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Abstract: Epigenetic alterations, as a cancer hallmark, are associated with cancer initiation, progression
and aggressiveness. Considering, however, that these alterations are reversible, drugs that target
epigenetic machinery may have an inhibitory effect upon cancer treatment. The traditional drug
discovery pathway is time-consuming and expensive, and thus, new and more effective strategies
are required. Drug Repurposing (DR) comprises the discovery of a new medical indication for a
drug that is approved for another indication, which has been recalled, that was not accepted or failed
to prove efficacy. DR presents several advantages, mainly reduced resources, absence of the initial
target discovery process and the reduced time necessary for the drug to be commercially available.
There are numerous old drugs that are under study as repurposed epigenetic inhibitors which have
demonstrated promising results in in vitro tumor models. Herein, we summarize the DR process
and explore several repurposed drugs with different epigenetic targets that constitute promising
candidates for cancer treatment, highlighting their mechanisms of action.
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1. Introduction

Cancer is a disease that affects millions of citizens worldwide [1], being the second most common
cause of death after cardiovascular diseases.

Both genetic and epigenetic mechanisms play an important role in malignant transformation,
cancer initiation, tumor progression and prognosis [2]. Epigenetics comprises different modifications
in gene expression patterns which do not derive from alterations in DNA sequence and that are
reversible and heritable. The main epigenetic mechanisms described comprise DNA methylation,
chromatin remodeling and microRNA regulation (Figure 1) [2]. Of all epigenetic mechanisms,
DNA methylation is the most studied. The DNA methyltransferase enzymes (DNMTs) are responsible
for the addition of a methyl group, donated by S-adenosylmethionine (SAM), to the fifth carbon
of the cytosine of CpG dinucleotide [3]. Aberrant alteration of this mechanism, particularly DNA
hypermethylation of regulatory regions of genes, is a common feature of cancer. Examples include
Glutathione S-transferase pi 1 (GSTP1), involved in DNA protection, androgen receptor (AR), in prostate
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cancer [4,5], estrogen receptor (ER) in breast cancer and adenomatous polyposis coli (APC) in colorectal
cancer, among many others.
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Figure 1. Epigenetic Mechanisms and Epigenetic Inhibitors. This figure illustrates the epigenetic
enzymes responsible for DNA and Histone Modifications, along with illustrative inhibitors classified
according their epigenetic target.

Alongside DNA methylation, histone modifications also play a role in carcinogenesis. Histones
may endure posttranslational modifications at N-terminal tails, of which acetylation and methylation
seem to be the most relevant [6]. Histone deacetylases (HDAC) are overexpressed in more advanced
stages, for example HDAC1, HDAC2 and HDCA3 in castration-resistant prostate cancer (CRPC) [7].
Nonhistone proteins can undergo modifications by HDAC and histone acetyltransferases (HAT) [8].
Concerning histone methyltransferases (HMT), EZH2 is the most referred HMT, being responsible
for the trimethylation of lysine 27 in histone 3 (H3K27me3) [9]. LSD1, a histone demethylase (HDM),
is associated with aggressiveness and, in fact, it may form a complex with nonhistone proteins that
promote cell proliferation and tumor progression [10].

Because epigenetic alterations are associated with cancer progression/aggressiveness,
and considering that these alterations are reversible, drugs that target epigenetic enzymes may
revert those alterations and contribute to the attenuation of the malignant phenotype (Figure 1).

2. Drug Repurposing

The traditional drug discovery pathway is costly, time consuming and has a low success rate.
Considering these bottlenecks, new methodologies have been tested and the Drug Repurposing process
has emerged as an interesting approach in cancer therapy (Figure 2).Pharmaceutics 2020, 12, x FOR PEER REVIEW 3 of 18 
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Drug Repurposing (DR) refers to the process of discovery of a new medical indication for a drug
that was approved for another indication, removed from the market due to adverse events, was not
accepted for the proposed indication or failed to prove efficacy [11–13]. Different strategies may be
used to identify potential repurposing drugs, specifically, network-based strategies which include
cluster and propagation, text mining-based and semantic-based approaches [14]. DR presents several
advantages compared to the traditional drug discovery pathway (Figure 2), i.e., mainly the reduced
resources, absence of the initial target discovery process, previously assessed drug safety and the
reduced time necessary for the drug to reach the market [13,14]. Nevertheless, DR also entails several
challenges, including the choice of the right approach to investigate the repurposing potential of a drug.
However, considerations involving the intellectual and economic property of the drug, the existence of
available data regarding the compound structure, mechanism of action, efficacy and adverse events
comprise the most challenging characteristics of this process [14].

There are several examples of drugs that were repurposed into new therapeutic approaches.
Sildenafil is a drug that was originally developed for the treatment of coronary artery disease but
which failed to pass on phase II clinical trials. One of the side effects verified upon treatment with
Sildenafil was penile erection. Hence, this drug was repurposed by the FDA for the treatment of erectile
dysfunction, in 1998 [11,14,15]. Other drugs have been repurposed for cancer therapy; one example is
mebendazole, that was original indicated for the treatment of helminthic infections but was repurposed
for the treatment of cancer, particularly, metastatic adrenocortical carcinoma and refractory metastatic
colon cancer [14,16,17].

In Oncology, epigenetic alterations are becoming a therapeutic target. Food and Drug Administration
(FDA) has approved two epigenetic modulators for cancer therapy that are repurposed drugs:
5-azacytidine and 5-aza-2′-deoxycytidine [14]. These drugs were approved due to their antimetabolic
effects, but it was found that they were incorporated into DNA and inhibited DNA methylation [18–20].
Therefore, both were approved by the FDA for the treatment of myelodysplastic syndromes.

DR is an important tool for novel, targeted therapies, and in this review, we will explore several
repurposing drugs for epigenetic targets that might be promising candidates for Prostate Cancer
(PCa) treatment.

3. DNMT Inhibitors

DNMT inhibitors (DNMTi) are the most studied epigenetic inhibitors. Presently, there are several
drugs that can be repurposed for DNMTi (Table 1).

Chlorogenic acid is a coffee polyphenol that has been shown to inhibit DNMT1. Its inhibitory effect
is due to a chemical transformation resulting in increased formation of S-adenosyl-L-homocysteine
(SAH) [21]. Using breast cancer cell lines, it was demonstrated that chlorogenic acid inhibits DNMT1,
curbing DNA methylation [21]. In addition to in vitro models, the anticancer potential of this natural
compound has been investigated in clinical trials involving patients with lung cancer (NCT03751592,
recruiting), advanced solid tumors (NCT02245204, NCT02136342) and glioblastoma (NCT02728349).
The natural compound harmine inhibited DNMT1 in acute myeloid leukemia cell lines through
decreased DNMT1 gene expression, thus promoting p15 promoter demethylation. It was also shown to
have nonepigenetic effects, causing reduced cell proliferation and cell cycle arrest at G0/G1 phase [22,42].
Furthermore, laccaic acid was found to inhibit DNMT1 activity and promote the reactivation of genes
silenced by promoter methylation in breast cancer cell lines [29] and in RGS6-/- mice [28]. Mahanine
is a plant-derive alkaloid that inhibits DNMT1 and DNMT3B through proteasomal degradation [31].
In PCa cell lines, this compound inhibited DNMT activity, reducing RASSF1A promoter methylation
and inducing re-expression [30,31].
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Table 1. Noncancer drug repurposing candidates for DNMT inhibition.

Drug Approved for Epigenetic Target Cancer Model

Chlorogenic Acid Natural Compound (not approved) DNMT1 Breast Cancer [21]

Harmine Natural Compound (not approved) DNMT1 Acute Myeloid Leukemia [22]

Hydralazine Hypertension DNMT1
T-Cell Leukemia [23], Breast Cancer

[24,25], Bladder Cancer [24], Cervical
Cancer [26], Prostate Cancer [27]

Laccaic Acid A Natural Compound (not approved) DNMT1 Breast Cancer [28,29]

Mahanine Natural Compound (not approved) DNMT1, DNMT3B Prostate Cancer [30,31]

Mithramycin A Hypercalcemia, especially due to
malignancies DNMT1 Lung Cancer [32]

Nanaomycin A Quinone antibiotic (not approved) DNMT3B
Lung Cancer, Colon Cancer [33],

T-Cell Acute Lymphoblastic Leukemia,
Burkitt Lymphoma [34]

Olsalazine Inflammatory bowel disease and
ulcerative colitis DNMT Cervical Cancer [35]

Procainamide Cardiac arrythmias DNMT1
Prostate Cancer [36], Breast Cancer,

Bladder Cancer [37], Colon Cancer [38],
Nonsmall Cell Lung Cancer [37]

Procaine Infiltration anesthesia, peripheral
nerve and spinal block DNMT1, DNMT3A

Breast Cancer [39], Hepatocellular
Carcinoma [40], Nonsmall Cell Lung

Cancer [37], Gastric Cancer [41]

The local anesthetic procaine is another interesting candidate for DR in cancer. It is a nonnucleoside
inhibitor of DNMT1 and DNMT3A that binds to the binding pocket of the enzyme, disrupting the
attachment of DNMTs to DNA [41]. In breast cancer cell lines, procaine induces DNA demethylation
in CpG islands, triggering a 40% reduction in 5-methyl-cytosine (5mC) content and the re-expression
of epigenetically-silenced genes [39]. In other tumor models, particularly gastric cancer, hepatocellular
carcinoma (HCC) and nonsmall cell lung cancer (NSCLC), procaine also demonstrated nonepigenetic
effects such as cell proliferation inhibition, apoptosis enhancement [41], cell cycle arrest [40] and
downregulation of Wnt signaling pathway activation [37]. The FDA-approved drug procainamide is a
derivative of procaine, used in the treatment of cardiac arrythmia. It was repurposed as a DNMT1
inhibitor. Procainamide interacts with the enzyme binding pocket and reduces the affinity of DNMT1
for hemimethylated DNA and SAM [38]. This drug inhibits DNMT1 activity, reverses CpG island
methylation, decreasing 5mC content, and reduces gene-specific methylation at promoter sites [38].
In NSCLC, PCa, breast and bladder cancer, it induces the re-expression of methylated silenced genes,
respectively, WIF-1 [37], GSTP1 [36], ER, RARβ, p12 and p16 [24]. Hydralazine is an arterial vasodilator
approved by the FDA for the treatment of severe hypertension. It has been studied in recent years
as a DNMTi in several tumor models. Hydralazine is a nonnucleoside DNMTi that interacts with
the binding pocket of the enzyme with high affinity due to the presence of Lys162 and Arg24 [43,44].
Deng et al. [23] have shown that hydralazine can decrease DNMT1 and DNMT3A mRNA expression
and protein levels in T cell leukemia cell lines. The effect of hydralazine in DNMT1 has also been studied
in other tumor models. It was demonstrated that hydralazine induces DNA demethylation, decreases
DNMT activity and promotes RARβ, p21, p16 and APC gene expression in breast, bladder and cervical
cancer cell lines, respectively [24–26]. Additionally, in cervical cancer cell models, this repurposed
drug also showed nonepigenetic effects, particularly cell growth inhibition, cell cycle arrest at S phase
and apoptosis enhancement [26]. In PCa, Graça et al. [27] showed that hydralazine decreases DNMT1
and also DNMT3A/3B mRNA expression, decreases DNMT1 protein levels, restores AR and p21
expression and inhibits the Epidermal Growth Factor Receptor (EGFR) bypass signaling pathway [27].
Additionally, clinical trials are ongoing to investigate the demethylating potential of hydralazine in
combination with HDACi valproic acid. This epigenetic combination is being tested in patients with
several malignancies, including lung (NCT00996060), cervical (NCT00404326) and locally advanced
breast (NCT00395655) cancers, as well as different solid tumors which are refractory to current therapies
(NCT00404508). Moreover, the FDA-approved drug, olsalazine, a nucleoside DNMT inhibitor was first
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approved for the treatment of inflammatory bowel disease and ulcerative colitis, and later (2014) was
shown to inhibit DNMT activity in cervical cancer cell lines [35].

Finally, some antibiotics are also being studied. Mithramycin A has the potential to inhibit DNMT.
Lin et al. [32] studied the effect of mitramycin A in lung cancer cell lines and found that it decreases
CpG island methylation, interacts with the catalytic pocket of DNMT1 inhibiting its activity, decreases
DNMT1 protein levels and induces re-expression of silenced genes [32]. Nanaomycin A inhibits
DNMT3B through molecular docking into the active site of the enzyme, which is stabilized by interaction
with specific amino acids (Glu697, Arg731, Arg733) [33]. In liquid and solid tumors, nanaomycin A
inhibits DNMT3B activity and reverses CpG methylation, thus reactivating silenced genes [33,34].

4. Inhibitors of Histone Modulators

4.1. HDAC Inhibitors

In PCa, HDAC enzymes are overexpressed, and due to the heterogeneity among subclasses, it is
challenging to develop new drugs that target these epigenetic enzymes. Nonetheless, several approved
drugs have been studied as potential HDAC inhibitors (HDACi) (Table 2).

Table 2. Noncancer drug repurposing candidates for HDAC inhibition.

Drug Approved for Epigenetic Target Cancer Model

Apicidin Antiprotozoal
(not approved)

HDAC3,
HDAC4,
HDAC8

Acute Promyelocytic Leukemia [45], Lung
Cancer, Colon Cancer, Pancreatic Cancer [46],

Cervical Cancer [47] Breast Cancer [48],
Endometrial Cancer [49], Ovarian Cancer [50],

Oral Squamous Cell Carcinoma [51]

Artemisin Malaria
HDAC1,
HDAC2,
HDAC6

Breast Cancer [52]

Aspigenin Natural Compound
(not approved) HDAC class I Prostate Cancer [53]

Carbamazepine Control of psychomotor
or focal seizures

HDAC3,
HDAC6,
HDAC7

Breast Cancer [54], Liver Cancer [55],
Colon Cancer [56]

Ginseng Natural Compound
(not approved) HDAC Nonsmall Cell Lung Cancer [57]

HC Toxin Natural Compound
(not approved) HDAC Breast Cancer [58], Neuroblastoma [59]

Psammaplin A Natural Compound
(not approved) HDAC1, HDAC6, SIRT1 Lung Cancer [60], Breast Cancer [61,62],

Endometrial Cancer [63], Cervical Cancer [64]

Sodium Butyrate Anti-inflammatory HDAC1 Gastric Cancer [65], Breast Cancer [66],
Prostate Cancer [67]

TSA Antifungal antibiotic HDAC class I,
II and SIRT6

Breast Cancer [68], Leukemia [69], Esophageal
Squamous Carcinoma [70], Prostate Cancer

[49,71–73], Pancreatic Cancer [74], Colon
Cancer [75], Hepatocellular Carcinoma [76]

Apicidin is a fungal metabolite that has been repurposed as an inhibitor of HDAC3, HDAC4
and HDAC8. Apicidin reduces HDAC3 and HDAC4 expression and activity, leading to increased
histone H3 and H4 acetylation in endometrial and ovarian cancer cell lines [50,77]. In these models,
it was also shown that apicidin has nonepigenetic effects, specifically, decreasing cell proliferation,
enhancing apoptosis, and inhibiting migration and invasion [50,77]. In the ovarian cancer cell line
SKOV-3, it inhibits HDAC4 binding to Sp1 at RECK gene promoter [50]. Furthermore, it was also
demonstrated that apicidin inhibits HDAC8, reducing its expression, increasing histone H4 acetylation,
inhibiting cell growth and inducing apoptosis in an oral squamous cell carcinoma cell line [51].
In an in vivo mouse model, it was demonstrated that this repurposed drug inhibits tumor growth
and decreases HDAC8 expression [51]. Moreover, apicidin also demonstrated an inhibitory effect
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on DNMT1 activity [46,47,78], and it was shown to be capable of inducing nonepigenetic effects,
specifically, inhibition of cell proliferation, increase in apoptosis rate, upregulation of p21 and p27
expression, downregulation of cyclin D1 and cyclin E gene expression and cell cycle arrest [45,48].
Furthermore, Pandey and colleagues [53] demonstrated that the natural compound aspigenin can be
repurposed as an HDAC class I inhibitor. In PCa cell line PC-3, it was disclosed that this compound
could inhibit class I HDACs, specifically HDAC1 and HDAC3 activity, inducing histone H3 and H4
acetylation, promoting cell cycle arrest and upregulating p21 gene expression. Pandey and colleagues
also verified the effect of aspigenin in an in vivo model, in which the compound reduced class I HDAC
activity, decreasing HDAC1 and HDAC3 protein levels, reducing tumor size, promoting apoptosis and
upregulating p21 gene expression along with Bcl-2 downregulation [53]. Ginseng is a plant extract
extensively used in traditional Chinese Medicine that has been recently proposed as HDACi. In fact, in
a NSCLC cell line, ginseng inhibited HDAC activity, upregulated p21 gene expression and promoted
cell death [57]. Furthermore, Helminthosporium carbonum (HC)-toxin, a cyclic tetrapeptide derived from
a plant, has been identified as HDAC inhibitor in different cell models. In breast cancer cell lines,
HC-toxin inhibits HDAC activity and promotes nonepigenetic effects, specifically, cell proliferation
inhibition, cell death and cell cycle arrest at G2/M phase [58]. Additionally, in a neuroblastoma 2D cell
culture model, HC-toxin inhibited HDAC activity and induced histone H4 acetylation [59]. The sponge
Pseudoceratina purpurea derivative Psammaplin A can be reduced to its monomers inside the cells due
to the presence of disulfide bounds. These monomers, which have thiol groups, are key factors for the
inhibition HDAC activity [61]. Psammaplin A inhibits HDAC1 and HDAC6 activity, being more potent
against HDAC1, reducing HDAC1 protein levels [61]. It also increases histone H3 and H4 acetylation
and transcript levels [63,64]. In addition, this compound has also demonstrated nonepigenetic effects,
in particular, cell and tumor growth inhibition [60], p21 expression upregulation, inhibition of Rb,
cyclins and cyclin-dependent kinase (CDK) gene expression, cell cycle arrest [63] and also stimulation of
morphological changes [64]. Kim et al. [62] demonstrated that psammaplin A, at nanomolar levels,
also inhibited sirtuin 1 (SIRT1) activity. In breast cancer cell lines, Kim and colleagues showed that this
compound reduces SIRT1 enzymatic activity and protein levels, increases p51 acetylation, reduces
nuclear levels of SIRT1 and discloses nonepigenetic effects, specifically, cell growth inhibition and cell
cycle arrest at G2/M phase [62].

The antimalarial drug artemisin has been repurposed as an HDAC1, HDAC2 and HDAC6
inhibitor. In breast cancer cell line MCF-7, Kumari et al. [52] demonstrated that artemisin inhibits
HDAC1, HDAC2 and HDAC6 activity, and displays nonepigenetic effects, including inhibition of
cell proliferation, migration and invasion, and apoptosis enhancement [52]. Carbamazepine is an
FDA-approved drug for the control of psychomotor or focal seizures, and, in recent years, it has been
investigated as an HDACi. This drug inhibits HDAC activity and presents nonepigenetic effects,
causing cell growth inhibition, increment of apoptosis rate and re-expression of silenced genes [56].
In breast cancer cell lines, carbamazepine inhibits HDAC6 activity, increases Hsp90 acetylation, induces
HER2 protein degradation and upregulates p21 gene expression [54]. On the other hand, in liver
cancer cell lines, carbamazepine inhibits HDAC3 and HDAC7 and induces histone H4 acetylation [55].
Sodium butyrate is a short-chain fatty acid with anti-inflammatory proprieties that inhibits HDAC1.
In solid tumor models (breast, prostate and gastric cancer), sodium butyrate increased histone H2B
and H4 acetylation and demonstrated nonepigenetic effects, particularly, inhibition of cell proliferation,
cell cycle arrest at G1/G2 phase and increased apoptosis [65–67]. Moreover, trichostatin A (TSA),
an antifungal antibiotic with pan-HDACi activity is effective in several tumor models at the nanomolar
level. TSA inhibits HDAC activity [69], downregulates HDAC1 expression [75], increases histone
H4 [69] and estrogen receptor (ER) acetylation in breast cancer cell lines [76], increases histone H3 lysine
9 and lysine 27 acetylation [76] and upregulates p21, p27 and p57 expression in colon cancer cell lines [75]
Additionally, in PCa, TSA increases histone H4 lysine 16 acetylation, particularly in CRPC cell lines [73],
and affects p53 acetylation [49]. In addition, TSA presents nonepigenetic effects, including decreased
cell proliferation [68,74], increased cell death [72,75] with an increase in active caspase-3 levels [71],
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increased hypoxic responses [74], downregulation of cyclin D1 gene expression [71], cell cycle arrest at
G1 phase, increased expression of Bax gene and downregulated Bcl-2 gene expression and decreased
phosphorylation of Akt and ERK proteins [70]. There is an ongoing clinical trial (NCT03838926)
recruiting patients with hematological malignancies to investigate the anticancer effectiveness of TSA.

4.2. HAT, HMT, HDM and BET Inhibitors

In recent years, HAT, HMT, HDM and BET inhibitors have gained interest from the
scientific community; several drugs have shown promise as repurposed inhibitors of these histone
modulators (Table 3).

Table 3. Noncancer drug repurposing candidates for HAT, HMT, HDM and BET inhibition.

Drug Approved for Epigenetic Target Cancer Model

Anarcadic Acid Anti-inflammatory and
radio-sensitization activities Ep300 and Tip60

Cervical Cancer [79], Myeloid
Leukemia, T-Cell Lymphoma,

Lung Cancer, Prostate Cancer [80]

Clorgyline MAO inhibitor LSD1 Bladder Cancer, Colon Cancer,
Leukemia [81]

Garcinol Antioxidant (not approved) Ep300 and KAT2B
Cervical Cancer [82], Breast Cancer
[83], Hepatocellular Carcinoma [84],

Esophageal Carcinoma [85]

Geranylgeranoic Acid Natural Compound (not approved) LSD1 Neuroblastoma [86]

Nitroxoline Urinary antibacterial agent BRD4 Mixed-Lineage Leukemia [87]

Pargyline Irreversible selective MAO-B
and antihypertensive LSD1 Prostate Cancer [88]

Plumbagin Natural Compound (not approved) KAT3B/p300 Liver Carcinoma [89]

Ribavirin RSV infections and Hepatitis C EZH2 Solid Tumors [90–92]

Tranylcypromine
Depression, Dysthymic disorder,
atypical depression, panic and

phobic disorders
LSD1

Glioblastoma Multiforme [93],
Sarcomas [94], Embryonal

Carcinoma [95]

Several natural compounds have been investigated as repurposed histone modulators inhibitors.
Anacardic acid, an extract from cashew nutshell, showed anticancer and anti-inflammatory properties.
It was found to have HATi properties, specifically acting as a p300 and Tip60 inhibitor at nanomolar
and micromolar levels [79]. Sun and colleagues demonstrated that anacardic acid inhibits Tip60
HAT activity, thus curbing ATM acetylation and sensitizing tumor cells to the cytotoxic effect of
radiation [96]. Moreover, in several cell lines derived from liquid and solid tumors, anacardic acid
inhibited p300 HAT activity, along with showing nonepigenetic effects, notably, the inhibition of
IkBα and NF-kB activation, prevention of p65 acetylation and its nuclear translocation, potentiation
of apoptosis via TNF-induced caspase activation and downregulation of the expression of several
genes involved in invasion and angiogenesis [80]. Garcinol is a natural compound with antioxidant
properties that showed promising results as a repurposed HATi, specifically, through p300 and KAT2B
inhibition [82,85]. In several solid tumors, particularly, esophageal, hepatocellular, breast and cervical
cancers, garcinol inhibits p300 levels and activity [85] alongside KAT2B inhibition [82], and reduces
histone H3 lysine 18 acetylation [83]. On the other hand, garcinol depicts nonepigenetic effects, namely,
cell cycle arrest, apoptosis enhancement, migration and invasion inhibition, decreased tumor cell
proliferation [85], impaired angiogenesis [84] and inhibition of the activation of intracellular signaling
pathways (e.g., TGFβ [85] and STAT3 [84]). In addition, plumbagin, a natural compound derived from
Plumbago zeylanica has been repurposed as a noncompetitive p300 inhibitor. In a liver cancer cell line,
plumbagin inhibited p300 HAT activity, hence preventing p53 acetylation; it also decreased histone
H3 and H4 acetylation and showed nonepigenetic effects, specifically, enhancement of apoptosis [89].
Sakane et al. demonstrated that the natural compound geranylgeranoic acid (GGA) is a LSD1 inhibitor.
In a neuroblastoma cell line, it was demonstrated that GGA increases histone H3 lysine 4 di-methylation,
upregulates NTRK2 gene expression and inhibits tumor cells proliferation [86].
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Furthermore, clorgyline and pargyline, both monoamine oxidase (MAO) inhibitors, have been
repurposed as LSD1 inhibitors for solid and liquid tumors. In 2013, Han et al. investigated the effect
of clorgyline in leukemia, colon and bladder cancer cell lines. They demonstrated that clorgyline
inhibits LSD1 activity and decreases histone H3, lysine 4 mono and di-methylation, thus promoting
an open chromatin state and the re-expression of silenced genes [81]. Additionally, in PCa cell line
LNCaP, pargyline inhibits LSD1 activity and reduces histone H3 lysine 4 and lysine 9 di-methylation,
as well as showing nonepigenetic effects, including pargyline-mediated upregulation of E-cadherin
expression, along with downregulation of N-cadherin and vimentin expression, hence preventing
epithelial-mesenchymal transition, migration and invasion [88].

Nitroxoline is an FDA-approved drug for the treatment of urinary infections which has been
repurposed as BETi, with selectivity for BRD4. Nitroxoline occupies the acetylated lysine pocket of
BRD4, preventing binding to acetylated lysine residues [87]. Therefore, in mixed-lineage leukemia
cell lines, nitroxoline inhibited binding of BRD4 to acetylated histone H4 at a nanomolar level [87].
Ribavirin is an antiviral agent that blocks nuclei acid synthesis. It was approved by FDA for treatment
of respiratory syncytial virus (RSV) infections and Hepatitis C. However, in recent years, ribavirin
has gained interest as an HMTi, specifically, an EZH2 inhibitor. Ribavirin reduces EZH2 expression,
at transcript and protein levels, as well as its activity [91,92], thereby preventing histone H3 lysine
27 trimethylation in numerous solid tumors [92]. Additionally, this antiviral agent possesses several
nonepigenetic effects, including inhibition of tumor cell proliferation [92], downregulation of activation
of several signaling pathways components (eIF4E, mTOR, ERK) [91], cell cycle arrest, increase in
apoptosis, inhibition of migration and invasion. In an in vivo model, it reduced tumor growth and
dissemination, improving the survival rate [90]. Different clinical trials have explored the potential
of ribavirin for cancer treatment (NCT01056757, NCT01268579, NCT00559091). In a clinical trial
involving patients with acute myeloid leukemia (NCT01056523), preliminary results showed that this
compound was effective in reducing tumor cells growth, being well tolerated by patients. Moreover,
tranylcypromine, a nonselective and irreversible MAO inhibitor approved by FDA for the treatment of
depression, dysthymia, panic and phobia disorders, has been repurposed as LSD1 inhibitor. It has been
shown that tranylcypromine inhibits LSD1 activity, reduces histone H3 lysine 4 di-methylation and
increases histone H3 methylation [93–95]. The antineoplastic effect of tranylcypromine was investigated
in clinical trials for leukemia (NCT02717884) and myelodysplastic syndrome (NCT02273102).

5. DNMT and HDAC Dual Inhibitors

Among epigenetic targets, DNMT and HDAC enzymes are the most studied. In cancer, altered
DNMT and HDAC expression are linked together, driving downregulation of tumor suppressor gene
expression [97]. Therefore, drugs that target both DNMT and HDAC enzymes could be an alternative
approach to single target agents, with improved efficacy (Table 4).

Table 4. Noncancer drug repurposing candidates for dual inhibition of DNMT and HDAC.

Drug Approved for Epigenetic Target Cancer Model

Berberine Parasitic and fungal infections HDAC class I, II, IV and
DNMT1, DNMT3A

Prostate Cancer [98], Multiple Myeloma
[99], Lung Cancer [100]

Parthenolide Anti-inflammatory
(not approved) HDAC1 and DNMT Breast Cancer [101,102], Leukemia [103],

Myeloma [104], Colon Cancer [102]

Resveratrol Natural Compound
(not approved) HDAC and DNMT1 Nonsmall Cell Lung Cancer [105], Breast

Cancer [106,107], Thyroid Cancer [108]

Berberine is a natural compound used for the treatment of parasitic and fungal infections which has
been repurposed as DNMT and HDAC dual inhibitor [109]. Regarding DNMT inhibition, in a multiple
myeloma cell line, berberine downregulated DNMT1 and DNMT3A gene expression and activity,
restoring p53 expression through DNA hypomethylation [99]. Moreover, in a 2D lung cancer cell model,
berberine showed strong inhibition of class I and II HDACs, downregulating gene expression and



Pharmaceutics 2020, 12, 410 9 of 16

increasing histone H3 and H4 acetylation [100]. Additionally, berberine presents nonepigenetic effects:
reduced cell proliferation, increased cell apoptosis, cell cycle arrest and inactivation of EGFR signaling
pathway [98–100]. Parthenolide, also a natural compound, has anti-inflammatory properties and has
been reported as HDACi and DNMTi in several tumor models. Indeed, parthenolide downregulates
HDAC1 gene expression [104], induces HDAC1 proteosomal degradation, reducing its activity,
and increases histone acetylation [101,102,110]. Moreover, this compound prevents Sp1 binding to
DNMT1 promoter region, impairing its expression and activity, upregulates the expression of silenced
genes and promotes a decrease in DNA methylation levels [103]. Additionally, parthenolide discloses
nonepigenetic effects, including induction of apoptosis, cell cycle arrest, tumor growth inhibition
and inactivation of several intracellular signaling pathways (NF-kB, STAT, MAPK) [101,103,104,110].
Furthermore, the natural compound resveratrol has been studied as HDACi and DNMTi. Resveratrol
fits into the binding pocket of HDAC enzymes and, due to interaction with the zinc ion, inhibits
HDAC activity [111]. In a breast cancer cell model, this compound inhibited HDAC and DNMT1
activity, decreasing histone H3 lysine 27 methylation and increasing its acetylation status [106,107].
Additionally, in a 2D thyroid cancer cell model, this compound downregulated DNMT gene expression
and demethylated CpG sites at promoter regions [108]. Resveratrol enhances activating histone marks,
reduces repressive histone marks [106] and induces gene promoter demethylation [105], upregulating
the expression of silenced tumor suppressor genes (BRCA1, p53, p21). Moreover, the effect of resveratrol
as a repurposed cancer drug was also investigated in clinical trials (NCT00256334, NCT01476592,
NCT00433576).

6. Conclusions and Future Perspectives

The previously cited studies demonstrate that old drugs can be reused for new clinical applications,
thus broadening their previously intended application (Supplementary Tables S1–S4). This is, indeed,
a strength, since safety and pharmacokinetic profiles are already available, which fast-tracks their use
in new clinical settings. Another advantage is that epigenetic mechanisms are shared across different
tumour models, implying that their use can be widespread. Examples include DNMTi Hydralazine,
Mahanine, Procainamide, HDACi TSA and Apicidin, and dual inhibitor Berberine. These compounds
have been reported in the literature as being effective in different tumor models and, hence, seem to be
the most promising compounds for further exploitation. Although the specific interactions between
repurposed drugs and epigenetic enzymes are common to all tumour models, epigenetic inhibition
effects might be diverse. Aberrant epigenetic mechanisms cause specific alterations in gene expression,
cell cycle and proliferation according to tumour model, which might differentially impact on gene
expression patterns.

However, most studies used a small range of drug concentrations in a limited number of cell lines,
and mainly in 2D settings, thus failing to demonstrate efficacy in more complex models such as 3D
culture and in vivo assays. In these 2D models, cells grow in synthetic plastic surfaces, which represents
a highly reductionist model due to the loss of extracellular matrices (ECM), cell-cell communication,
differentiation and polarization [112]. Therefore, more appropriate and complex cellular models are
required to better represent human physiology and disease, such as 3D cell models. These in vitro
models include 3D spheroids, organotypic cultures or organ-on-a-chip platforms [113]. The best model
to be implemented for drug screening of solid human tumors seems to be 3D spheroids, which provide
several features that mimic in vivo tissues such as 3D geometry, physical, chemical and biological
gradients, cell stratification and functional differentiation [113]. Moreover, PCa development and
progression are dependent on interactions between epithelial and stromal cells [114]. Consequently,
stromal cells could influence the response of tumor epithelial cells to certain drugs and vice-versa.
Therefore, 3D cell culture models that combine stromal and epithelial prostate cell lines (coculture
models) are better suited to verify drug efficacy more accurately, because they represent an environment
that is more closely related to an in vivo model. Thus, exploring the anticancer properties of repurposed
drugs in those conditions seems to be a prerequisite before moving to in vivo models. Nevertheless,
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DR provides a novel framework for faster and, hopefully, less expensive development of therapies
against the pervasive epigenetic alterations in human cancer which, until now, have mostly remained
unexplored as effective therapeutic targets.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/12/5/410/s1;
Table S1: Description of several noncancer drug repurposing candidates for DNMT inhibition; Table S2: Description
of several noncancer drug repurposing candidates for HDAC inhibition; Table S3: Description of several noncancer
drug repurposing candidates for HAT, HMT, HDM and BET inhibition; Table S4: Description of several noncancer
drug repurposing candidates for DNMT and HDAC dual inhibition.
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