Engineered collagen-PEO nanofibers and fabrics.
J. Biomater. Sci. Polym. Ed. 2001, 12, 979–993. [CrossRef] [PubMed]

22. Jin, H.J.; Fridrikh, S.V.; Rutledge, G.C.; Kaplan, D.L. Electrospinning Bombyx mori Silk with Poly(ethylene
oxide). Biomacromolecules 2002, 3, 1233–1239. [CrossRef] [PubMed]

23. Xie, Z.W.; Paras, C.B.; Weng, H.; Punnakitikashem, P.; Su, L.C.; Vu, K.; Tang, L.P.; Yang, J.; Nguyen, K.T. Dual
growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater. 2013, 9, 9351–9359.
[CrossRef] [PubMed]

24. Golecki, H.M.; Yuan, H.; Glavin, C.; Potter, B.; Badrossamay, M.R.; Goss, J.A.; Phillips, M.D.; Parker, K.K.
Effect of solvent evaporation on fiber morphology in rotary jet spinning. Langmuir 2014, 30, 13369–13374.
[CrossRef]

25. Han, L.; Andrady, A.L.; Ensor, D.S. Chemical sensing using electrospun polymer/carbon nanotube composite
nanofibers with printed-on electrodes. Sens. Actuators B Chem. 2013, 186, 52–55. [CrossRef]

26. Ma, P.X.; Zhang, R.Y. Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res. 1999, 46, 60–72.
[CrossRef]

27. Sadeghi, A.R.; Nokhasteh, S.; Molavi, A.M.; Khorsand-Ghayeni, M.; Naderi-Meshkin, H.; Mahdizadeh, A.
Surface modification of electrospun PLGA scaffold with collagen for bioengineered skin substitutes. Mater. Sci.
Eng. C Mater. Biol. Appl. 2016, 66, 130–137. [CrossRef]

28. Gao, J.; Huang, G.; Liu, G.; Liu, Y.; Chen, Q.; Ren, L.; Chen, C.; Ding, Z. A biodegradable antibiotic-eluting
PLGA nanofiber-loaded deproteinized bone for treatment of infected rabbit bone defects. J. Biomater. Appl.
2016, 31, 241–249. [CrossRef]

29. Zhang, M.; Lin, W.; Li, S.; Shi, X.-Y.; Liu, Y.; Guo, Q.; Huang, Z.; Li, L.; Wang, G.-L. Application and
Effectiveness Evaluation of Electrostatic Spinning PLGA-Silk Fibroin-Collagen Nerve Conduits for Peripheral
Nerve Regeneration. J. Nanosci. Nanotechnol. 2016, 16, 9413–9420. [CrossRef]

30. Qiao, T.; Jiang, S.; Song, P.; Song, X.; Liu, Q.; Wang, L.; Chen, X. Effect of blending HA-g-PLLA on
xanthohumol-loaded PLGA fiber membrane. Colloids Surf. B Biointerfaces 2016, 146, 221–227. [CrossRef]

31. Sanaei-Rad, P.; Jafarzadeh Kashi, T.-S.; Seyedjafari, E.; Soleimani, M. Enhancement of stem cell differentiation
to osteogenic lineage on hydroxyapatite-coated hybrid PLGA/gelatin nanofiber scaffolds. Biol. J. Int. Assoc.
Biol. Stand. 2016, 44, 511–516. [CrossRef] [PubMed]

32. Mehrasa, M.; Asadollahi, M.A.; Nasri-Nasrabadi, B.; Ghaedi, K.; Salehi, H.; Dolatshahi-Pirouz, A.; Arpanaei, A.
Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin
nanofibrous scaffolds enhances mechanical and cell proliferation properties. Mater. Sci. Eng. C Mater.
Biol. Appl. 2016, 66, 25–32. [CrossRef]

33. Mehrasa, M.; Asadollahi, M.A.; Ghaedi, K.; Salehi, H.; Arpanaei, A. Electrospun aligned PLGA and
PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering. Int. J. Biol. Macromol.
2015, 79, 687–695. [CrossRef] [PubMed]

34. Qi, R.-L.; Tian, X.-j.; Guo, R.; Luo, Y.; Shen, M.-W.; Yu, J.-Y.; Shi, X.-Y. Controlled release of doxorubicin from
electrospun MWCNTs/PLGA hybrid nanofibers. Chin. J. Polym. Sci. 2016, 34, 1047–1059. [CrossRef]

35. Bienek, D.R.; Hoffman, K.M.; Tutak, W. Blow-spun chitosan/PEG/PLGA nanofibers as a novel tissue
engineering scaffold with antibacterial properties. J. Mater. Sci. -Mater. Med. 2016, 27, 1–10. [CrossRef]
[PubMed]

http://dx.doi.org/10.1039/C7RA08728D
http://dx.doi.org/10.3390/ma9080614
http://www.ncbi.nlm.nih.gov/pubmed/28773745
http://dx.doi.org/10.1016/j.biomaterials.2013.12.072
http://dx.doi.org/10.1021/la700392w
http://dx.doi.org/10.1002/sca.4950230603
http://dx.doi.org/10.1163/156856201753252516
http://www.ncbi.nlm.nih.gov/pubmed/11787524
http://dx.doi.org/10.1021/bm025581u
http://www.ncbi.nlm.nih.gov/pubmed/12425660
http://dx.doi.org/10.1016/j.actbio.2013.07.030
http://www.ncbi.nlm.nih.gov/pubmed/23917148
http://dx.doi.org/10.1021/la5023104
http://dx.doi.org/10.1016/j.snb.2013.05.069
http://dx.doi.org/10.1002/(SICI)1097-4636(199907)46:1&lt;60::AID-JBM7&gt;3.0.CO;2-H
http://dx.doi.org/10.1016/j.msec.2016.04.073
http://dx.doi.org/10.1177/0885328216654424
http://dx.doi.org/10.1166/jnn.2016.11906
http://dx.doi.org/10.1016/j.colsurfb.2016.06.011
http://dx.doi.org/10.1016/j.biologicals.2016.09.002
http://www.ncbi.nlm.nih.gov/pubmed/27720267
http://dx.doi.org/10.1016/j.msec.2016.04.031
http://dx.doi.org/10.1016/j.ijbiomac.2015.05.050
http://www.ncbi.nlm.nih.gov/pubmed/26045092
http://dx.doi.org/10.1007/s10118-016-1827-z
http://dx.doi.org/10.1007/s10856-016-5757-7
http://www.ncbi.nlm.nih.gov/pubmed/27568217


Pharmaceutics 2020, 12, 522 18 of 23

36. Blakney, A.K.; Simonovsky, F.I.; Suydam, I.T.; Ratner, B.D.; Woodrow, K.A. Rapidly Biodegrading
PLGA-Polyurethane Fibers for Sustained Release of Physicochemically Diverse Drugs. ACS Biomater.
Sci. Eng. 2016, 2, 1595–1607. [CrossRef]

37. Chou, S.-F.; Woodrow, K.A. Relationships between mechanical properties and drug release from electrospun
fibers of PCL and PLGA blends. J. Mech. Behav. Biomed. Mater. 2016, 65, 724–733. [CrossRef]

38. Peschel, D.; Zhang, K.; Fischer, S.; Groth, T. Modulation of osteogenic activity of BMP-2 by cellulose and
chitosan derivatives. Acta Biomater. 2012, 8, 183–193. [CrossRef]

39. Rasool, A.; Ata, S.; Islam, A. Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound
healing application. Carbohydr. Polym. 2019, 203, 423–429. [CrossRef]

40. Esmaeili, A.; Haseli, M. Optimization, synthesis, and characterization of coaxial electrospun sodium
carboxymethyl cellulose-graft-methyl acrylate/poly(ethyleneoxide) nanofibers for potential drug-delivery
applications. Carbohydr. Polym. 2017, 173, 645–653. [CrossRef]

41. Ridolfi, D.M.; Lemes, A.P.; de Oliveira, S.; Justo, G.Z.; Palladino, M.V.; Duran, N. Electrospun poly(ethylene
oxide)/chitosan nanofibers with cellulose nanocrystals as support for cell culture of 3T3 fibroblasts. Cellulose
2017, 24, 3353–3365. [CrossRef]

42. Tabuchi, R.; Azuma, K.; Izumi, R.; Tanou, T.; Okamoto, Y.; Nagae, T.; Iohara, D.; Uekama, K.; Otagiri, M.;
Hirayama, F.; et al. Biomaterials based on freeze dried surface-deacetylated chitin nanofibers reinforced with
sulfobutyl ether beta-cyclodextrin gel in wound dressing applications. Int. J. Pharm. 2016, 511, 1080–1087.
[CrossRef] [PubMed]

43. Li, Z.; Mei, S.; Dong, Y.; She, F.; Kong, L. High Efficiency Fabrication of Chitosan Composite Nanofibers with
Uniform Morphology via Centrifugal Spinning. Polymers 2019, 11, 1550. [CrossRef] [PubMed]

44. Jayakumar, R.; Prabaharan, M.; Kumar, P.T.S.; Nair, S.V.; Tamura, H. Biomaterials based on chitin and chitosan
in wound dressing applications. Biotechnol. Adv. 2011, 29, 322–337. [CrossRef] [PubMed]

45. Sell, S.A.; McClure, M.J.; Garg, K.; Wolfe, P.S.; Bowlin, G.L. Electrospinning of collagen/biopolymers for
regenerative medicine and cardiovascular tissue engineering. Adv. Drug Deliv. Rev. 2009, 61, 1007–1019.
[CrossRef] [PubMed]

46. Kim, C.W.; Kim, D.S.; Kang, S.Y.; Marquez, M.; Joo, Y.L. Structural studies of electrospun cellulose nanofibers.
Polymer 2006, 47, 5097–5107. [CrossRef]

47. Puls, J.; Wilson, S.A.; Hölter, D. Degradation of Cellulose Acetate-Based Materials: A Review. J. Polym.
Environ. 2010, 19, 152–165. [CrossRef]

48. Gouda, M.; Hebeish, A.A.; Aljafari, A.I. Synthesis and characterization of novel drug delivery system based
on cellulose acetate electrospun nanofiber mats. J. Ind. Text. 2014, 43, 319–329. [CrossRef]

49. Zhang, L.F.; Menkhaus, T.J.; Fong, H. Fabrication and bioseparation studies of adsorptive membranes/felts
made from electrospun cellulose acetate nanofibers. J. Membr. Sci. 2008, 319, 176–184. [CrossRef]

50. Kim, C.W.; Frey, M.W.; Marquez, M.; Joo, Y.L. Preparation of submicron-scale, electrospun cellulose fibers
via direct dissolution. J. Polym. Sci. Part B Polym. Phys. 2005, 43, 1673–1683. [CrossRef]

51. Kulpinski, P. Cellulose nanofibers prepared by the N-methylmorpholine-N-oxide method. J. Appl. Polym. Sci.
2005, 98, 1855–1859. [CrossRef]

52. Wu, X.M.; Branford-White, C.J.; Zhu, L.M.; Chatterton, N.P.; Yu, D.G. Ester prodrug-loaded electrospun
cellulose acetate fiber mats as transdermal drug delivery systems. J. Mater. Sci. Mater. Med. 2010, 21,
2403–2411. [CrossRef]

53. Chantarodsakun, T.; Vongsetskul, T.; Jangpatarapongsa, K.; Tuchinda, P.; Uamsiri, S.; Bamrungcharoen, C.;
Kumkate, S.; Opaprakasit, P.; Tangboriboonrat, P. 6-Gingerol-loaded cellulose acetate electrospun fibers as a
topical carrier for controlled release. Polym. Bull. 2014, 71, 3163–3176. [CrossRef]

54. Ball, C.; Chou, S.F.; Jiang, Y.; Woodrow, K.A. Coaxially electrospun fiber-based microbicides facilitate broadly
tunable release of maraviroc. Mater. Sci. Eng. C 2016, 63, 117–124. [CrossRef]

55. Han, S.O.; Son, W.K.; Youk, J.H.; Lee, T.S.; Park, W.H. Ultrafine porous fibers electrospun from cellulose
triacetate. Mater. Lett. 2005, 59, 2998–3001. [CrossRef]

56. Wang, M.; Wang, L.; Huang, Y. Electrospun hydroxypropyl methyl cellulose phthalate (HPMCM/

Erythromycin fibers for targeted release in intestine. J. Appl. Polym. Sci. 2007, 106, 2177–2184. [CrossRef]
57. Frenot, A.; Henriksson, M.W.; Walkenstrom, P. Electrospinning of cellulose-based nanofibers. J. Appl.

Polym. Sci. 2007, 103, 1473–1482. [CrossRef]

http://dx.doi.org/10.1021/acsbiomaterials.6b00346
http://dx.doi.org/10.1016/j.jmbbm.2016.09.004
http://dx.doi.org/10.1016/j.actbio.2011.08.012
http://dx.doi.org/10.1016/j.carbpol.2018.09.083
http://dx.doi.org/10.1016/j.carbpol.2017.06.037
http://dx.doi.org/10.1007/s10570-017-1362-2
http://dx.doi.org/10.1016/j.ijpharm.2016.08.019
http://www.ncbi.nlm.nih.gov/pubmed/27521704
http://dx.doi.org/10.3390/polym11101550
http://www.ncbi.nlm.nih.gov/pubmed/31554183
http://dx.doi.org/10.1016/j.biotechadv.2011.01.005
http://www.ncbi.nlm.nih.gov/pubmed/21262336
http://dx.doi.org/10.1016/j.addr.2009.07.012
http://www.ncbi.nlm.nih.gov/pubmed/19651166
http://dx.doi.org/10.1016/j.polymer.2006.05.033
http://dx.doi.org/10.1007/s10924-010-0258-0
http://dx.doi.org/10.1177/1528083713495250
http://dx.doi.org/10.1016/j.memsci.2008.03.030
http://dx.doi.org/10.1002/polb.20475
http://dx.doi.org/10.1002/app.22123
http://dx.doi.org/10.1007/s10856-010-4100-y
http://dx.doi.org/10.1007/s00289-014-1243-x
http://dx.doi.org/10.1016/j.msec.2016.02.018
http://dx.doi.org/10.1016/j.matlet.2005.05.003
http://dx.doi.org/10.1002/app.25666
http://dx.doi.org/10.1002/app.24912


Pharmaceutics 2020, 12, 522 19 of 23

58. Duan, B.; Huang, Y.; Lu, A.; Zhang, L.N. Recent advances in chitin based materials constructed via physical
methods. Prog. Polym. Sci. 2018, 82, 1–33. [CrossRef]

59. Tripathi, K.; Singh, A. Chitin, chitosan and their pharmacological actives: A review. Int. J. Pharm. Sci. Res.
2018, 9, 2626–2635.

60. Mottu, F.; Laurent, A.; Rufenacht, D.A.; Doelker, E. Organic solvents for pharmaceutical parenterals and
embolic liquids: A review of toxicity data. PDA J. Pharm. Sci. Technol. 2000, 54, 456–469.

61. Ahsan, S.M.; Thomas, M.; Reddy, K.K.; Sooraparaju, S.G.; Asthana, A.; Bhatnagar, I. Chitosan as biomaterial
in drug delivery and tissue engineering. Int. J. Biol. Macromol. 2018, 110, 97–109. [CrossRef]

62. Kumar, M.; Muzzarelli, R.A.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Chitosan chemistry and
pharmaceutical perspectives. Chem. Rev. 2004, 104, 6017–6084. [CrossRef]

63. Portero, A.; Remunan-Lopez, C.; Criado, M.T.; Alonso, M.J. Reacetylated chitosan microspheres for controlled
delivery of anti-microbial agents to the gastric mucosa. J. Microencapsul. 2002, 19, 797–809. [CrossRef]

64. De Campos, A.M.; Sanchez, A.; Alonso, M.J. Chitosan nanoparticles: A new vehicle for the improvement of
the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm. 2001, 224, 159–168.
[CrossRef]

65. Prego, C.; Garcia, M.; Torres, D.; Alonso, M.J. Transmucosal macromolecular drug delivery. J. Control. Release
2005, 101, 151–162. [CrossRef]

66. Vila, A.; Sanchez, A.; Janes, K.; Behrens, I.; Kissel, T.; Jato, J.L.V.; Alonso, M.J. Low molecular weight chitosan
nanoparticles as new carriers for nasal vaccine delivery in mice. Eur. J. Pharm. Biopharm. 2004, 57, 123–131.
[CrossRef]

67. Chen, G.K.; Fang, D.W.; Wang, K.M.; Nie, J.; Ma, G.P. Core-Shell Structure PEO/CS Nanofibers Based on
Electric Field Induced Phase Separation via Electrospinning and Its Application. J. Polym. Sci. Part A Polym.
Chem. 2015, 53, 2298–2311. [CrossRef]

68. Zhou, Y.; Yang, D.; Chen, X.; Xu, Q.; Lu, F.; Nie, J. Electrospun water-soluble carboxyethyl chitosan/poly(vinyl
alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 2008,
9, 349–354. [CrossRef]

69. da Silva, S.B.; Krolicka, M.; van den Broek, L.A.M.; Frissen, A.E.; Boeriu, C.G. Water-soluble chitosan
derivatives and pH-responsive hydrogels by selective C-6 oxidation mediated by TEMPO-laccase redox
system. Carbohydr. Polym. 2018, 186, 299–309. [CrossRef]

70. Shields, K.J.; Beckman, M.J.; Bowlin, G.L.; Wayne, J.S. Mechanical properties and cellular proliferation of
electrospun collagen type II. Tissue Eng. 2004, 10, 1510–1517. [CrossRef]

71. Kolacna, L.; Bakesova, J.; Varga, F.; Kostakova, E.; Planka, L.; Necas, A.; Lukas, D.; Amler, E.; Pelouch, V.
Biochemical and biophysical aspects of collagen nanostructure in the extracellular matrix. Physiol. Res. 2007,
56, S51–S60. [PubMed]

72. Parodi, R.; Carusi, G.; Santarelli, G.; Nanni, F.; Pingitore, R.; Brunel, G. Guided tissue regeneration employing
a collagen membrane in a human periodontal bone defect: A histologic evaluation. Int. J. Periodontics
Restor. Dent. 1997, 17, 283–291.

73. Pal, P.; Dadhich, P.; Srivas, P.K.; Das, B.; Maulik, D.; Dhara, S. Bilayered nanofibrous 3D hierarchy as skin
rudiment by emulsion electrospinning for burn wound management. Biomater. Sci. 2017, 5, 1786–1799.
[CrossRef]

74. Zhang, M.; Li, Z.Q.; Jiang, P.; Lin, T.; Li, X.Q.; Sun, D.H. Characterization and cell response of electrospun
Rana chensinensis skin collagen/poly(l-lactide) scaffolds with different fiber orientations. J. Appl. Polym. Sci.
2017, 134, 45109. [CrossRef]

75. Brown, J.H.; Das, P.; DiVito, M.D.; Ivancic, D.; Tan, L.P.; Wertheim, J.A. Nanofibrous PLGA electrospun
scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro.
Acta Biomater. 2018, 73, 217–227. [CrossRef]

76. Luo, J.N.; Tong, Y.W. Self-Assembly of Collagen-Mimetic Peptide Amphiphiles into Biofunctional Nanofiber.
ACS Nano 2011, 5, 7739–7747. [CrossRef]

77. Numata, K.; Kaplan, D.L. Silk-based delivery systems of bioactive molecules. Adv. Drug Deliv. Rev. 2010, 62,
1497–1508. [CrossRef]

78. Ang, S.L.; Shaharuddin, B.; Chuah, J.A.; Sudesh, K. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/
silk fibroin film is a promising scaffold for bone tissue engineering. Int. J. Biol. Macromol. 2020, 145, 173–188.
[CrossRef]

http://dx.doi.org/10.1016/j.progpolymsci.2018.04.001
http://dx.doi.org/10.1016/j.ijbiomac.2017.08.140
http://dx.doi.org/10.1021/cr030441b
http://dx.doi.org/10.1080/0265204021000022761
http://dx.doi.org/10.1016/S0378-5173(01)00760-8
http://dx.doi.org/10.1016/j.jconrel.2004.07.030
http://dx.doi.org/10.1016/j.ejpb.2003.09.006
http://dx.doi.org/10.1002/pola.27702
http://dx.doi.org/10.1021/bm7009015
http://dx.doi.org/10.1016/j.carbpol.2018.01.050
http://dx.doi.org/10.1089/ten.2004.10.1510
http://www.ncbi.nlm.nih.gov/pubmed/17552894
http://dx.doi.org/10.1039/C7BM00174F
http://dx.doi.org/10.1002/app.45109
http://dx.doi.org/10.1016/j.actbio.2018.02.009
http://dx.doi.org/10.1021/nn202822f
http://dx.doi.org/10.1016/j.addr.2010.03.009
http://dx.doi.org/10.1016/j.ijbiomac.2019.12.149


Pharmaceutics 2020, 12, 522 20 of 23

79. Barnes, C.P.; Pemble, C.W.; Brand, D.D.; Simpson, D.G.; Bowlin, G.L. Cross-linking electrospun type
II collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng. 2007, 13, 1593–1605.
[CrossRef]

80. Passerini, N.; Craig, D.Q.M. An investigation into the effects of residual water on the glass transition
temperature of polylactide microspheres using modulated temperature DSC. J. Control. Release 2001, 73,
111–115. [CrossRef]

81. Siegel, S.J.; Kahn, J.B.; Metzger, K.; Winey, K.I.; Werner, K.; Dan, N. Effect of drug type on the degradation
rate of PLGA matrices. Eur. J. Pharm. Biopharm. 2006, 64, 287–293. [CrossRef] [PubMed]

82. Pinzon-Garcia, A.D.; Cassini-Vieira, P.; Ribeiro, C.C.; Jensen, C.E.D.; Barcelos, L.S.; Cortes, M.E.; Sinisterra, R.D.
Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice. J. Biomed. Mater. Res.
Part B Appl. Biomater. 2017, 105, 1938–1949. [CrossRef] [PubMed]

83. Zarghami, A.; Irani, M.; Mostafazadeh, A.; Golpour, M.; Heidarinasab, A.; Haririan, I. Fabrication of
PEO/Chitosan/PCL/Olive Oil Nanofibrous Scaffolds for Wound Dressing Applications. Fibers Polym. 2015,
16, 1201–1212. [CrossRef]

84. Xue, J.J.; He, M.; Liu, H.; Niu, Y.Z.; Crawford, A.; Coates, P.D.; Chen, D.F.; Shi, R.; Zhang, L.Q. Drug loaded
homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration
membranes. Biomaterials 2014, 35, 9395–9405. [CrossRef]

85. Ferrand, A.; Eap, S.; Richert, L.; Lemoine, S.; Kalaskar, D.; Demoustier-Champagne, S.; Atmani, H.; Mely, Y.;
Fioretti, F.; Schlatter, G.; et al. Osteogenetic Properties of Electrospun Nanofibrous PCL Scaffolds Equipped
With Chitosan-Based Nanoreservoirs of Growth Factors. Macromol. Biosci. 2014, 14, 45–55. [CrossRef]

86. Duda, S.; Dreyer, L.; Behrens, P.; Wienecke, S.; Chakradeo, T.; Glasmacher, B.; Haastert-Talini, K. Outer
Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration
through 3D Multichannel Chitosan Nerve Guides. Biomed Res. Int. 2014, 2014, 1–16. [CrossRef]

87. Lee, J.H.; Lee, H.B.; Andrade, J.D. Blood compatibility of polyethylene oxide surfaces. Prog. Polym. Sci. 1995,
20, 1043–1079. [CrossRef]

88. Buddhiranon, S.; DeFine, L.A.; Alexander, T.S.; Kyu, T. Genistein-Modified Poly(ethylene oxide)/
Poly(d,l-lactic acid) Electrospun Mats with Improved Antioxidant and Anti-inflammatory Properties.
Biomacromolecules 2013, 14, 1423–1433. [CrossRef]

89. Qu, F.N.; Lin, J.M.G.; Esterhai, J.L.; Fisher, M.B.; Mauck, R.L. Biomaterial-mediated delivery of degradative
enzymes to improve meniscus integration and repair. Acta Biomater. 2013, 9, 6393–6402. [CrossRef]

90. Spasova, M.; Stoilova, O.; Manolova, N.; Rashkov, I.; Altankov, G. Preparation of PLIA/PEG nanofibers by
electrospinning and potential applications. Bioact. Compat. Polym. 2007, 22, 62–76. [CrossRef]

91. Sadri, M.; Karimi-Nazari, E.; Hosseini, H.; Emamgholi, A. New Chitosan/Poly(ethylene oxide)/Thyme
Nanofiber Prepared by Electrospinning Method for Antimicrobial Wound Dressing. J. Nanostruct. 2016, 6,
322–328.

92. Koosha, M.; Mirzadeh, H. Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA
nanofibers. J. Biomed. Mater. Res. Part A 2015, 103, 3081–3093. [CrossRef]

93. Liu, X.L.; Xu, Y.J.; Wu, Z.Q.; Chen, H. Poly(N-vinylpyrrolidone)-Modified Surfaces for Biomedical
Applications. Macromol. Biosci. 2013, 13, 147–154. [CrossRef]

94. Ding, B.; Kimura, E.; Sato, T.; Fujita, S.; Shiratori, S. Fabrication of blend biodegradable nanofibrous nonwoven
mats via multi-jet electrospinning. Polymer 2004, 45, 1895–1902. [CrossRef]

95. Um, I.C.; Fang, D.F.; Hsiao, B.S.; Okamoto, A.; Chu, B. Electro-spinning and electro-blowing of hyaluronic
acid. Biomacromolecules 2004, 5, 1428–1436. [CrossRef]

96. Formhals, A. Process and Apparatus for Preparing Artificial Threads. U.S. Patent 1,975,504, 2 October 1934.
97. Taylor, G. Electrically driven jets. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1969, 313, 453.
98. Li, D.; Xia, Y.N. Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170.

[CrossRef]
99. Theron, S.A.; Yarin, A.L.; Zussman, E.; Kroll, E. Multiple jets in electrospinning: Experiment and modeling.

Polymer 2005, 46, 2889–2899. [CrossRef]
100. Thoppey, N.M.; Bochinski, J.R.; Clarke, L.I.; Gorga, R.E. Unconfined fluid electrospun into high quality

nanofibers from a plate edge. Polymer 2010, 51, 4928–4936. [CrossRef]
101. Wu, D.; Huang, X.; Lai, X.; Sun, D.; Lin, L. High Throughput Tip-Less Electrospinning via a Circular

Cylindrical Electrode. J. Nanosci. Nanotechnol. 2010, 10, 4221–4226. [CrossRef]

http://dx.doi.org/10.1089/ten.2006.0292
http://dx.doi.org/10.1016/S0168-3659(01)00245-0
http://dx.doi.org/10.1016/j.ejpb.2006.06.009
http://www.ncbi.nlm.nih.gov/pubmed/16949804
http://dx.doi.org/10.1002/jbm.b.33724
http://www.ncbi.nlm.nih.gov/pubmed/27292445
http://dx.doi.org/10.1007/s12221-015-1201-8
http://dx.doi.org/10.1016/j.biomaterials.2014.07.060
http://dx.doi.org/10.1002/mabi.201300283
http://dx.doi.org/10.1155/2014/835269
http://dx.doi.org/10.1016/0079-6700(95)00011-4
http://dx.doi.org/10.1021/bm4000794
http://dx.doi.org/10.1016/j.actbio.2013.01.016
http://dx.doi.org/10.1177/0883911506073570
http://dx.doi.org/10.1002/jbm.a.35443
http://dx.doi.org/10.1002/mabi.201200269
http://dx.doi.org/10.1016/j.polymer.2004.01.026
http://dx.doi.org/10.1021/bm034539b
http://dx.doi.org/10.1002/adma.200400719
http://dx.doi.org/10.1016/j.polymer.2005.01.054
http://dx.doi.org/10.1016/j.polymer.2010.07.046
http://dx.doi.org/10.1166/jnn.2010.2194


Pharmaceutics 2020, 12, 522 21 of 23

102. Niu, H.; Wang, X.; Lin, T. Needleless Electrospinning: Developments and Performances. Nanofibers Prod.
Prop. Funct. Appl. 2011, 2011, 17–36.

103. Wei, L.; Sun, R.; Liu, C.; Xiong, J.; Qin, X. Mass production of nanofibers from needleless electrospinning by
a novel annular spinneret. Mater. Des. 2019, 179, 107885. [CrossRef]

104. Jonsson, J.L. For Centrifugal Machines. U.S. Patent 581,423, 27 April 1897.
105. Buzgo, M.; Rampichova, M.; Vocetkova, K.; Sovkova, V.; Lukasova, V.; Doupnik, M.; Mickova, A.;

Rustichelli, F.; Amler, E. Emulsion centrifugal spinning for production of 3D drug releasing nanofibres with
core/shell structure. RSC Adv. 2017, 7, 1215–1228. [CrossRef]

106. She, F.; Tan, L.; Kong, L. A Multifunction Centrifugal Spinning Device; China Intellectual Property Office
(C.I.P. Office), Ed.; C.I.P.: Beijing, China, 2015.

107. Medeiros, E.S.; Glenn, G.M.; Klamczynski, A.P.; Orts, W.J.; Mattoso, L.H.C. Solution Blow Spinning: A New
Method to Produce Micro- and Nanofibers from Polymer Solutions. J. Appl. Polym. Sci. 2009, 113, 2322–2330.
[CrossRef]

108. Kumar, A.; Sinha-Ray, S. A Review on Biopolymer-Based Fibers via Electrospinning and Solution Blowing
and Their Applications. Fibers 2018, 6, 45.

109. Singh, R.; Ahmed, F.; Polley, P.; Giri, J. Fabrication and Characterization of Core-Shell Nanofibers Using a
Next-Generation Airbrush for Biomedical Applications. ACS Appl. Mater. Interfaces 2018, 10, 41924–41934.
[CrossRef]

110. Koga, T.; Watanabe, T.; Higashi, N. Fabrication of Nucleobase-Functionalized Supramolecular Nanofiber
through Peptide Self-Assembly. J. Nanosci. Nanotechnol. 2009, 9, 584–590. [CrossRef]

111. Tanha, S.; Rafiee-Tehrani, M.; Abdollahi, M.; Vakilian, S.; Esmaili, Z.; Naraghi, Z.S.; Seyedjafari, E.; Javar, H.A.
G-CSF loaded nanofiber/nanoparticle composite coated with collagen promotes wound healing in vivo.
J. Biomed. Mater. Res. Part A 2017, 105, 2830–2842. [CrossRef]

112. Yergoz, F.; Hastar, N.; Cimenci, C.E.; Ozkan, A.D.; Tekinay, T.; Guler, M.O.; Tekinay, A.B. Heparin mimetic
peptide nanofiber gel promotes regeneration of full thickness burn injury. Biomaterials 2017, 134, 117–127.
[CrossRef]

113. Sacks, M.S.; Merryman, W.D.; Schmidt, D.E. On the biomechanics of heart valve function. J. Biomech. 2009,
42, 1804–1824. [CrossRef]

114. Zhang, C.; Wen, J.H.; Yan, J.; Kao, Y.B.; Ni, Z.Q.; Cui, X.J.; Wang, H.Y. In situ growth induction of the corneal
stroma cells using uniaxially aligned composite fibrous scaffolds. RSC Adv. 2015, 5, 12123–12130. [CrossRef]

115. Kakade, M.V.; Givens, S.; Gardner, K.; Lee, K.H.; Chase, D.B.; Rabolt, J.F. Electric field induced orientation of
polymer chains in macroscopically aligned electrospun polymer nanofibers. J. Am. Chem. Soc. 2007, 129,
2777–2782. [CrossRef] [PubMed]

116. Han, D.; Steckl, A.J. Triaxial Electrospun Nanofiber Membranes for Controlled Dual Release of Functional
Molecules. ACS Appl. Mater. Interfaces 2013, 5, 8241–8245. [CrossRef]

117. Khatri, Z.; Wei, K.; Kim, B.S.; Kim, I.S. Effect of deacetylation on wicking behavior of co-electrospun cellulose
acetate/polyvinyl alcohol nanofibers blend. Carbohydr. Polym. 2012, 87, 2183–2188. [CrossRef]

118. Yu, D.G.; Yu, J.H.; Chen, L.; Williams, G.R.; Wang, X. Modified coaxial electrospinning for the preparation
of high-quality ketoprofen-loaded cellulose acetate nanofibers. Carbohydr. Polym. 2012, 90, 1016–1023.
[CrossRef] [PubMed]

119. Castillo-Ortega, M.M.; Najera-Luna, A.; Rodriguez-Felix, D.E.; Encinas, J.C.; Rodriguez-Felix, F.; Romero, J.;
Herrera-Franco, P.J. Preparation, characterization and release of amoxicillin from cellulose acetate and poly
(vinyl pyrrolidone) coaxial electrospun fibrous membranes. Mater. Sci. Eng. C Mater. Biol. Appl. 2011, 31,
1772–1778. [CrossRef]

120. Zilberman, M. (Ed.) Active Implants and Scaffolds for Tissue Regeneration. In Active Implants and Scaffolds
for Tissue Regeneration; Studies in Mechanobiology, Tissue Engineering and Biomaterials; Springer: Berlin,
Germany, 2011; pp. 1–514.

121. Yang, Y.; Xia, T.; Zhi, W.; Wei, L.; Weng, J.; Zhang, C.; Li, X. Promotion of skin regeneration in diabetic rats by
electrospun core-sheath fibers loaded with basic fibroblast growth factor. Biomaterials 2011, 32, 4243–4254.
[CrossRef]

122. Qian, W.; Yu, D.G.; Li, Y.; Liao, Y.Z.; Wang, X.; Wang, L. Dual Drug Release Electrospun Core-Shell Nanofibers
with Tunable Dose in the Second Phase. Int. J. Mol. Sci. 2014, 15, 774–786. [CrossRef]

http://dx.doi.org/10.1016/j.matdes.2019.107885
http://dx.doi.org/10.1039/C6RA26606A
http://dx.doi.org/10.1002/app.30275
http://dx.doi.org/10.1021/acsami.8b13809
http://dx.doi.org/10.1166/jnn.2009.J053
http://dx.doi.org/10.1002/jbm.a.36135
http://dx.doi.org/10.1016/j.biomaterials.2017.04.040
http://dx.doi.org/10.1016/j.jbiomech.2009.05.015
http://dx.doi.org/10.1039/C4RA16609D
http://dx.doi.org/10.1021/ja065043f
http://www.ncbi.nlm.nih.gov/pubmed/17302411
http://dx.doi.org/10.1021/am402376c
http://dx.doi.org/10.1016/j.carbpol.2011.10.046
http://dx.doi.org/10.1016/j.carbpol.2012.06.036
http://www.ncbi.nlm.nih.gov/pubmed/22840034
http://dx.doi.org/10.1016/j.msec.2011.08.009
http://dx.doi.org/10.1016/j.biomaterials.2011.02.042
http://dx.doi.org/10.3390/ijms15010774


Pharmaceutics 2020, 12, 522 22 of 23

123. Huang, Z.M.; He, C.L.; Yang, A.Z.; Zhang, Y.Z.; Hang, X.J.; Yin, J.L.; Wu, Q.S. Encapsulating drugs in
biodegradable ultrafine fibers through co-axial electrospinning. J. Biomed. Mater. Res. Part A 2006, 77,
169–179. [CrossRef]

124. Zhao, Y.; Cao, X.; Jiang, L. Bio-mimic multichannel microtubes by a facile method. J. Am. Chem. Soc. 2007,
129, 764–765. [CrossRef] [PubMed]

125. Chen, H.; Wang, N.; Di, J.; Zhao, Y.; Song, Y.; Jiang, L. Nanowire-in-Microtube Structured Core/Shell Fibers
via Multifluidic Coaxial Electrospinning. Langmuir 2010, 26, 11291–11296. [CrossRef] [PubMed]

126. Sin, D.Y.; Koo, B.R.; Ahn, H.J. Hollow lithium manganese oxide nanotubes using MnO2-carbon nanofiber
composites as cathode materials for hybrid capacitors. J. Alloys Compd. 2017, 696, 290–294. [CrossRef]

127. Yoo, H.S.; Kim, T.G.; Park, T.G. Surface-functionalized electrospun nanofibers for tissue engineering and
drug delivery. Adv. Drug Deliv. Rev. 2009, 61, 1033–1042. [CrossRef] [PubMed]

128. Park, K.; Ju, Y.M.; Son, J.S.; Ahn, K.D.; Han, D.K. Surface modification of biodegradable electrospun nanofiber
scaffolds and their interaction with fibroblasts. J. Biomater. Sci. Polym. Ed. 2007, 18, 369–382. [CrossRef]

129. Janjic, M.; Pappa, F.; Karagkiozaki, V.; Gitas, C.; Ktenidis, K.; Logothetidis, S. Surface modification of
endovascular stents with rosuvastatin and heparin-loaded biodegradable nanofibers by electrospinning.
Int. J. Nanomed. 2017, 12, 6343–6355. [CrossRef] [PubMed]

130. Hassiba, A.J.; El Zowalaty, M.E.; Nasrallah, G.K.; Webster, T.J.; Luyt, A.S.; Abdullah, A.M.; Elzatahry, A.A.
Review of recent research on biomedical applications of electrospun polymer nanofibers for improved
wound healing. Nanomedicine 2016, 11, 715–737. [CrossRef]

131. Bai, Y.; Yang, H.; Yang, W.W.; Li, Y.C.; Sun, C.Q. Gold nanoparticles-mesoporous silica composite used as an
enzyme immobilization matrix for amperometric glucose biosensor construction. Sens. Actuators B Chem.
2007, 124, 179–186. [CrossRef]

132. Choi, J.S.; Leong, K.W.; Yoo, H.S. In vivo wound healing of diabetic ulcers using electrospun nanofibers
immobilized with human epidermal growth factor (EGF). Biomaterials 2008, 29, 587–596. [CrossRef]

133. Ranjbar-Mohammadi, M.; Rabbani, S.; Bahrami, S.H.; Joghataei, M.T.; Moayer, F. Antibacterial performance
and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(epsilon-caprolactone)
electrospun nanofibers. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 1183–1191. [CrossRef]

134. Casper, C.L.; Yamaguchi, N.; Kiick, K.L.; Rabolt, J.F. Functionalizing electrospun fibers with biologically
relevant macromolecules. Biomacromolecules 2005, 6, 1998–2007. [CrossRef]

135. Metwally, M.; Cheong, Y.; Li, T.C. A review of techniques for adhesion prevention after gynaecological
surgery. Curr. Opin. Obstet. Gynecol. 2008, 20, 345–352. [CrossRef] [PubMed]

136. Chen, C.; Lv, G.; Pan, C.; Song, M.; Wu, C.H.; Guo, D.D.; Wang, X.M.; Chen, B.A.; Gu, Z.Z. Poly(lactic acid)
(PLA) based nanocomposites-a novel way of drug-releasing. Biomed. Mater. 2007, 2, L1–L4. [CrossRef]
[PubMed]

137. Rosa, R.M.; Silva, J.C.; Sanches, I.S.; Henriques, C. Simultaneous photo-induced cross-linking and silver
nanoparticle formation in a PVP electrospun wound dressing. Mater. Lett. 2017, 207, 145–148. [CrossRef]

138. Rujitanaroj, P.O.; Pimpha, N.; Supaphol, P. Wound-dressing materials with antibacterial activity from
electrospun gelatin fiber mats containing silver nanoparticles. Polymer 2008, 49, 4723–4732. [CrossRef]

139. Yang, Y.; Li, X.; Cheng, L.; He, S.; Zou, J.; Chen, F.; Zhang, Z. Core-sheath structured fibers with pDNA
polyplex loadings for the optimal release profile and transfection efficiency as potential tissue engineering
scaffolds. Acta Biomater. 2011, 7, 2533–2543. [CrossRef]

140. Langer, R. New methods of drug delivery. Science 1990, 249, 1527–1533. [CrossRef]
141. Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable Controlled-Release Polymers and Polymeric

Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 2016, 116, 2602–2663. [CrossRef]
142. Fredenberg, S.; Wahlgren, M.; Reslow, M.; Axelsson, A. The mechanisms of drug release in poly(lactic-co-

glycolic acid)-based drug delivery systems—A review. Int. J. Pharm. 2011, 415, 34–52. [CrossRef]
143. Webber, W.L.; Lago, F.; Thanos, C.; Mathiowitz, E. Characterization of soluble, salt-loaded, degradable PLGA

films and their release of tetracycline. J. Biomed. Mater. Res. 1998, 41, 18–29. [CrossRef]
144. Fu, Y.; Kao, W.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric

delivery systems. Expert Opin. Drug Deliv. 2010, 7, 429–444. [CrossRef]
145. Saindane, N.; Vavia, P. Osmotic pellet system comprising osmotic core and in-process amorphized drug

in polymer-surfactant layer for controlled delivery of poorly water-soluble drug. J. Pharm. Sci. 2012, 101,
3169–3179. [CrossRef]

http://dx.doi.org/10.1002/jbm.a.30564
http://dx.doi.org/10.1021/ja068165g
http://www.ncbi.nlm.nih.gov/pubmed/17243804
http://dx.doi.org/10.1021/la100611f
http://www.ncbi.nlm.nih.gov/pubmed/20337483
http://dx.doi.org/10.1016/j.jallcom.2016.11.279
http://dx.doi.org/10.1016/j.addr.2009.07.007
http://www.ncbi.nlm.nih.gov/pubmed/19643152
http://dx.doi.org/10.1163/156856207780424997
http://dx.doi.org/10.2147/IJN.S138261
http://www.ncbi.nlm.nih.gov/pubmed/28919738
http://dx.doi.org/10.2217/nnm.15.211
http://dx.doi.org/10.1016/j.snb.2006.12.020
http://dx.doi.org/10.1016/j.biomaterials.2007.10.012
http://dx.doi.org/10.1016/j.msec.2016.08.032
http://dx.doi.org/10.1021/bm050007e
http://dx.doi.org/10.1097/GCO.0b013e3283073a6c
http://www.ncbi.nlm.nih.gov/pubmed/18660685
http://dx.doi.org/10.1088/1748-6041/2/4/L01
http://www.ncbi.nlm.nih.gov/pubmed/18458473
http://dx.doi.org/10.1016/j.matlet.2017.07.046
http://dx.doi.org/10.1016/j.polymer.2008.08.021
http://dx.doi.org/10.1016/j.actbio.2011.02.031
http://dx.doi.org/10.1126/science.2218494
http://dx.doi.org/10.1021/acs.chemrev.5b00346
http://dx.doi.org/10.1016/j.ijpharm.2011.05.049
http://dx.doi.org/10.1002/(SICI)1097-4636(199807)41:1&lt;18::AID-JBM3&gt;3.0.CO;2-T
http://dx.doi.org/10.1517/17425241003602259
http://dx.doi.org/10.1002/jps.23112


Pharmaceutics 2020, 12, 522 23 of 23

146. Patel, H.; Patel, M.M. Formulation and evaluation of controlled porosity osmotic drug delivery system of
metoprolol succinate. Int. J. Pharm. Sci. Res. 2012, 3, 1761–1767.

147. Uhrich, K.E.; Cannizzaro, S.M.; Langer, R.S.; Shakesheff, K.M. Polymeric systems for controlled drug release.
Chem. Rev. 1999, 99, 3181–3198. [CrossRef] [PubMed]

148. Marin, E.; Briceno, M.I.; Caballero-George, C. Critical evaluation of biodegradable polymers used in
nanodrugs. Int. J. Nanomed. 2013, 8, 3071–3091.

149. Makadia, H.K.; Siegel, S.J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery
Carrier. Polymers 2011, 3, 1377–1397. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/cr940351u
http://www.ncbi.nlm.nih.gov/pubmed/11749514
http://dx.doi.org/10.3390/polym3031377
http://www.ncbi.nlm.nih.gov/pubmed/22577513
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Variety of Polymeric Biomaterials 
	Natural Polymeric Biomaterials 
	Cellulose 
	Chitin and Chitosan 
	Collagen 
	Other Natural Polymeric Biomaterials 

	Synthetic Polymeric Biomaterials 
	Poly Lactic-co-Glycolic Acid (PLGA) 
	Polycaprolactone (PCL) 
	Polyethylene Oxide (PEO) 
	Other Synthetic Polymeric Biomaterials 


	Nanofiber Production Methods 
	Electrospinning 
	Centrifugal Spinning 
	Solution Blowing 
	Other Nanofiber Fabrication Techniques 

	Morphologies of Nanofibers 
	Fiber Orientation 
	Fiber Cross-Section 

	Drug Loading in Nanofibers 
	Chemical Adsorption 
	Physical Adsorption 

	Drug Release from Nanofibers 
	Drug Diffusion 
	Nanofiber Erosion 
	Drug Release Profile 

	Conclusions and Future Prospects 
	References

