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Abstract: Red blood cells (RBC) have great potential as drug delivery systems, capable of producing
unprecedented changes in pharmacokinetics, pharmacodynamics, and immunogenicity. Despite this
great potential and nearly 50 years of research, it is only recently that RBC-mediated drug delivery
has begun to move out of the academic lab and into industrial drug development. RBC loading
with drugs can be performed in several ways—either via encapsulation within the RBC or surface
coupling, and either ex vivo or in vivo—depending on the intended application. In this review,
we briefly summarize currently used technologies for RBC loading/coupling with an eye on how
pharmacokinetics is impacted. Additionally, we provide a detailed description of key ADME
(absorption, distribution, metabolism, elimination) changes that would be expected for RBC-associated
drugs and address unique features of RBC pharmacokinetics. As thorough understanding of
pharmacokinetics is critical in successful translation to the clinic, we expect that this review will
provide a jumping off point for further investigations into this area.

Keywords: red blood cells; drug delivery; pharmacokinetics

1. Introduction

The idea of using red blood cells (RBC) as carriers for drug delivery initially emerged about half
a century ago as an approach to improve enzyme replacement therapy [1]. However, the outbreak of
blood-transmitted infections in the 1980s effectively halted progress in the area of RBC-mediated drug
delivery. For several decades, this line of investigation was overshadowed by other constituencies
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of the research enterprise encompassing the design of drug delivery systems (DDS)—liposomes,
antibody-drug conjugates, and polymeric nanocarriers, to name a few.

Nevertheless, approaches to use RBCs as carriers for pharmacological agents have recently
gained significant and rapidly growing attention. Progress in this field is rapidly diversifying and
accelerating towards potentially clinically useful products. Many groups are now investigating the use
of RBCs in drug delivery and are making significant contributions, leading to breakthrough findings
and upbeat investments. Several RBC-based drug delivery approaches have entered clinical trials,
including RBC-encapsulated asparaginase (Erytech, Phase 3) and dexamethasone (EryDel, Phase 3).
Novel advanced strategies are emerging, including genetic molecular modifications of RBC [2,3],
modulation of the immune system by RBC-coupled antigens [3,4], and vascular transfer of RBC-coupled
nanocarriers (RBC hitchhiking) [5–7].

Both encapsulation into and coupling to the surface of RBC fundamentally transform the key
parameters of absorption, distribution, metabolism, and elimination (ADME) of drugs and drug delivery
systems (DDS), including diverse nanocarriers. To our knowledge, studies of the pharmacokinetics
(PK) and pharmacodynamics (PD) of RBC-based DDS are lacking, despite great relevance for industrial
development and clinical utility.

In order to help to close this gap of knowledge, in this paper we undertook the first attempt to
define specific, salient parameters controlling behavior of RBC/DDS in the body. Our goal is to provide
the modular framework for experimental and theoretical pre-clinical and clinical investigations of
ADME-PK-PD features of RBC-based drug delivery.

2. Principles of RBC Drug Delivery

2.1. Encapsulation of Drugs into Carrier RBC

Loading drugs into the carrier RBC at the present time can be achieved only in isolated RBCs.
The most advanced approach involves osmotic swelling, causing transient pores in the RBC membrane
(see below). Novel experimental approaches include attempts to use cell-penetrating peptides to
import therapeutic proteins in the carrier RBC [8] and fusion of RBC with drug-loaded liposomes [9].

Drug encapsulation into RBCs for use in humans is currently achieved either in vitro or ex vivo
using either autologous blood or matching donor blood as a source for RBCs. Washed RBCs are loaded
with drugs via transient pores formed in the membrane of RBC during osmotic swelling in hypotonic
buffer containing a high concentration of drugs, with subsequent washing with an excess amount of
drug [10,11]. Notably, this process does release some hemoglobin from the RBCs [10,11]. The typical
procedure, for example, using a semi-automatic device developed by EryDel takes about an hour [12],
after which washed and loaded RBCs can be infused intravascularly into a patient.

There are several clinical trials utilizing RBC-based drug delivery systems (Table 1), pursuing
generally two approaches. First, there is the encapsulation into RBCs of enzymes that break down specific
substrates in blood. These substrates can be pathologically elevated toxic molecules (e.g., in neurological
diseases) or nutrients obligatory for tumor growth. RBC-encapsulated enzymes circulate for a longer
time than free enzymes and work upon substrates that diffuse from blood plasma into the loaded RBCs.
Alternatively, a drug or a pro-drug encapsulated into RBCs might either circulate for a prolonged
time (i.e., RBCs serve as a drug depot), or be taken up along with RBCs by phagocytes and other
host defense cells, for example, for anti-inflammatory effect. The latter approach can be used for the
delivery of antigens to immune system.

Encapsulation into the inner volume of RBC (A) limits interaction of the drug retained in the RBC
ghost with compounds that do not diffuse through the plasma membrane; (B) helps to protect drug
cargo from the body and vice versa; and (C) involves the minor fraction of RBC in blood, since this
procedure takes place ex vivo, followed by the infusion of loaded RBC ghosts.
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Table 1. Summary of clinical trials for red blood cell (RBC)-associated drugs.

Company Drug Disease Trial Identifier

EryDel Dexamethasone Ataxia Telangiectasia NCT03563053

Erytech L-Asparaginase
Triple-Negative Breast Cancer NCT03674242

Acute Lymphoblastic Leukemia NCT03267030
Pancreatic Ductal Adenocarcinoma NCT03665441

Anokion KAN-101 Celiac Disease NCT04248855
Rubius Phenylalanine Ammonia Lyase Phenylkentonuria NCT04110496

2.2. Surface Loading of RBCs

In the original prototypes, surface loading was achieved by chemical conjugation of cargoes to
isolated RBCs ex vivo [13,14]. Newer advanced approaches grow ex vivo genetically engineered RBCs
that expose specific artificial sequences, allowing subsequent site-specific biological conjugation of
proteins [2]. Furthermore, nanocarriers can be adsorbed on the RBC surface non-specifically, providing
formulations for RBC hitchhiking (RBC hitchhiking, see below). These iterations of RBC carrying
surface-bound agents need to be infused intravascularly, similarly to RBCs loaded with drugs into the
inner volume.

In several advanced iterations, drugs and carriers can be conjugated to or fused with antibodies,
antibody fragments, peptides, or other ligands that bind to the RBC surface [15–18]. In this approach,
RBC-targeted drugs can be used in two main protocols. First, this can be employed for ex vivo surface
loading on donor or autologous RBCs, which is a multi-step, potentially damaging loading approach.
Second, a simple intravascular injection of these RBC-targeted agents leads to rapid binding to RBCs
circulating in the bloodstream, removing the need for any ex vivo manipulation of RBC [17].

Drug delivery systems based on surface loading can find utility for the prolongation and
redistribution of agents that are supposed to work in the bloodstream and other sites accessible for
RBCs (Figure 1), including vascular endothelium, hepatic sinuses, pathological sites of RBC diapedesis
and hemorrhages, and sites of surveillance and phagocytosis of senescent RBC. These drug cargoes
include drugs regulating blood fluidity, inflammation, decoy and capture systems for pathological
agents, immunological reactions, and some of the applications described above for RBC-encapsulated
agents [19–22].
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Figure 1. Distribution of drugs attached to the RBC surface. Left panel: Major cell types that
take up surface-coupled drugs include vascular endothelium and a diverse array of immune cells
(monocytes/macrophages, dendritic cells, neutrophils etc.). Right panel: RBC status (naïve vs. damaged/

aged) impacts the tissue distribution of surface-coupled drugs.

In addition, RBC drug delivery systems can be surface-modified to confer specific affinity to
therapeutic sites of interest, including those of vascular injury [13,14,23,24]. Antibody-coated RBCs
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have been studied in vitro and in vivo for targeting drugs to diverse cells—endothelium, smooth
muscle cells, leukocytes, etc. [25–27]. More recently, RBCs painted with affinity ligands were tested for
targeting to circulating leukocytes [28,29].

Surface RBC loading is pursued for many drugs including anti-thrombotic and anti-inflammatory
agents (Table 2). For example, RBC-bound fibrinolytic agents surpass the efficacy and safety of free agents
in animal models of stroke [30], traumatic brain injury (TBI) [31], hypoxia [32], and thrombosis [33] in the
cerebral vasculature. Coupling to RBC carriers creates high local concentrations of tissue plasminogen
activator (tPA), allowing the expedient focal dissolution of blood clots in close vicinity of the RBC-tPA
complexes, which in models of thrombotic occlusion of blood vessels results in formation of patent
channels spanning the plug and permitting reperfusion prior to dissolution of the thrombus [34,35].

Table 2. Approaches for coupling drugs to the RBC surface.

Coupling Strategy Drug Indication References

Streptavidin-Biotin tPA

Pulmonary Embolism [36,37]
Arterial Thrombosis [36]
Thrombotic Stroke [30,38]

Traumatic Brain Injury [31]
Cerebral Hypoxia [32]

Antibody (or Fragment) Binding

tPA
Pulmonary Embolism [39]
Arterial Thrombosis [39]

Pulmonary Embolism [18]
Reteplase Venous Thrombosis [40]
scuPA-T Cerebral Thrombosis [33]

Thrombomodulin
Vascular Thrombosis [17]

Endotoxemia [20]
Cerebral Ischemia/Reperfusion [20]

Peptide Binding Protein Antigens Immune Tolerance Induction [41,42]

Passive Adsorption NP-Reteplase Pulmonary Embolism [6]
NP-Doxorubicin Lung Metastasis [5]

2.3. RBC Loading: Effects on Cargoes

Both encapsulation into and surface-loading onto RBCs may modulate the response of immune
and innate host defense system to biotherapeutic agents (see below). Both methods dramatically alter
the PK of the drug cargoes.

Drug loading into RBCs physically separates cargoes from the body. Surface coupling to a large RBC
carrier markedly limits the ability of drugs to interact with cognate receptors and other counterparts [43].
This mitigates the adverse effects of such interactions [44]. Furthermore, RBC-bound drugs are
influenced by the RBC glycocalyx [45]. For example, RBC-coupled tPA is protected against plasma
inhibitors by the RBC glycocalyx [46].

Therefore, drug loading to carrier RBCs profoundly alters their pharmacological profile, in some
cases enabling effects simply unavailable to free drugs. It is tempting to postulate that RBCs may also
significantly and favorably modulate the delivery and therapeutic effects of nanocarriers, among other
artificial drug delivery systems, and these interactions with nanocarriers are detailed below.

RBCs have also been membrane-engineered to reduce RBC antigen immunogenicity. The ability
to camouflage allogenic erythrocytes and create a universal RBC, in theory, would minimize the risk
of potentially life-threatening hemolytic transfusion reactions as well as shortages of matched blood
groups. Various polymer types, such as polyethylene glycol (PEG) and hyperbranched polyglycerol,
have been covalently conjugated to the RBC surface [47,48]. For example, the engineering of PEG to
the RBC membrane concealed glycophorin A epitopes from antibody detection and even inhibited
the invasion of the malaria parasite [49]. Chronic transfusions of murine RBCs conjugated to mPEG
revealed a normal in vivo circulation time with no evidence of antibody response against PEG [50].
However, excessive modification can have a deleterious impact on cell integrity and biocompatibility,
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and thus maintaining a balance between epitope shielding and membrane deformability is crucial [51].
More recently, investigators have developed a flexible, crosslinking nanogel barrier of polysialic acid
(PSA) and tyramine to conceal RBC RhD epitopes without compromising RBC membrane structure [52].

Given the utility of polymers in RBC membrane engineering, polymers have also been employed
for therapeutic surface loading. In a recent work, PEG was used to engineer immunoglobin-based
therapeutics to the RBC surface [19]. The system consisted of an RBC covalently coupled to Protein A
(SpA) via a PEG crosslinker. Therapeutic antibodies, specifically anti-tumor necrosis factor (anti-TNFα),
were then presented onto the surface of RBCs by binding to SpA at the Fc region thus orienting the
antigen-binding sites outward. The approach was rapid, cell-tolerated, and retained the functionality
of the attached antibody.

2.4. Novel Strategies

Apart from the different advantages of RBCs mentioned above, RBCs offer unique opportunities
from an engineering standpoint. First, mature RBCs are enucleated, allowing the attachment of
immunomodulatory drugs, which are known to play a role in switching phenotypes, without altering
physiological functions of the RBC or worsening disease pathology. This feature provides an edge over
other malleable cell-based therapies such as macrophages, which can lead to disease progression due
to switched phenotypes. Second, RBCs (and RBC-associated drugs) have access to every tissue in the
body. Tissue-specific targeting can be achieved by optimizing a known set of parameters and the site
of injection. Moreover, the versatile biomechanical properties of an RBC allow for squeezing through
blood vessels of a diameter smaller than itself, creating the opportunity to target vascular endothelia
of high-density capillary beds. Lastly, the ability of RBCs to negotiate immune cell clearance in the
liver and spleen, until they are senescent, offers a different pathway for presenting antigens to the
immune cells in these organs [53,54]. This, coupled with innate immune features of the RBC, allowing
for physical adsorption of immune complexes and certain bacteria on the surface and their subsequent
transfer to antigen presenting cells (APC) in the spleen, offers opportunities for immunological
intervention [55–57]. As a result, several novel strategies are emerging to engineer RBC-DDS.

One such approach is to physically adsorb nanocarriers onto the surface of RBCs (RBC
hitchhiking) [5,6,58]. Binding of nanocarriers relies on non-covalent interactions between nanocarriers
and RBC membranes, including electrostatic interactions, hydrophobic interactions, and hydrogen
bonding, among others. These interactions enable the successful binding of a broad spectrum of
nanocarriers, ranging from synthetic nanocarriers (liposomes, polymeric nanoparticles, etc.) to natural
particles (e.g., virus particles), to RBCs. In addition, nanocarrier binding to RBCs occurs across
multiple species, ranging from mouse to human [6]. The binding strength and dislodging capacity of
nanocarriers on RBCs can be tuned by modulating their material and surface properties.

RBC hitchhiking has been shown to significantly alter the PK profile of attached nanocarriers [6,58].
In particular, RBC hitchhiking could dramatically extend the circulation time of nanocarriers possibly
due to reduced reticuloendothelial system (RES) clearance [59]. More interestingly, RBC hitchhiking
significantly alters the biodistribution (BD) of nanocarriers. When administered intravenously,
nanocarriers hitchhiked on RBCs exhibit significantly reduced accumulation in the liver and spleen, and
drastically increased accumulation in the lung, compared to their free counterpart. The accumulation
of nanocarriers in the lungs seems to be attributed to the transfer of nanocarriers to the vascular
endothelium when RBCs squeeze through narrow capillaries in the lung [58]. Applying this mechanism,
RBC hitchhiking was demonstrated to be able to target chemotherapeutic drug nanocarriers to lung
metastasis and lead to improved anti-tumor efficacy [5]. Moreover, RBC hitchhiking could deliver
nanocarriers to a wide range of organs depending on the injection sites. Specifically, hitchhiked
nanocarriers exhibit enhanced accumulation in the first vascular bed encountered following their
intravascular administration [6].

Another emerging approach towards creating RBC DDS is to manufacture RBCs carrying
therapeutics via genetic engineering of hematopoietic precursor cells (HPCs) [60]. In this approach,



Pharmaceutics 2020, 12, 440 6 of 21

CD34+ HPCs collected from a healthy O negative donor are genetically engineered to express one or more
biotherapeutic proteins inside cells or on cell surface. These engineered cells are expanded, differentiated,
and enucleated in a bioreactor to obtain the final RBCs carrying therapeutics. RBCs generated by this
approach seem to have many unique properties. For example, RBCs with enzymes expressed inside
cells show promise in treating metabolic diseases such as phenylketonuria (ClinicalTrials.gov Identifier:
NCT04110496). In addition, RBCs with proteins expressed on cell surfaces can have specific interactions
with diverse arms of the immune system, depending on the properties of the surface-expressed
proteins. For example, RBCs carrying a specific set of surface proteins can activate T cells or NK
cells, which are being investigated for therapy of solid tumors and leukemia [61–63]. The genetic
engineering of RBC membranes has also been coupled with enzymatic modification. RBCs displaying
sortase-modifiable membrane proteins enables the covalent, site-specific attachment of a broad range
of functional probes and therapeutics [2,3]. This approach was recently used to display disease-causing
antigens on RBC membranes that may be able to induce immune tolerance and is being studied for
treating autoimmune diseases [3].

Previously, genetic engineering of RBCs has been employed to coat RBC membranes with viral
snares. RBCs lack the key machinery necessary for viral gene expression, making them impervious
to infection. In a study on coxsackievirus B, investigators engineered murine RBCs to express the
virus’s target receptor protein, enabling entrapment of the virus inside the cell [64]. Mice expressing
the modified RBCs demonstrated curtailed viremia and lowered viral proliferation in vital organs.
With the emergence of Coronavirus disease 2019 (COVID-19), extensive efforts have been made in
developing novel therapies to combat this pandemic, such as the conjugation of viral snares to RBCs.
However, the most apparent obstacle to this approach is the necessity to genetically engineer erythroid
precursors. The lengthy process of RBC in vitro generation limits the production rate and availability
of this therapeutic delivery system. A more rapid and tunable chemical engineering strategy would be
a more viable approach to couple the virus’s binding-ligands to the RBC surface.

3. Pharmacokinetics of RBC-Associated Drugs

3.1. Pharmacokinetics—A Brief Primer

3.1.1. Absorption and Routes of Administration

Following extravascular administration of therapeutics, there are a number of barriers that
drugs must overcome in order to enter the systemic circulation [65,66]. These processes governing
the entry of drug into the circulation are typically described under the umbrella of “absorption”.
The primary metrics that are used to describe absorption relate to the rate and extent of absorption
are the maximum observed blood concentration (Cmax), time of Cmax (tmax), and bioavailability (F)
(Table 3). As extravascular administration is not an option for drugs carried by erythrocytes, we will
only provide a brief summary of pharmacokinetic expectations following extravascular administration
to facilitate comparisons. Select routes of administration and associated pharmacokinetic expectations
are summarized in Table 4.

3.1.2. Distribution

Following the entry of the drug into the systemic circulation, the drug is able to move between
blood and tissues, in a process termed distribution. The primary metric that is used to describe the
extent of drug distribution is the volume of distribution at steady state (Vss) (Table 3). It should be
noted that Vss does not represent any physical volume, but it does have a lower limit of plasma
volume. Barriers to tissue distribution include: (1) tissue perfusion, (2) diffusion, (3) protein/cell
binding, (4) active transport, and (5) vascular permeability. Tissue perfusion is largely governed by
blood flow to the tissue. In Figure 2, plots of regional tissue blood flow and perfusion are shown for
a typical adult human. All else being equal, the greater the fractional cardiac output delivered to the
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tissue, the greater the chance for distribution into the tissue. Of note, the lung is not depicted, as it has
a unique circulation, receiving 100% of venous output from the heart via the pulmonary arteries and
a fraction of arterial output via the bronchial circulation. The only other tissue that receives venous
blood is the liver, which collects blood both through the hepatic artery and the portal vein, which drains
from the intestines, spleen, and pancreas. A summary of primary mechanisms of tissue distribution is
provided in Table 5 to facilitate comparisons between different classes of drug molecules.

Table 3. Key pharmacokinetic parameters.

Parameter Definition

Area Under the Curve (AUC) Primary metric of overall drug exposure

Terminal Half-Life (t1/2) Time for drug concentrations to reduce by 50%
during the terminal slope (λz)

Maximum Blood Concentration (Cmax) Highest observed blood concentration
Time of Cmax (tmax) Time post-dosing where Cmax occurs

Bioavailability (F) Fraction of administered dose that reaches the
systemic circulation

Clearance (CL) Volume cleared of drug per unit time
Mean Residence Time (MRT) Average time that a drug molecule stays in the body

Volume of Distribution (Vss) Relationship between the amount of drug in the body
and the blood concentration

Table 4. Pharmacokinetic Expectations for Select Routes of Administration.

Route Typical tmax Barriers Advantages Clinical Use

Oral Variable a
Harsh GI environment

Efflux transporters
First-pass metabolism

Safe and painless
Patient convenience Small molecule

Subcutaneous
Hours–days

[67]
Immune system Patient convenience Peptides

No first-pass Proteins

Inhaled
Seconds–minutes

[68]

Airway branching Local delivery
Small moleculeMuco-ciliary clearance Rapid absorption

Immune system No first-pass

Transdermal
Hours–days

[69]
Dense layers of skin and fat Prolonged delivery

Small moleculeImmune system No first-pass
a The rate of drug absorption after oral administration is highly variable and dependent on drug, subject, and dosage
form-related factors.Pharmaceutics 2020, 12, x 8 of 24 
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Table 5. Mechanisms of tissue distribution.

Drug Class Mechanisms Barriers

Small Molecule
Diffusion Plasma protein binding

Uptake transporters [71] Efflux transporters [71]
Peptides/Proteins Diffusion (Low MW) Vascular permeability [72]

Bulk fluid flow
Receptor-mediated transcytosis [73]

Drug Delivery Systems Bulk fluid flow
Receptor-mediated transcytosis [73] Vascular permeability [72]

Erythrocytes N/A Vascular permeability [72]

3.1.3. Metabolism/Elimination

The removal of an active drug substance from the circulation can occur either as direct elimination
of the unchanged drug or via metabolism of the drug molecule and subsequent elimination of
the metabolite. The primary metric used to describe the efficiency of elimination is clearance (CL),
which describes the volume from which drug is removed per unit time. While there is no theoretical
lower bound on clearance, the upper limit to this parameter is the sum of blood flows to the eliminating
organs. A summary of key routes of elimination for a variety of drug classes is provided in Table 6.

Table 6. Primary routes of elimination.

Drug Class Mechanisms Primary Tissues

Small Molecule
Renal filtration Kidney

Active tubular secretion Kidney
Metabolism [74] Liver, GI, etc.

Peptides/Proteins
Renal filtration (<60 kDa) Kidney
Non-specific catabolism Liver, spleen, etc.

Receptor-mediated clearance Target tissue

Drug Delivery Systems [75] Immune cell uptake Liver, spleen
Receptor-mediated clearance Target tissue

Erythrocytes Macrophage uptake Spleen, liver

3.1.4. Pharmacokinetics in Drug Development

Proper characterization and understanding of PK properties of drug candidates is critical for
effective drug development. In the early 1990s, poor understanding of pharmacokinetics early in
development resulted in PK being the most common reason for attrition (40%) during clinical trials;
however, by the end of the decade, this had fallen to less than 10% of failures, as early, thorough
characterization of PK became more common [76]. Additionally, as drugs move through clinical
development and onto the market, population pharmacokinetics is used to describe the impact of
patient-related factors (termed covariates) on in vivo behavior [77]. For example, between 2003 and
2017, 94% of monoclonal antibodies that were approved by the FDA included population PK analysis,
often relating factors such as body size, gender, and renal function to mAb PK [78]. By characterizing
PK, not only at the level of the population, but also at the level of the patient, individualized dosing
becomes feasible. Ultimately, thorough understanding of pharmacokinetics, and the factors influencing
it, permits the development of drugs with a higher probability of favorable safety and efficacy profiles.
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Table 7. Summary of reported RBC-associated drug pharmacokinetic parameters.

Drug Species Condition PK Changes Pharmacologic Effect
(Relative to Free Drug) References

5-Fluoruracil (5-FU) Mouse Malignant Ascites 2-fold increase in AUC0-inf in ascites fluid 70% survival at 20 days vs. 20% in
malignant ascites model [79]

Adenosine Deaminase (ADA) Human ADA Deficiency 2–4-fold increase in ADA t1/2
57-day lifespan of loaded RBC [80]

Alcohol Dehydrogenase (ADH)
Aldehyde Dehydrogenase

(ALDH)
Mouse Healthy 4.5-day RBC t1/2

43% reduction in blood ethanol
concentrations vs. empty RBC [81]

Amikacin Rat Healthy 2-fold increase in AUC0-inf in plasma
Large increases in liver/spleen AUC0-inf

[82,83]

Carbonic Anhydrase Rat Healthy Similar circulation time as carrier RBC
9-day t1/2 of loaded RBC [84]

Daunorubicin Human Acute Leukemia ~2-fold increase in blood t1/2 [85]

Dexamethasone
Human
Human
Human
Rabbit

Inflammatory Bowel Disease
Chronic Obstructive Pulmonary

Disease
Cystic Fibrosis

Healthy

Plasma concentrations detectable 28 days
post-infusion

Plasma concentrations detectable for at least
1 week post-infusion

Relatively constant plasma concentrations for
at least 10 days

~60-fold increase in plasma t1/2

50% reduction in ESR and CRP relative
to standard of care

Reduction in ‘as-needed’ use of
corticosteroids and β-agonists

Improved FEV1 and 51% reduction in
antibiotic use

Reduction in histamine response

[86–90]

Doxorubicin Human Lymphoma 2-7-fold increase in plasma t1/2 [91]

Erythropoietin Mouse Healthy ~5-fold increase in blood AUC
5.6 day RBC t1/2

~2-fold increase in 59Fe incorporation
into circulating RBC [92]

Factor IX Human Healthy ~8-fold increase in blood t12 [93]
Gentamicin Human Healthy 22 day blood t1/2 [94]
Imidocarb Mouse Parasitemia Significantly increased blood concentrations ~25% reduction in peak parasitemia [95]
Indinavir Rat Healthy 9-fold increase in plasma AUC0-inf [96]

L-Asparaginase
Mouse
Mouse
Mouse

Healthy
Healthy

Acute Lymphoblastic Leukemia

~3-fold increase in blood t1/2
9–10.6 day RBC t1/2

16-fold increase in blood t1/2
2.4–4 day blood t1/2

4–5-fold increase in duration of
maximal asparagine lowering

>10-fold increase in duration of total
asparagine suppression

Reduced ADA formation
44% increase in survival time vs.

untreated

[42,97,98]

Maltose-Binding Protein Mouse Healthy ~3-fold increase in blood t1/2 [15]

Methotrexate Mouse Healthy 3.5-fold increase in plasma t1/2
~2-fold increase in liver and spleen uptake [99]

Phenylalanine Hydroxylase Mouse Naive Detectable drug in blood for at least 10 days
post-injection vs. <6 h ~50% reduction in blood Phe vs. 25% [100]

Prednisolone Rat Healthy High drug uptake in liver [101]

Polystyrene Nanoparticles Mouse Healthy
2–3-fold increase in blood exposure

~5-fold increase in lung uptake
>50% decrease in spleen uptake

No effect on RBC survival (t1/2 = 33.5 h)
[58]
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Table 7. Cont.

Drug Species Condition PK Changes Pharmacologic Effect
(Relative to Free Drug) References

Reteplase Mouse Acute Thrombosis Blood t1/2 of ~10 h vs. minutes
No impact on RBC circulation time

~3-fold delay in time to arterial
occlusion

Complete prevention of venous
occlusion

[18]

Rhodanese Mouse Healthy 230-fold increase in t1/2
40% reduction in blood cyanide

following IV injection [102]

Tissue Plasminogen Activator Mouse
Rat

Acute Thrombosis
Acute Thrombosis

~10-fold increase in blood exposure
No changes in RBC survival

>10-fold increase in blood AUC
Minimal effects on RBC circulation

~50% lysis of pulmonary emboli
Significant reduction in mortality from

thromboembolic stroke
~80% lysis of pulmonary emboli

~80% of blood flow recovery in carotid
artery

[30–32,36,
38,39,103]

Thrombomodulin Mouse
Acute Thrombosis

Ischemic Stroke
Endotoxemia

10% of drug present in blood 2 days
post-injection vs. 1 h

No changes in RBC survival

Complete protection against jugular
vein thrombosis

~50% reduction in infarct volume and
neurological deficit

>50-fold improved potency at reduction
of pro-inflammatory cytokines

[17,20]

Urokinase Rabbit
Mouse

Healthy
Acute Thrombosis

Significant increase in blood exposure
14-fold increase in blood concentration at

30 min
No changes in RBC survival

4–5-fold increase in blood flow
following carotid artery thrombosis

~3-fold increase in blood flow following
venous thrombosis

[33,40,104]

Notes: Unless otherwise noted, comparisons of PK/PD measurements are relative to free drug. Unless explicitly stated as being RBC related (e.g., RBC survival), all measurements relate to
the PK of the therapeutic payload. Abbreviations used in table: AUC: area under the concentration vs. time curve, ESR: erythrocyte sedimentation rate, CRP: C-reactive protein, FEV1:
forced expiratory volume, ADA: anti-drug antibody, Phe: phenylalanine.
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3.1.5. ADME of RBC-Associated Drugs

Regardless of the method of attachment of drugs to carrier erythrocytes, proper analysis of PK
is complicated by the number of potential analytes. Complete characterization of PK would include
measurements of RBC-associated drug, released drug (plasma or serum), and survival of the infused
RBCs. As summarized in Table 7, despite significant interest over several decades in the use of RBCs
for prolonged drug delivery, there is relatively little standardization in bioanalytical measurements.
Nonetheless, RBC encapsulation generally leads to improvements in PK relative to free drugs and
enhanced efficacy both in animal models and in patient populations.

3.1.6. Unique Aspects of RBC PK

As highlighted above (Tables 5 and 6), PK expectations for RBCs (and drugs carried by them)
are distinct from those for small molecules, biologics, and even DDS. This is in no small part due to
their large size (6–8 µm vs. 100–200 nm for DDS), flexibility, and coating with specific markers that
prevent their premature clearance by the immune system (e.g., CD47) [105]. Under normal conditions,
RBCs will be entirely confined to the bloodstream, making the only feasible route of administration for
RBC-carried drugs via intravascular routes (e.g., intravenous and intra-arterial). This is a stark contrast
from other classes of drug, which are able to be given via many routes of administration (Table 3).
This exclusive localization in the bloodstream will minimize tissue uptake of RBC-associated drugs,
potentially eliminating off-target toxicities.

Immediately after injection of RBC-associated drugs, the drug will be exclusively localized within
the cellular component of blood (Figure 3A). This is in stark contrast to other classes of drugs, which,
in the absence of specific affinity moieties, are largely localized in the plasma. However, the system is
dynamic, and as time progresses, the drug will slowly leak out of the RBC until a pseudo-equilibrium
between cells, plasma, and tissues is reached. The rate and extent of RBC leakage is likely to be unique
to each drug and method of coupling/encapsulation.
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Most small molecule and protein therapeutics are eliminated from the circulation with half-lives of
minutes to hours, necessitating frequent dosing. While this may not be a significant concern for drugs
with good bioavailability and/or wide therapeutic indices, this is often a limiting factor in efficacy.
Approaches to extend the circulation time and to improve targeted delivery of therapeutics, such as
encapsulation in liposomes (hours–days) and conjugation to mAbs (days–weeks), have been applied
clinically with some success [108,109]. However, there is no method for improving PK approaches
the potential of coupling to RBCs, which circulate with a lifespan of 100–120 days in adult humans
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(Figure 3B). This unprecedented circulation time offers great potential for the use of RBCs as a slow
release depot to obtain constant concentrations of active drug in the body.

As summarized in Table 6, small molecule drugs are typically eliminated either via the kidney
(glomerular filtration or active tubular secretion) or by active metabolism (e.g., Cytochrome P450s).
While a drug that leaves the carrier RBC will be subjected to these traditional clearance pathways,
an encapsulated drug is subject to the disposition properties of the RBC. The elimination of RBCs is
under the control of phagocytic cells in the reticuloendothelial system (RES). These cells, particularly
in the splenic red pulp under normal conditions, sense damaged and aged RBCS and eliminate them
from the circulation. Co-opting of this clearance pathway by RBC-associated drugs would be expected
to favor uptake of drug by phagocytes.

3.2. PK of RBC-Associated Drugs—Key Considerations

Thorough analysis of PK of RBC-associated drugs requires information describing the blood
and tissue PK of the RBC-associated drug, released drug, and carrier RBCs. While this degree of
characterization may seem daunting, in reality it only requires two distinct bioassays, typically liquid
chromatography-mass spectroscopy for small molecule drugs and a method to trace infused RBCs
(e.g., 51Cr labeling).

3.2.1. Drugs Loaded inside the RBC—Effects on RBC Circulation

A common approach for loading RBCs with both small molecule drugs and protein therapeutics
is to swell the RBC in hypotonic buffer containing the drug, favoring entry of the drug into the RBC,
followed by returning the RBC to an isotonic buffer, trapping the drug inside the RBC. This process has
been shown to have adverse effects on RBC circulation time compared to ‘naïve’ RBCs in mice [97] and in
rats [84]. Nonetheless, the half-life of resealed erythrocytes (~10 days in mice following L-asparaginase
loading [97]) is still much greater than what would be anticipated for other DDSs (e.g., liposomes).
In the same study, it was shown that increasing the concentration of L-asparaginase used for RBC
loading did not have a large impact on RBC circulation time, but rather the swelling and resealing
process caused the majority of changes in RBC circulation. This is suggestive that while circulation of
carrier RBCs that had been loaded through a potentially damaging process (e.g., hypotonic preswelling)
is likely to be reduced, these carriers still present a viable option to improve the circulation time of
drugs far beyond that which is typically obtained with DDS.

3.2.2. Drugs Loaded Inside the RBC—Effects on Drug Pharmacokinetics

Once loaded into the RBC and infused into patients, the drug will initially be entirely localized
within the RBC fraction of blood. In many cases, the goal of RBC loading is to provide a long circulating
depot of drug that will be slowly released from the RBC. As such, the primary driver of free drug
exposure would be the rate of release from the RBC. Release kinetics have been broadly defined based
on the release relative to hemoglobin, which is used as a marker of hemolysis [110]. For drugs that
are released quickly from the RBC, diffusion is the likely explanation. These molecules are typically
relatively small and hydrophobic, permitting diffusion across the cell membrane. Drugs that are
released very slowly (similar kinetics to hemoglobin) are thought to only escape the RBC following the
destruction of the cell, and as such are typically polar drugs and proteins. Knowledge of release kinetics
permits identification of likely sites of release and drug PK following release (Figure 4). Release from
intact RBCs would likely manifest as a slow appearance of drug in the plasma, similar to what might be
expected from an IV infusion. Following release, the free drug would then follow its usual distribution,
metabolism, and elimination processes. On the other hand, for drugs that are not released until the RBC
is lysed, it is expected that there will be minimal appearance in plasma, but rather, drug will appear
within RES organs (spleen and liver). However, to have any effects beyond local, intracellular response,
the drug would need to be able to escape from phagocytic cells and natural clearance pathways for
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drugs (e.g., CYP450s). In this case, one would expect that drug PK would largely follow RBC PK,
with differences potentially occurring post-RBC lysis.Pharmaceutics 2020, 12, x 16 of 24 
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3.2.3. Surface Loading of RBC—Impact of Dose and Coupling Strategy

Another approach utilized for RBC-mediated drug carriage is to couple drugs to the cell surface
either via covalent binding, formation of a streptavidin-biotin bridge (or similar), or antibody binding
to RBC membrane proteins [2,17,18,36,111,112]. A general expectation for this method of coupling
would be that as the mass of drug added/RBC is increased, the circulation time would decrease due to
adverse effects on the RBC membrane and/or enhanced immune recognition of the RBC. For example,
it was shown through tracing of 51Cr-labeled RBCs that increasing the degree of RBC biotinylation led
to dramatic changes in the PK of biotinylated and streptavidin conjugated RBCs [111]. While it may be
tempting to speculate that this effect may be simply due to ex vivo manipulation of RBCs and covalent
modification of membrane proteins, others have shown that the injection of the anti-glycophorin A
mAb, Ter119 results in dose-dependent reductions in the total RBC pool [113].

However, it should be noted that the relative potency of a given coupling strategy on RBC
circulation will likely be highly dependent on the method of coupling. For example, at equivalent
loading doses of Ter119 mAb and its (Fab)2 fragment, the mAb caused more rapid elimination of
coated RBCs, likely due to the presence of the Fc fragment [16]. This serves to highlight that even when
binding the same epitope on the RBC surface, other molecular factors may impact RBC circulation.
Differences in effects on RBCs by coupling approaches can be further exacerbated when comparing
between different epitopes. For example, our group recently showed that scFv-thrombomodulin fusion
proteins directed against human RhCE did not impact RBC rigidity and fragility, while those targeted
to glycophorin A significantly increased these markers of RBC damage [114]. This suggests that
features of the molecule used to couple to the surface of the RBC (e.g., avidity, Fc fragment, epitope)
have a significant impact on the biocompatibility of the loading strategy.

3.2.4. Surface Loading of RBC—Impact of Affinity

Increasing the affinity for target epitopes is generally expected to increase residence time at the
target in the absence of confounding factors (e.g., internalization, target cell clearance, etc.), largely due
to reductions in the rate of dissociation from the target. Due to their lack of endocytic capacity and
extremely long circulation time relative to most (if not all) drugs, RBCs present an attractive system to
study this phenomenon. It is clear that providing a molecule that previously had negligible affinity
for RBCs with nanomolar or better affinity for an RBC membrane protein is capable of generating
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remarkable improvements in PK. Our group has previously demonstrated that coupling plasminogen
activators (PA, t1/2 ~ minutes) to RBCs via affinity binding [18] or streptavidin-biotin coupling [36]
permits PA to circulate with a half-life on the order of days in mice. While this example provides clarity
on what happens at an extreme end of the affinity spectrum, there are no reports on what happens at
intermediate affinity values.

Beyond simply considering equilibrium affinity for the surface of RBC, the kinetics of association
and dissociation can be critical in determining the circulation time and biodistribution of surface-coupled
therapeutics. By tuning these parameters, one can gain tighter control over the behavior of therapeutics.
For example, to maximize circulation time, it would be expected that an affinity ligand with a rapid
association rate and slow dissociation rate would be ideal, as it would favor prolonged binding to
the RBC. On the other hand, if a therapeutic rapidly dissociates from the RBC surface, it would
have the opportunity to rapidly distribute into tissues immediately downstream of the injection
site. This phenomenon underlies a recent development from our group—RBC hitchhiking. In this
approach, nanoparticles adsorbed (with no affinity ligand) onto the surface of RBCs ex vivo are taken
up rapidly and in large numbers in the first vascular bed encountered following injection (e.g., the lung
following IV dosing) [5–7,115]. Gaining an understanding of what range of equilibrium affinities
and on-/off-kinetics provide PK benefits without adversely affecting the RBC is critical in further
characterizing this method of drug loading and developing clinically viable strategies for surface
loading of RBC.

3.2.5. Surface Loading—Ex Vivo or In Vivo?

A key advantage to using affinity ligands to attach a therapeutic to the surface of RBCs is the
potential for in vivo loading, as compared to covalent conjugation and internal loading, which require
ex vivo manipulation of RBCs and reinfusion. The loading of drugs in vivo could greatly reduce the
possibility of damaging RBCs, leading to rapid elimination or severe toxicities related to hemolysis. It is
important to consider how the location of loading could affect PK of carrier RBCs and associated drugs.

Ex vivo manipulation and loading of RBCs, followed by reinfusion into patients, will result in
the entire injected dose being present on a small fraction of total RBCs in the bloodstream. On the
other hand, in vivo loading allows tuning the degree of RBC loading by adjusting the infusion rate.
For example, if the dose is administered very quickly, as an IV bolus, loading will be similar as what
would be expected for ex vivo loading. However, a very slow IV infusion, over minutes to hours,
would provide a relatively lower load on each individual RBC, but a more homogeneous distribution
across the entire RBC population, potentially leading to fewer adverse effects on the RBCs, and longer
circulation times (Figure 5).
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4. Conclusions and Other Perspectives

For almost 50 years, academic researchers have been intrigued by the potential of using autologous
RBC as a drug delivery system for a myriad of therapeutics. The initial concept of loading enzymes into
the RBC has been extended and is now applied to a diverse range of loading strategies (intracellular,
surface coupled) and therapeutic modalities (small molecules, protein therapeutics, nanoparticles).
Attachment of drugs to the RBC can lead to unprecedented changes in circulation time, biodistribution,
elimination pathways, pharmacodynamics, and immunogenicity. Therapeutics that are attached to
the surface of the RBC are able to directly interact with and transfer to the endothelium, particularly
within capillaries where the RBC is deformed and squeezes through the vessel. Recent advances
have allowed this field to move from an academic curiosity into a potentially clinically used strategy.
These include approaches for rapid ex vivo loading of RBC, development of new affinity ligands
for coupling to membrane proteins, and genetic engineering of the RBC. Despite these significant
technological advances, there is a clear gap of knowledge in many areas related to the PK/BD of
RBC-associated drugs that we hope to begin to close through careful investigation of the unique aspects
of RBC PK that we have described.
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