
## Supplementary Materials: $\pi$ - $\pi$ Stacked Poly( $\epsilon$ -caprolactone)-b-poly(ethylene glycol) Micelles Loaded With Photosensitizer for Photodynamic Therapy

Yanna Liu, Marcel H.A.M. Fens, Bo Lou, Nicky C.H. van Kronenburg, Roel F.M. Maas-Bakker, Robbert J. Kok, Sabrina Oliveira, Wim E. Hennink and Cornelus F. van Nostrum \*

Scheme S1. Synthesis and Cy7 labeling of P(CL<sub>18</sub>-TTC<sub>7.5</sub>)-PEG [1].



**Figure S1.** Thermograms of benzyl 2,2-bis(hydroxymethyl)propionate (A) and benzyl 5-methyl-2-oxo-1,3-dioxane-5-carboxylate (before (green line) and after (blue line) recrystallization) (B), recorded by DSC.



**Figure S2.** <sup>1</sup>H/<sup>13</sup>C NMR spectra of the benzyl 2,2-bis(methylol)propionate intermediate (A, B) and benzyl 5-methyl-2-oxo-1,3-dioxane-5-carboxylate (*i.e.*, TMC-Bz) (C, D).

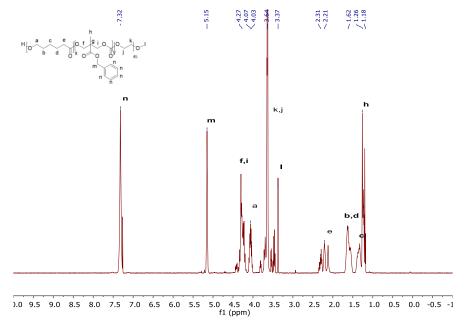



Figure S3. ¹H NMR spectrum of P(CL-TMC-Bz)-PEG. ¹H-NMR (600 MHz, CDCl₃): δ 7.34 (m, CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>), 5.15 (s, <u>CH</u><sub>2</sub>C<sub>6</sub>H<sub>5</sub>), 4.30–4.05 (m, COO<u>CH</u><sub>2</sub>C<u>CH</u><sub>2</sub>OCO, COCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>O), 3.64 (m, PEG protons), 3.38 (s, 3H, <u>CH</u><sub>3</sub>O), 2.30 (m, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>COO), 1.62 (m, CH<sub>2</sub><u>CH</u><sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.34 (m, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.27-1.21 (m, OCH<sub>2</sub>C<u>CH<sub>3</sub></u>).

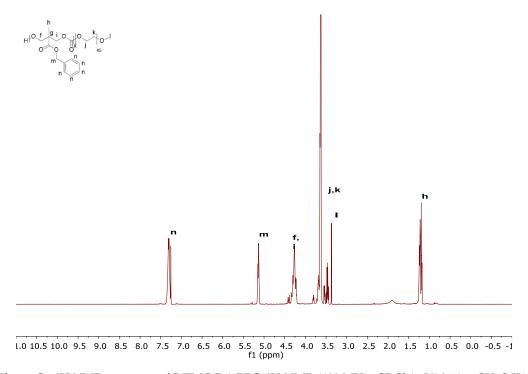



Figure S4. <sup>1</sup>H NMR spectrum of P(TMC-Bz)-PEG. <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.34 (m, CH<sub>2</sub><u>C<sub>6</sub>H<sub>5</sub></u>), 5.15 (s, <u>CH</u><sub>2</sub>C<sub>6</sub>H<sub>5</sub>), 4.30–4.05 (m, COO<u>CH</u><sub>2</sub>C<u>CH</u><sub>2</sub>OCO, COCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>O), 3.64 (m, PEG protons), 3.38 (s, 3H, <u>CH</u><sub>3</sub>O), 1.28 (m, OCH<sub>2</sub>C<u>CH</u><sub>3</sub>).

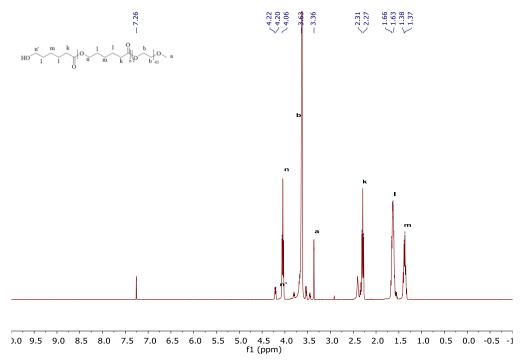



Figure S5. <sup>1</sup>H NMR spectrum of PCL-PEG. <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>): δ 4.29–4.00 (m, COO<u>CH2</u>, CH2<u>CH2</u>OH), 3.64 (m, PEG protons), 3.37 (s, <u>CH3</u>O), 2.29 (m, CH2CH2<u>CH2</u>COO), 1.66 (m, CH2<u>CH2</u>CH2CH2), 1.38 (m, CH2CH2<u>CH2</u>CH2CH2).

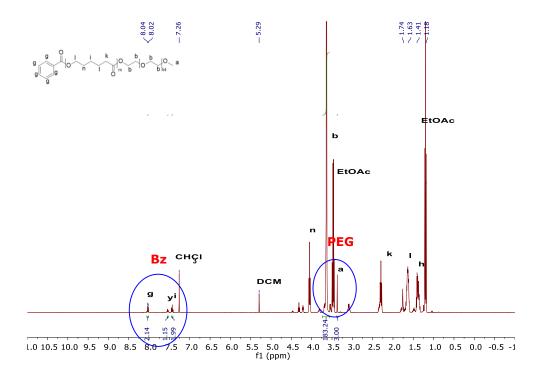
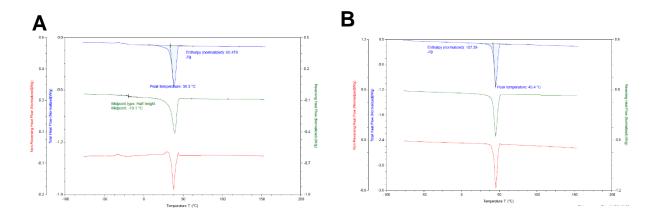
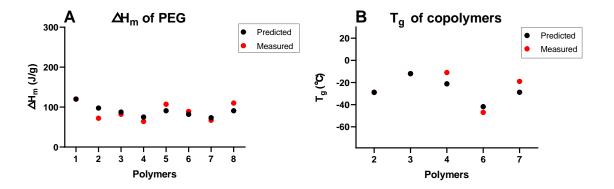
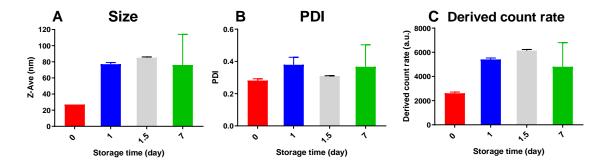
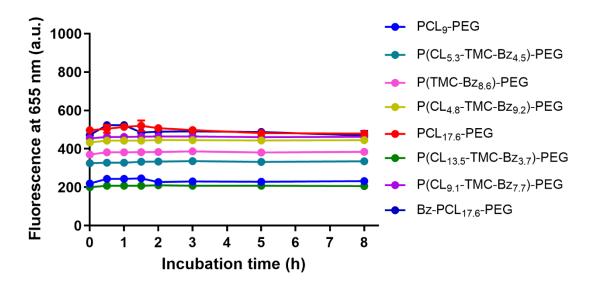
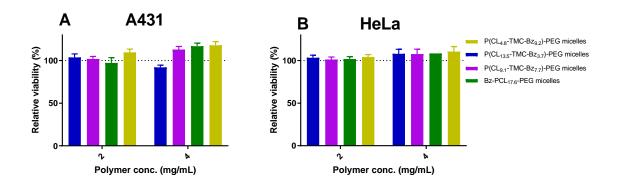




Figure S6. ¹H NMR spectrum of Bz-PCL-PEG. ¹H-NMR (600 MHz, CDCl₃):  $\delta$  8.0 (d, 2H, aromatic CH), 7.53 (t, 1H, aromatic CH), 7.41 (t, 2H, aromatic CH), 4.29 (t, 2H, C<sub>6</sub>H<sub>5</sub>COO<u>CH₂</u>), 4.20–4.00 (m, COO<u>CH₂</u>, CH<sub>2</sub>CH<sub>2</sub>OH), 3.64 (m, PEG protons), 3.37 (s, <u>CH₃</u>O), 2.29 (m, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>COO), 1.66 (m, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.38 (m, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>).

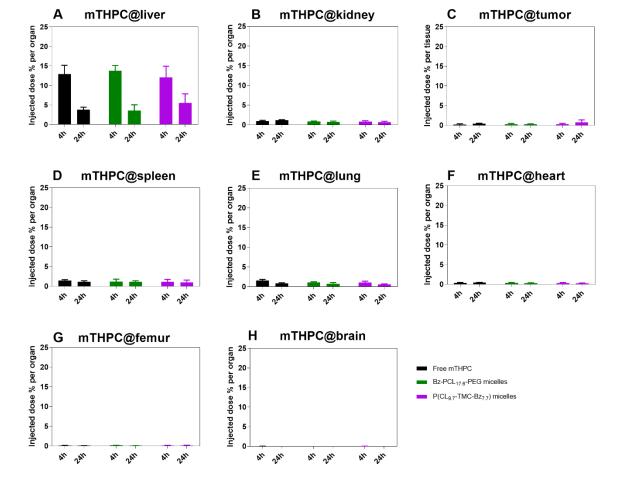


**Figure S7.** Thermograms of P(CL<sub>9.1</sub>-TMC-Bz<sub>7.7</sub>)-PEG (Entry 7, table 1) and PCL<sub>17.6</sub>-PEG (Entry 5, table 1), recorded by DSC.



Figure S8. (A) Measured  $\triangle H_m$ 's of PEG in the synthesized block copolymers (red dots), corrected for the weight fraction of PEG of the block copolymer. The predicted  $\triangle H_m$ 's (black dots) were obtained by using mPEG-OH (measured  $\triangle H_m$  of 182 J/g and the weight fraction of PEG in the block copolymers) as the reference. (B) Measured  $T_g$ 's of the synthesized P(CL-TMC-Bz)-PEG copolymers (red dots) with random CL and TMC-Bz sequence. Predicted  $T_g$ 's (black dots) were calculated based on FOX equation in which  $T_g$  of -60 °C for high molecular weight PCL<sub>80</sub> [2] and  $T_g$  of -12 °C for P(TMC-Bz) (obtained from P(TMC-Bz<sub>8.6</sub>)-PEG, Entry 3, table 1) were used as the reference for the prediction. The numbers of the polymers on the x-axis correspond to the same entries in table 1.




**Figure S9.** Size (A), PDI (B) and derived count rate (C) of PCL<sub>9</sub>-PEG micelles in PBS after storage at room temperature over a period of 7 days.



**Figure S10.** Fluorescence intensity ( $\lambda_{ex}$  420 nm,  $\lambda_{em}$  655 nm) as a function of time at 37 °C in PBS; micelles of 10 mg/mL with 5 wt% loading amounts were prepared and diluted 10× in PBS, to obtain the final mTHPC concentration of 40  $\mu$ g/mL.



**Figure S11.** Cytotoxicity by MTS assay of different empty micelles composed of 2 and 4 mg/mL polymer on A431 and HeLa cells after 24 h incubation (n = 3).



**Figure S12.** Biodistribution of free mTHPC and mTHPC loaded in micelles in tumor and main organs of mice after 4 and 24 h administration of the formulations at a mTHPC dose of 0.3 mg/kg. Data are indicated as the percentage of the injected mTHPC (%ID) present per organ/tumor (n = 3-5).

## Reference

- 1. Liu, Y.; Scrivano, L.; Peterson, J.D.; Fens, M.H.A.M.; Hernández, I.B.; Mesquita, B.; Toraño, J.S.; Hennink, W.E.; Nostrum, C.F.; Oliveira, S. EGFR targeted nanobody functionalized polymeric micelles loaded with mTHPC for selective photodynamic therapy. *Mol. Pharmaceutics* **2020**, *17*, 1276–1292.
- 2. Couffin, A.; Delcroix, D.; Martín-Vaca, B.; Bourissou, D.; Navarro, C. Mild and efficient preparation of block and gradient copolymers by methanesulfonic acid catalyzed ring-opening polymerization of caprolactone and trimethylene carbonate. Macromolecules **2013**, 46, 4354-4360.