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Abstract: Drug delivery using natural biological carriers, especially erythrocytes, is a rapidly
developing field. Such erythrocytes can act as carriers that prolong the drug’s action due to its
gradual release from the carrier; as bioreactors with encapsulated enzymes performing the necessary
reactions, while remaining inaccessible to the immune system and plasma proteases; or as a tool for
targeted drug delivery to target organs, primarily to cells of the reticuloendothelial system, liver and
spleen. To date, erythrocytes have been studied as carriers for a wide range of drugs, such as enzymes,
antibiotics, anti-inflammatory, antiviral drugs, etc., and for diagnostic purposes (e.g., magnetic
resonance imaging). The review focuses only on drugs loaded inside erythrocytes, defines the main
lines of research for erythrocytes with bioactive substances, as well as the advantages and limitations
of their application. Particular attention is paid to in vivo studies, opening-up the potential for the
clinical use of drugs encapsulated into erythrocytes.

Keywords: drug delivery; erythrocyte; carrier erythrocyte; erythrocyte-bioreactor; targeted drug
delivery; therapy; diagnostics

1. Erythrocytes as Drug Carriers

Drug delivery using natural biological carriers is a fast-developing field. Due to the unique
biophysical properties, erythrocytes (red blood cells, RBCs) have great potential in this area. RBCs are
the largest population of blood cells in mammals. Their main function is oxygen transfer to cells and
body tissues [1]. Mature RBCs do not have a cell nucleus and most organelles, but they contain a large
amount of a special protein, hemoglobin (Hb), which is able to bind to oxygen. The biconcave shape
provides good flexibility and allows the erythrocyte to deform and pass through narrow capillaries.
The lifetime of erythrocytes in the bloodstream is 100–120 days, after which they are removed by
the spleen. Erythrocytes can be used as carriers in two different ways: by incorporating the drug
into the cells or by binding it (using non-specific adsorption or a specific association, involving
antibodies or various chemical cross-linking compounds) on the RBCs’ surface. Our review focuses
on the first of these methods. The binding of drugs on the surface of RBCs has both advantages and
disadvantages. A great contribution to the development of this direction was made by the team of
Muzykantov et al. [2–9].

To incorporate the drug into the RBC, the cell must undergo some external influences so that
pores can be reversibly formed in its membrane, through which the drug can penetrate. This unique
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property of RBCs allows to load them with biologically active substances of different molecular weights.
For these reasons, erythrocytes are promising biocompatible cells for drug delivery.

The methods for incorporating various substances into red blood cells differ in the way that
substances penetrate the cells. The cause of permeability may be the pores’ formation in the cell
membrane due to a physical exposure (high voltage electric pulse [10,11] or ultrasound [12]). Drug
molecules can also enter the RBCs by endocytosis in the presence of certain chemical compounds (for
example, primaquine [13], vinblastine, chlorpromazine, hydrocortisone or tetracaine [14,15]), or using
the cell-penetrating peptides bounded to the compound that should be encapsulated [16]. However,
the most popular are different variants of osmotic methods.

In some cases, RBCs are first exposed to a hyperosmotic pulse of a low molecular weight substance
that penetrates very well through the cell membrane (for example, dimethyl sulfoxide (DMSO) [17,18]
or glucose [19,20]). After washing the cells, which decreases the external concentration of these
compounds and creates a gradient of their concentration between both sides of the RBC membrane,
the target drug is introduced into the external volume. Water with this drug begins to enter into the
cells to decrease the osmotic pressure there. The process ends when the gradient of DMSO or glucose
disappears. The pores close and part of the drug remains into RBCs. Other, the most popular of the
osmotic methods are hypoosmotic. These methods are based on creating a hypotonic environment
around RBCs, which causes swelling of the cells and opening pores in the cellular membrane, through
which therapeutic compounds can penetrate RBCs. Then, a hypertonic solution is introduced into the
cell suspension. The pores close, the cells restore their original size, trapping the drug molecules inside
the cell. Osmotic methods are divided into several types. Simple reversible cell lysis in a hypotonic
solution by dilutiing a cell suspension with a hypotonic medium causes the formation of erythrocyte
ghosts [21,22]. The method of hypotonic pre-swelling is based on the initial controlled cells swelling in
a hypotonic solution and their subsequent lysis by adding small portions of an aqueous solution of the
drug for encapsulation [23–25]. Dialysis methods are based on a reduction of osmolality around the
RBCs by a process of dialysis versus hypotonic solution in a dialysis bag [26,27] or in special dialyzers
with increased area of contact of RBCs with a buffer solution in the case of flow dialysis [28–30].
As mentioned above, hypoosmotic methods are most preferable for incorporation of enzymes into
RBCs in terms of efficacy and the properties of obtained cell carriers [31,32].

The history of carrier erythrocytes begins in 1973, when Ihler demonstrated in his article the
possibility of incorporating enzymes such as β-glucosidase and β-galactosidase into these cells by
reversible hypoosmotic lysis [21]. The analysis of the number of publications (relating only to
medications inside the RBCs) shows that interest in this topic since 1973 has not declined, but, instead,
has been constantly growing. The number of published articles on the subject of carrier erythrocytes
increases every year, and currently, their total number is about 400 (Figure 1).
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RBCs for drug delivery have several advantages compared to the existing methods and systems
for drug delivery. The erythrocyte is an ideal candidate for such delivery and meets all the requirements
for such systems, namely:

- biocompatibility (human, both autologous and donor erythrocytes are used to treat patients);
- biodegradability (old or damaged erythrocytes are naturally removed by the reticuloendothelial

system);
- long life in the bloodstream (the drug has an extended lifetime inside the cells because RBCs

protect it from the immune system and plasma proteases and the cells survive in the body
for a long time; thus, the pharmacokinetics and pharmacodynamics of the drug in RBCs can
significantly increase the desired therapeutic effect);

- decreasing side effects of drugs (due to preventing allergic reactions, and the decrease in the peak
concentrations of free drug in the blood to safer levels);

- ease of cell isolation in large quantities and the ability to scale production.

Carrier erythrocytes (CEs) can be used both in therapy and the diagnosis of some diseases,
for example, as carriers of contrast agents for magnetic resonance imaging (MRI) or as biosensors
that respond to changes in the concentration of metabolites or pH in the blood [33–35]. In therapy,
depending on the drug that is loaded, the erythrocytes can be used as carriers with a gradual drug
release, as bioreactors or a system for targeted drug delivery, primarily to the reticuloendothelial
system (RES), liver and spleen [36]. In the first case, either a drug encapsulated into RBCs can slowly
pass through the erythrocyte membrane into the bloodstream, or a membrane-nonpenetrating prodrug
is loaded into RBCs, where it turns into a therapeutically effective compound that is able to exit the
cell. This ensures prolonged drug circulation in the bloodstream with a decrease in the toxic effects
on the body. In the second case, the enzyme encapsulated in erythrocytes works with substrates
penetrating the cell membrane. Thus, the enzyme does not directly enter the bloodstream, which
solves the problem of its immunogenicity, premature inactivation and increases its half-life.

In this review, we analyzed and organized all existing information on CEs with encapsulated bioactive
substances, starting from 1973, that we found in the literature. A summary diagram of their possible use
is presented in Figure 2. The most interesting and significant studies in this area are described below.
Since there are separate articles in this Issue devoted to a detailed description of the enzymes loaded in
RBCs, in our review this subject is considered very briefly (section Erythrocytes-bioreactors). For the most
part, only the names of the enzymes that were incorporated into RBCs are listed to ensure the integrity of
the review.
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2. Erythrocytes-Bioreactors

CEs can operate as bioreactors when the enzyme is incorporated into RBCs. A loaded enzyme
can remove the appropriate substrate from the bloodstream, provided that this substrate is able to
penetrate into RBCs from the blood. Such erythrocytes-bioreactors (EBRs) open up new possibilities
in the treatment of diseases associated with inborn deficiencies of enzymes (enzyme replacement
therapy), in the treatment of malignant tumor diseases and for the removal of some toxic compounds
from the bloodstream.

2.1. Enzyme Replacement Therapy

Many human diseases are associated with the absence or decrease in the activity of certain enzymes.
The logical method for solving this problem is therapy based on the administration of the missing
enzyme into the body. However, the injection of free enzyme into the blood, as a rule, is accompanied
by the body’s immune response and rapid drug removal from the bloodstream. Incorporating an
enzyme into RBCs may be a good solution in this situation. An increase in the blood half-life and a
decrease in the body’s immunological reactions to the drug were shown for all enzymes encapsulated
in RBCs.

Lysosomal storage diseases [37] (Gaucher disease [38,39], Slay syndrome [40], Fabry disease [41,42]
or Pompe disease [43]) are caused by a deficiency of lysosomals enzymes such as ofβ-glucocerebrosidase
(β-glucosidase) [21,26,38,39,44,45], β-glucuronidase [40], α-galactosidase [21] or α-glucosidase [21],
respectively. Deficiency of lysosomal enzymes results in the gradual accumulation of their substrates
in lysosomes, which ultimately leads to disruption of lysosomes, dysfunction and cell death.
The β-glucocerebrosidase enzyme was the first that was incorporated into RBCs for use in enzyme
replacement therapy. For an enzyme loaded in RBCs the four–five-fold increase in circulation time
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was observed [45,46]. Moreover, it was suggested that if RBCs loaded with β-glucocerebrosidase are
modified by γ-globulin, then in the body, they must be captured by macrophages and, thus, delivered
directly to the focus of the disease—RES cells [45]. Currently, a number of free lysosomal enzymes are
used to treat lysosomal storage diseases, but they have high immunogenicity and high cost. Loading
appropriate enzymes into RBCs can overcome these limitations and decrease the total cost of treatment.

Other enzymes that have been described for use in enzyme replacement therapy are
phenylalanine hydroxylase (for phenylketonuria [47–50]), adenosine deaminase (for severe combined
immunodeficiency with impaired humoral and cellular immune response [27,51–55]) and thymidine
phosphorylase (for the treatment of mitochondrial neurogastrointestinal encephalomyopathy
(MNGIE) [56,57]). For adenosine deaminase, successful long-term (9 years) use of the adenosine
deaminase-loaded RBCs in the clinic has been described [58]. Thymidine phosphorylase and adenosine
deaminase encapsulated into RBCs can be used as maintenance therapy before transplantation of
allogeneic hematopoietic stem cells. These enzyme preparations are a less expensive alternative to the
pegylated forms of the drugs used today.

2.2. Erythrocytes-Bioreactors for Low Molecular Metabolites Utilization

EBRs for removal of low molecular metabolites (ethanol, methanol, cyanide, glucose or ammonium)
from bloodstream have been described. These EBRs were based on alcohol dehydrogenase [11,59,60],
alcohol oxidase [61], acetaldehyde dehydrogenase [11,62] or alcohol- and acetaldehyde dehydrogenase
together [63] in cases of ethanol, methanol and acetaldehyde removal.

Hexokinase and glucose oxidase (both separately and together) were used to remove of excess
glucose. In the latter case, this allowed for the rate of glucose consumption in mice to be increased by
almost 5.5 times and maintain its normal level for several weeks [64]. Rhodonase (a mitochondrial
enzyme responsible for the transformation of cyanide into thiocyanate) was used in the presence
of a sulfur donor (sodium thiosulfate or other) for cyanide detoxification [65–70]. In mice, it was
shown in vivo that erythrocytes loaded with rhodanase in tandem with thiosulfate decreased the blood
concentration of cyanide by 40% in 15 min [70].

Moreover, the use of EBRs loaded with asparaginase, methioninease (methionine-γ-lyase) and
arginine deiminase for antitumor therapy has been described (see below).

Ammocytes

It would be interesting to go into more detail on the use of EBRs to remove excess ammonium
from the bloodstream, since success in this direction has been demonstrated in the work of recent
years. An immediate consequence of an ammonium excess in the blood (hyperammonemia) is
encephalopathy with the possibility of a lethal outcome. Long-term low-degree hyperammonemia
may be associated with neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease,
etc. [71]. This condition can be caused by both hereditary deficiencies in the enzymes of the uric acid
cycle, for example, arginase, and chronic or acute liver diseases. Maintaining low levels of ammonium
in the blood is important for treating hyperammonemia and preventing or slowing the development of
neurodegenerative diseases. Modern pharmaceutical approaches to reduce the level of ammonium
in the blood, unfortunately, do not provide a satisfactory solution to this problem from the point of
view of effectiveness and side effects. EBRs for ammonium removal (so-called ammocytes) have been
developed by various scientific groups. For enapsulation into RBCs, glutamate dehydrogenase was
used, which catalyzed the formation of l-glutamic acid from α-ketoglutarate and ammonium in the
presence of NADPH [59,60,72], as well as glutamine synthetase, which catalyzed the formation of
l-glutamine from l-glutamic acid and ammonium in the presence of ATP [73,74]. Each of these enzymes
was encapsulated into RBCs using reversible hypoosmotic dialysis. However, in vivo experiments
showed that such bioreactors effectively removed ammonium from the circulation in mice only in
the first 0.5–1 h [72,74]. After this time, the concentration of ammonium in the blood decreased at
about the same rate in both experimental and control animals that received dialyzed erythrocytes,
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but without encapsulated enzymes. Thus, after 0.5–1 h, the loaded enzymes ceased to contribute to
the process of ammonium consumption. Using mathematical models of EBRs created in [75], it was
shown that the reason for this behavior is the depletion of the substrates inside the cell (l-glutamic
acid or α-ketoglutarate), which are consumed during the utilization of ammonium by these enzymes,
but are unable to enter the cell from the bloodstream. The authors of [75] proposed a new promising
system to create ammonium-removing EBRs, based on the RBCs entrapment of a tandem from two
enzymes—glutamate dehydrogenase and alanine aminotransferase. As a result, a new metabolic
pathway was created in the erythrocytes, in which α-ketoglutarate and l-glutamic acid were produced
and consumed in a cyclic process. Thus, the problem of depletion of these substrates inside the cell
was solved, and the system became independent of their transport. The in vivo consumption rate of
ammonium in mice for such bioreactors was 2 mmol/(h×lEBRs). Moreover, they continued to work
even 2 h after the administration, which distinguished them from the bioreactors described previously
in the literature [72,74]. The authors of [75] calculated that under physiological conditions transfusion
of 200 mL of such EBRs to a patient will lead to a decrease in the plasma ammonium concentration
by 6 mM/day, which is 10 times higher than similar values (600 µM/day) for the best drugs to reduce
ammonium concentration currently available.

2.3. Enzymes Used in Antitumor Therapy

l-asparaginase, methioninase and arginine deiminase decrease the blood level of amino acids
(asparagine, methionine or arginine, respectively) necessary for cells for biosynthesis during division.
This depletion acts more efficiently towards some lines of tumor cells, which cannot synthesize
asparagine or arginine on their own (since they do not contain asparagine synthetase [76] or do not
express the enzymes necessary for the intermediate stages of arginine synthesis [77–79]). Moreover,
tumor cells divide much faster than normal ones [80]. In all cases, the encapsulation of enzymes into
RBCs may be a suitable alternative to the pegylated forms of these enzymes that are used currently in
therapy to increase the half-life and decrease the immunogenicity of these proteins.

ERYTECH Pharma has patented and conducted clinical trial of asparaginase in RBCs (GRASPA)
for the treatment of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia [81–83], and
is currently conducting clinical trials of asparaginase-loaded RBCs (Eryaspase) for the treatment
of metastatic pancreatic cancer (trial TRYbeCA-1) [84–86] and of triple-negative breast cancer (trial
TRYbeCA-2). Eryaspase has proven to be especially effective in pancreatic cancer treatment in
combination with chemotherapy [85,86]. Phase 2 clinical trials demonstrated that chemotherapy
treatment with Eryaspase reduces the risk of mortality by 40% compared with chemotherapy treatment
alone. This is the first case in clinical practice where l-asparaginase therapy has proven effective in
treating a solid tumor.

The use of methioninase encapsulated in erythrocytes (erymethioninase) has been demonstrated
in vivo in mice with glioblastoma [87] or with breast carcinoma [88]. In both cases, there was a
significant decrease in tumor volume, prolonged depletion of methionine and good tolerance of loaded
methioninase. In addition, the possibility and effectiveness of a combination of erymethioninase
therapy with cancer cell immunotherapy to block the immune control points of PD-1 (anti-PD-1 therapy)
was first demonstrated by Sénécha et al. [88]. Significant inhibition of tumor growth was noted and the
survival time was increased for erymethioninase therapy in tandem with immunotherapy, compared
with each therapy separately.

In 2015, ERYTECH Pharma patented the use of RBCs containing arginine deiminase (ERY-ADI)
for the treatment of, in particular, hepatocarcinoma and malignant melanoma [89]. It was shown in
mice that the time of arginine depletion (5 days) with ERY-ADI treatment was increased compared to
the same time for the free form of ADI (24 h) [90].
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2.4. Inositol Hexaphosphate in Erythrocytes

Sickle cell anemia (sickle cell disease, SCD) is a hereditary disease in which anemia develops
and RBCs are sickle-shaped. The cause of anemia is the presence in the cells of an altered form of Hb.
This is HbS that has an increased tendency to polymerization in capillaries under conditions of partial
deoxygenation. Such HbS can polymerize and precipitate inside cells under deoxygenation conditions,
forming strands. As a result, the cells acquire a sickle shape and are destroyed [1]. This process may be
partially reversible if the cell suspension is re-oxygenated. To improve the condition of patients with
SDC, various research groups have proposed modifying donor RBCs for transfusion by incorporating
inositol hexaphosphate (IHP) [17,91–94]. Such CEs do not contain a loaded enzyme, but contain
an allosteric effector of the main erythrocyte protein—Hb; therefore, they can also be conditionally
called bioreactors. This effector binds to Hb 1000 times stronger than 2,3-dysphosphoglycerate and
reduces the affinity of oxygen to Hb, which leads to a two- to three-fold increase in the ability of such
erythrocytes to give back bound oxygen.

Bourgeaux et al. proved in in vitro experiments that the addition of erythrocytes loaded with
IHP (IHP-RBC) to the blood of patients with SCD was seven times more effective at decreasing the
number of sickle cells after deoxygenation and subsequent reoxygenation of the cells compared with
the addition of unmodified normal RBCs to this blood [92]. In vivo, in a transgenic mouse model
(BERK) that mimics human SCD, four repeated injections of IHP-RBCs were shown to improve overall
survival, prevent severe anemia and significantly reduce the risk of vascular occlusion in mice [95].
Thus, in vitro and in vivo studies indicate the therapeutic potential of IHP-RBCs in sickle cell anemia.

3. Carrier Erythrocytes with a Gradual Release of the Pharmacological Agent

An erythrocyte loaded with a pharmacological substance is not necessarily a bioreactor. In some
cases, such an RBC can act as a system with a gradual release of the drug into the bloodstream.
This approach can be useful when it is necessary to maintain a constant therapeutic drug concentration
in the blood for a long time and decrease its peak concentration immediately after drug administration.
As a rule, this principle of CEs’ action works when low-molecular-weight substances are loaded in
the erythrocyte.

3.1. Cytotoxic Drugs in Erythrocytes

3.1.1. Anthracycline Antibiotics

More than 50 years ago, it was shown that anthracycline antibiotics (daunomycin, doxorubicin)
have antitumor activity both for solid tumors and for acute lymphoblastic and myeloid leukemia [96].
Currently, anthracycline antibiotics are used in the complex treatment of many types of cancer.
The mechanism of anthracycline antibiotics’ action is the inhibition of topoisomerase II due to the
embedding of anthracycline between adjacent pairs of DNA bases, which causes the production of free
hydroxyl radicals that adversely affect both the tumor and healthy tissues [97]. Myocardial tissue is
particularly affected. The cardiotoxicity of the anthracyclines, which has a cumulative dose-dependent
nature, has been shown in many works [98–100].

Doxorubicin (adriamycin) is a 14-hydroxidaunorubicin that was isolated from a mutant
Streptomyces peucetius (var. Caesius), obtained from a daunorubicin-producing organism, S. Peucetius.
Its preclinical therapeutic index was better than that of daunorubicin [101], but the number of side
effects did not decrease [102]. Cardiotoxicity caused by anthracycline can be decreased or prevented
by a regimen of administration that gives low peak plasma concentrations of the drug; therefore, the
search for special carriers of anthracyclines is an urgent task.

Since the 1980s, various groups of authors from the USA, Russia and Japan loaded daunomycin
and doxorubicin into RBCs by various methods. Tonetti et al. have shown that encapsulation of
daunorubicin into RBCs can be achieved by simple diffusion of the drug through the erythrocyte
membrane [103]. In vitro, it has been shown that treatment with glutaraldehyde of RBCs loaded with
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daunorubicin significantly slows the release of the drug from the cells compared with untreated RBCs.
After cells’ incubation for 24 h at 37 ◦C, the amount of daunorubicin in the cells was 66% and 10% of
the initial encapsulated concentration for the treated and untreated cells, respectively. Later, in dogs,
in vivo, a significant decrease in the peak plasma concentration of doxorubicin for doxorubicin loaded
into RBCs (18.2 ng/mL) compared to its free form (330 ng/mL) was shown, as well as the possibility of
targeted drug delivery to the liver [104–106].

Pilot studies of RBCs loaded with anthracycline antibiotics in patients with leukemia and
lymphomas were carried out by a group of Russian authors (Ataullakhanov et al.). They demonstrated
the advantages of the administration of daunorubicin- and doxorubicin-loaded RBCs compared with
the administration of the free medicines [107–110]. Both drugs in the RBCs were clinically effective
and were better tolerated by patients. A decreased number of adverse reactions, a significant decrease
in cardiotoxicity (with the absence of a cumulative effect), as well as an at least two-fold decrease in the
peak concentration of drugs in plasma was observed. The half-life of drugs in the bloodstream was
increased. The pharmacokinetics of doxorubicin demonstrates two phases—fast and slow. For the
free form of doxorubicin, the concentration of the drug rapidly decreased within 10–30 min after
administration, and after 12–24 h the concentration decreased to zero. A similar picture was observed
for doxorubicin in erythrocytes in the fast phase, but after the plasma doxorubicin concentration
decreased to 0.1 µg/mL, its level remained almost constant up to 3 days [109]. In a recent paper [111], the
cardiotoxicity of doxorubicin in carrier erythrocytes obtained by electroporation was studied in healthy
mice. All parameters related to cardiac function in mice treated with doxorubicin in erythrocytes were
similar to those in the control group of healthy animals that were not injected with the drug, while the
same parameters for mice treated with a free form of doxorubicin were significantly worse than in
those of the control.

In 2006, a new synthetic anthracycline antibiotic, mitoxantrone, was encapsulated into RBCs.
Its effectiveness is higher than that of doxorubicin; however, the use of mitoxantrone is limited
by the high cardio- and nephrotoxicity of the drug. In that work, the optimal conditions for the
entrapment of the drug in RBCs were selected and the possibility of incorporating sufficiently high
doses of mitoxantrone without observing a damaging effect of the drug on the cells was shown.
The encapsulation of this antibiotic in RBCs opens-up prospects for its use in clinics [112,113].

3.1.2. Terpene Indole Alkaloids

Vincristine and vinblastine are alkaloids isolated from the plant Cantharanthus roseus G. Don
(Vinca rosea Linn.), which show an antitumor and hypoglycemic activity. Their antitumor activity
was discovered in the 1960s [114–117]. The mechanism of the antitumor effect of vincristine and
vinblastine is associated with inhibition of microtubule polymerization due to the binding of alkaloids
to tubulin. This interferes with cell division (both tumor and normal). Currently, these alkaloids remain
the most-used class of anticancer drugs and are important components of standard chemotherapy
regimens [118,119]. However, both drugs have a number of serious side effects that limit the possible
administered dose [119]. Vinblastine toxicity includes bone marrow suppression (which limits the
dose), gastrointestinal toxicity and strong extravasation (leakage of a drug from a vein into surrounding
tissues) with the appearance of blisters, deep ulcers and tissue necroses. The main side effects of
vincristine are peripheral neuropathy, hyponatremia, leukopenia, thrombocytopenia and hair loss.
In addition, both drugs are carcinogenic and mutagenic. Drug resistance to both drugs is also common,
which interferes with therapy.

Halahakoon et al. suggested that encapsulating vincristine and vinblastine into RBCs could
partially solve the problem of side effects by reducing the peak concentration of drugs in the bloodstream.
The authors loaded the drugs into RBCs by hypoosmotic stepwise lysis (pre-swelling) [120]. In vitro
experiments showed that vincristine and vinblastine are released from CEs during incubation at
37 ◦C (in autologous plasma or isotonic buffer) at a rate of 100 µg/h, and about 50% of the drugs
are released from CEs after 6 h of incubation [121]. Unfortunately, in vivo experiments are not yet
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available; therefore, it is difficult to judge the pharmacokinetics and the possible effectiveness of the
erythrocyte carriers of these drugs. Currently, the topic of the encapsulation of terpene indole alkaloids
in RBCs remains open and little studied.

3.2. Glucocorticoids

Glucocorticoids are steroid hormones synthesized by the adrenal cortex. Since the 1940s, natural
and synthetic glucocorticoids have been widely used in various fields of medicine. They have
anti-inflammatory, desensitizing, anti-allergic immunosuppressive, anti-shock and anti-toxic effects.
However, prolonged use of steroids leads to serious side effects. The most commonly used systemic
glucocorticoids are hydrocortisone, prednisolone, methylprednisolone and dexamethasone. These
glucocorticoids have good oral bioavailability and are excreted mainly due to liver metabolism and
renal excretion [122]. Frequent and high doses of glucocorticoids cause hormonal dependence and
serious side effects, such as immune suppression and diabetes [123–127]. Since glucocorticoids are
rapidly eliminated from the body (within 3–4 h), the drug should be taken several times a day to
maintain the therapeutic dose [122]. A good solution to the problem of the drug’s rapid elimination is
to create a carrier that gradually releases the drug into the bloodstream.

EryDel (Italy) created erythrocytes-carriers of glucocorticoids, in particular, with dexamethasone-21-
phosphate. In 1997, D’Ascenzo et al. created CEs with the gradual release of dexamethasone and
prednisolone by incorporating their prodrugs (dexamethasone-21-phosphate and prednisolone-21-
phosphate) into RBCs by hypotonic dialysis. The encapsulation yield was 30% and 28% for
dexamethasone-21-phosphate and prednisolone-21-phosphate, respectively. In the cell, dexamethasone-
21-phosphate and prednisolone-21-phosphate are dephosphorylated by phosphorylases present in the
erythrocyte and are gradually released from the cell by diffusion [128]. Recently, EryDel has conducted
numerous clinical trials of dexamethasone-21-phosphate (Dex 21-P) in autologous RBCs (Ery-Dex),
which have proven the advantages of using dexamethasone in RBCs over the free form of the drug.
To investigate the safety and tolerability of the drug, patients with cystic fibrosis in the first part of the
study [129] received increasing doses of ERY-Dex. To evaluate the effectiveness of long-term continuous
release of low doses of dexamethasone in the bloodstream, in the second part of the study, nine patients
received Ery-Dex at 4-week intervals for 15 months [129]. After repeated injections, a slow and prolonged
delivery of dexamethasone into the bloodstream of up to 28 days was observed. It was shown that with
prolonged use of Ery-Dex, very low doses of glucocorticoids provide a significant improvement in one of
the indicators for diseases of the lungs or bronchi—FEV1. This is the maximum volume of air exhaled in
1 s after the deepest inhalation. There was also a significant reduction in infectious relapses caused by
Pseudomonas aeruginosa, and the absence of side effects.

Positive results of the use of Dex 21-P loaded in autologous RBCs have also been shown for
steroid-dependent patients of different age groups with Crohn’s disease. The absence of both side
effects and the need to take steroid drugs, in addition to patients going into clinical remission were
shown [130–132]. Similar efficacy (achieving remission and the absence of side effects) was observed in
patients with ulcerative colitis [133]. Six-month treatment of patients with steroid-dependent ulcerative
colitis using a low dose of Dex 21-P in autologous RBCs allowed for the abolition of oral steroids in
most patients without steroid-related side effects, while maintaining clinical remission [133]. EryDel is
currently conducting Phase III clinical trials of Ery-Dex (trials.gov NCT02770807) for patients with a
rare hereditary disease—ataxia telangiectasia (AT) or Louis–Bar syndrome, for which there is currently
no effective treatment. AT is a rare hereditary neurodegenerative disease caused by mutations in the
ATM gene (Ataxia Telangiectasia, Mutated), which encodes a protein of the same name, whose role is
to coordinate cell signaling pathways in response to double-stranded DNA breaks, oxidative stress
and other genotoxic stress [134]. The disease is primarily characterized by cerebellar degeneration,
telangiectasia, immunodeficiency, susceptibility to cancer and radiation sensitivity. The results of
a Phase II clinical trial for 22 patients with AT who received Ery-Dex for 6 months were published
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in [135]. They showed good drug tolerance and the possibility of slowing the natural progression of
the disease.

In parallel with the development of a new dosage form of dexamethasone, EryDel invented and
patented an automatic device, the Red Cell Loader (RCL), which allows small molecules and proteins
to be incorporated into RBCs by gradual hypoosmotic swelling of RBCs [136].

3.3. Insulin in Erythrocytes

Few studies have been devoted to the encapsulation of insulin into RBCs, probably because it has
been shown that insulin inside RBCs loses activity [137,138]. It was shown that due to inactivation,
the percentage of insulin incorporation into RBCs is only 4.8%–6% of the initial amount [138–140].
The amount of insulin in the cells can be stabilized, if inhibitors of its degradation are loaded in the
RBCs together with insulin. Despite this, there are very little data available. In addition, the work of
such cells in vivo has not been investigated [139].

In [140], the half-elimination time of insulin from rabbit bloodstream was compared in the case
of intravenous and subcutaneous administration of a free form of porcine insulin or intravenous
administration of this insulin loaded in rabbit RBCs. The efficiency of glucose removal using these
forms of insulin from the bloodstream of normal and diabetic rabbits was also studied. The plasma
half-life for the encapsulated insulin was almost two-times longer than for the free form (12 and
7 min, respectively). The difference between the initial and minimum glucose concentrations achieved
during the administration of different forms of insulin was 95 ± 12, 53 ± 11 and 98 ± 19 mg/dL, for
normal rabbits, and 304 ± 26, 488 ± 68 and 532 ± 57 mg/dL for rabbits with diabetes for the free form,
administered intravenously and subcutaneously, and for insulin in RBCs, respectively. Judging by the
data obtained, the entrapment of insulin in RBCs does not offer significant advantages over its free
form, but the existing data are insufficient for final conclusions to be drawn.

3.4. Erythrocytes Containing Blood Coagulation Factors

In 1979, Goldsmith et al. studied the possibility of loading coagulation factors IX and X into
RBCs [141]. These factors were encapsulated into the RBCs of healthy volunteers and patients
with deficiencies of IX and X factors by simple reversible hypoosmotic lysis. Despite the fact that
factors IX and X are proteins, the obtained CEs were not bioreactors, since they showed procoagulant
activity only after the destruction of the cell membrane and release of coagulation factors into the
external environment.

In the work of Sinauridze et al., the pharmacokinetics of free factor IX and factor IX incorporated
in autologous RBCs was studied in healthy volunteers [142]. The authors suggested that CEs can
maintain a significant level of incorporated factor in plasma due to the natural hemolysis of loaded
cells in blood vessels at a low rate. It was shown that encapsulation of factor IX into RBCs prolongs its
circulation in the bloodstream by 5–10 times compared with a free factor administered intravenously
(t1/2 were 73.9 ± 16 and 8.9 ± 5.6 h, respectively). Despite the fact that erythrocytes loaded with factor
IX were safe and circulated in the bloodstream for a long time, their anticoagulant activity was not
investigated in this work. Thus, further study of possible therapeutic efficacy of these CEs is needed.

3.5. Morphine Encapsulation into Erythrocytes

To ensure prolonged postoperative analgesia, morphine was incorporated into the autologous
RBCs of patients (using the glucose hyperosmotic pulse method). Blood was mixed with a solution of
50% glucose in a ratio of 1:0.5 and incubated for 30 min. Then the RBCs were washed and incubated
with a solution of morphine [19,20,143]. In clinical trials in different patients it was found that morphine
loaded into RBCs (RBC-M) was able to provide longer analgesic effects than intravenous free-form
morphine (M) (24 h for RBC-M vs. 3.2 h for M). However, the observed side effects in patients receiving
morphine in these two forms did not differ [144–146].



Pharmaceutics 2020, 12, 276 11 of 44

3.6. Nanoparticles and Erythrocytes

Inorganic nanoparticles (NPs), along with RBCs, are increasingly used in medicine, in particular,
in the field of drug delivery and diagnostics. NPs have a large surface area per unit volume, and are
able to bind to a large number of ligands. This increases their affinity for target molecules. In addition,
NPs can have unique optical and magnetic properties that enable magnetic targeting and directional
fluorescence imaging of cancer cells in the near-infrared. Artificial nanocarriers (NCs) of a new
generation have potential advantages unattainable for RBCs, especially with the development of
technologies for the synthesis of NCs. Layer-by-Layer (LbL) technology, which allows obtaining NPs
with precisely controlled structure and size using various classes of materials, has become an active area
of research [147]. The possibility of precise synthesis control allows designing carriers with the specified
almost unlimited properties, functions and geometry (from films to fibers and capsules). The methods
for preparing LbL-carriers are different and make it possible to encapsulate various types of molecules,
such as antibiotics, growth factors and biosensor substances including hydrophobic compounds with the
possibility of controlled release in intravascular and extravascular target-organs [148]. One review [148]
discussed the possibility of using LbL technology to create synthetic NCs with encapsulated enzymes.
However, the key issue here is the opportunity of transferring the synthesis technology of artificial
NCs from the scientific laboratories to the production level for clinical application, since some methods
of NCs creating are applicable only for small volumes. Scaling of the production process requires
large material and time costs [147–149]. Further research in vivo is needed to identify the balance of
efficiency/risk ratio and to create a regulatory framework for adjusting the production of artificial
NCs. In addition, like other synthetic materials, NPs do not have perfect biocompatibility and
biodegradability. They are often rapidly destroyed by macrophages of the immune system, and
cannot reach other target organs of therapeutic interest. Injection of artificial carriers can activate
the complement system, induce the formation of reactive oxygen species, autophagy, inflammation
and other toxic side effects. The review by Parhiz et al. [150] discusses in detail the limitations and
undesirable side effects of NCs, including biodegradability and biocompatibility ones. In contrast to
synthetic capsules, RBCs are well-studied, can be readily obtained and in many ways represent ideal
biocompatible and biodegradable drug carriers for intravascular delivery. A combination of these two
delivery systems is a promising approach. In this case, the encapsulation of nanoparticles into RBCs
creates a “camouflage” for them against the immune system [151]. One review [152] described, in
detail, the types of nanoparticles that were already associated with the surface or loaded inside RBCs,
as well as the prospects for their use in antitumor therapy.

Muzykantov’s et al. proposed the promising use of synthetic and natural carriers tandem for the
treatment of acute critical diseases such as acute respiratory distress syndrome (ARDS), pulmonary
embolism (PE) and acute ischemic stroke. They presented the concept of RBC-hitchhiking (RH), in
which NCs (adsorbed on the RBC membrane) are transfered from RBCs to the first organ downstream of
the intravascular injection [153]. The authors obtained impressive results: they showed that optimized
RH formulations can safely and powerfully target NCs to chosen organs via select placement of
intravascular catheters in animals. For example, intravenous injection of RH increases liposome uptake
in the first downstream organ (lungs) by ~40-fold compared with free NCs. Injection of RH-nanogels
intra-carotid artery delivers >10% injected NCs dose to the brain, approximately 10-fold higher than the
best affinity component targeting the brain (transferrin), which only delivered 1% of the injected dose.

Various nanoparticles incorporated with drugs such as doxorubicin [154,155], valproate [156],
fazudil [157] and pravastatin [158] and encapsulated into RBCs were tested. Entrapment of fluorescent
silicone nanoparticles (SiNPs) with doxorubicin into RBCs allowed for a four-fold increase in the
half-elimination time of doxorubicin from the mouse bloodstream (up to 7.31 ± 0.96 h) compared
to such particles without RBCs [155]. The literature describes promising examples of the use of
erythrocytes loaded with nanoparticles with unique optical properties, such as photostability and
strong fluorescence, for in vivo imaging and tumor photodestruction, fluorescence imaging for tumor
surgery and photoacoustic imaging [157,159–162].
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Thus, the combination of artificial and natural carriers of drugs extends the application boundaries
for both of them. Two drug delivery systems with unique advantages/disadvantages supplement
each other, which opens up their new multifunctional capabilities. The use of RBCs for the delivery
of artificial NCs significantly increases the efficiency and safety of the latter, which can lead to an
increase of the benefit/risk ratio and trigger the expansion of NCs production with access to clinical
practice. However, there are limitations of this concept because NPs can affect RBCs, as was shown
in [163,164]. Adsorption of NPs onto RBCs can lead to an increase in the RBCs stiffening and sensitize
RBCs to damage by osmotic, mechanical and oxidative stress. Therefore, it is important to optimize
the composition and properties of NCs (NPs) and to perform a detailed analysis of the modified RBCs
for their proper use in tandem. To date, RBCs remain the most attractive system for drug delivery due
to their easy preparation, complete biocompatibility and biodegradability and the ability to circulate in
the bloodstream for a long time.

4. Erythrocytes for Targeted Drug Delivery

The targeted delivery of drugs using RBCs can be carried out, firstly, to the cells of the RES
(macrophages), as well as in the liver and spleen, i.e., in the body cells, that remove old and damaged
RBCs. Thus, this approach may be successfully used to treat tumors of these tissues. To deliver
the erythrocyte loaded with the drug into these target cells, it must be modified so that the target
cells perceive it as being damaged. There are various methods of such modification. All of them
lead to a modification of the erythrocyte membrane. This may be the opsonization of RBCs with
antibodies to their membrane determinants (for example, by rhesus-antibodies [165]) or the binding
of the complement component C3b to them, since there are receptors for the Fc fragment of IgG and
for C3b on the cell surface. Treatment of RBCs with calcium ionophore leads to phosphatidylserine
exposure on their surface [166], and treatment with glutaraldehyde cross-links the amino groups on the
membrane surface, which makes the cell more rigid. Another method is treatment with reagents that
cause clustering of the band 3 protein, for example, by a bifunctional amine–amine cross-linking agent,
bisulfosuccinimidyl suberate (BS3) in ZnCl2 medium [167,168], which leads to the binding of Hb and
proteins of the membrane and fixation of complement components on the cell surface [169]. Inactivation
of intracellular hexokinase is also described, which leads to disruption of the cell metabolism and a
decrease in the concentration of ATP necessary for cell survival [170].

4.1. Methotrexate

Methotrexate (MTX) is one of the cytostatic preparations (see above). In 1978, Zimmermann et al.
were among the first to demonstrate, in mice, the advantage in the distribution of the erythrocytic
form of methotrexate (MTX-RBC) in the body over the free form for intravenous administration.
The authors encapsulated the drug by electroporation (i.e., created pores in the RBC membrane using
an electrical impulse) through which methotrexate (MTX) penetrated the cell. When this form of the
drug was administered to mice over 10 min, almost all the methotrexate that was administered in RBCs
(0.75–1.0 doses) accumulated in the liver of animals, while in control experiments (with the introduction
of the free form of methotrexate), only 0.25–0.3 of the administered dose accumulated [171].

DeLoach and Barton encapsulated methotrexate in erythrocytes by hypoosmotic methods and
showed in dogs, in vivo, that in this case, the drug quickly leaves the RBCs. Thirty minutes after the
injection of MTX-RBCs into the bloodstream, 50% of methotrexate appeared free in the plasma [172].
To slow the release of the drug from the cells, treatment of carrier erythrocytes with glutaraldehyde
was proposed, which provides an additional advantage, since, as was shown in dogs, 50% of CEs
treated with glutaraldehyde are rapidly detected in the liver, i.e., targeted delivery of methotrexate to
RES occurs [172,173]. Another method for incorporating methotrexate into RBCs uses the pulse of a
hyperosmotic glucose solution. In this case, the cells are incubated for 40 min in a 50% glucose solution.
Then, they are gently washed and incubated for 30 min with a solution of methotrexate under normal
tonicity. The half-life of such CEs with methotrexate was almost 3.5 times longer than for the free form of
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the drug (13.5 and 3.9 h, respectively) [174]. In addition, the peak plasma concentration of methotrexate
after MTX-RBC administration was lower than with free MTX, but it decreased more slowly. A gradual
release of the drug from RBCs was observed. In another study [175], N-hydroxysuccinimide biotin
ester (NHS-biotin) was bound on the surface of CEs for targeted delivery of MTX-RBCs to the liver.
In vivo experiments on rats showed that 1 h after administration of biotinylated MTX-RBCs to animals,
37.2% of biotin appears in the liver, which is almost three times more than after administration of free
MTX (11.7%) and almost 1.8 times more than for non-biotinylated cells (20.4%). In an earlier work [176],
the same authors modified MTX-RBCs with trypsin (Tt) or phenylhydrazine (PhT) to desialize the cell
surface and induce hemichrome in cells, respectively. These two approaches were equally used for the
recognition of erythrocytes by macrophages in order to deliver methotrexate for the treatment of RES
tumors. Surface-modified erythrocytes loaded with MTX 1 h after administration to animals showed
an increased level of methotrexate in the liver compared with the free form of the drug (approximately
six times) and with unmodified cells (approximately two times). Phagocytosis by macrophages of
surface-treated MTX-loaded erythrocytes was increased by three–five and five–six times for Tt- and
PhT-treated CEs, respectively, compared with untreated CEs [176].

The presented examples demonstrate promising possibilities of using erythrocytes for targeted
drug delivery to the liver and RES.

4.2. Erythrocytes-Carriers for Treatment of Retroviral Infection

Retroviruses are a family of RNA viruses that primarily infect vertebrates. The most famous and actively
studied representative of retroviruses is the human immunodeficiency virus (HIV). Currently, nucleoside
analogs, which are inhibitors of reverse transcriptase (after anabolic intracellular phosphorylation),
are essential components of highly active antiretroviral therapy (HAART). The most famous of these
are azidothymidine (and its analogs), dideoxycytidine and other 2′,3′-dideoxynucleosides [169,177].
Furthermore, the antiviral activity of reduced glutathione (GSH) against RNA and DNA viruses is
well known. This activity is realized by interfering with protein-envelope folding and by blocking cell
transcriptional factor (NF-kB) activation, which decreases the virus transcription and replication [178,179].
The nucleoside analogs protect lymphocytes, but cannot enter macrophages, while GSH inside specially
modified RBCs can be captured by macrophages and protect them against viral infection.

Thus, to treat this immunodeficiency, both CEs containing antiretroviral drugs and CEs containing
GSH or GSH + antiretroviral drugs can be used, since GSH-loaded RBCs has been shown to
provide significant additional effects compared to monotherapy with antiretroviral drugs (nucleoside
analogues) [178].

Since the 1990s, Magnani et al. has been actively developing CEs for the treatment of the human
immunodeficiency virus. Since the targets and reservoirs of human immunodeficiency infection
are cells of the monocyte/macrophage line, attempts have been made to deliver antiretroviral drugs
directly to macrophages to prevent transmission of HIV from already infected macrophages to target
lymphocytes [180]. The most popular nucleoside analogues, such as 3’-azido-2’,3’-dideoxythymidine
and 2’,3’-dideoxycytidine (ddCTP), were encapsulated into RBCs.

It was shown [169] that for the manifestation of pharmacological activity, dideoxynucleosides must
be phosphorylated to 5’-triphosphate by cell kinases. Different types of cells within the same species have
different abilities to phosphorylate these compounds. To reduce the toxicity of nucleoside analogues,
as well as to overcome the problem of the effectiveness of their phosphorylation, Magnani et al.
incorporated ddCTP into RBCs in an active phosphorylated form (by the method of hypoosmotic
dialysis). For targeted delivery of such RBCs to macrophages, the loaded cells were treated with a
bifunctional amine–amine cross-linking agent BS3 in ZnCl2 medium. This makes the RBCs tougher and
induces the binding of autologous immunoglobulin G (IgG) and complement component C3b on the
cell surface. Such RBCs are recognized by macrophages and actively phagocitosed. In vitro and in vivo,
it was shown that erythrocytes treated in this way loaded with phosphorylated ddCTP were able to
significantly reduce typical symptoms of the disease within 3 months [169,181–184]. The ability to release
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3’-azido-2′,3’-deoxythymidine (AZT) from erythrocytes loaded with the azidothymidine derivative
di-(thymidine-3’-azido-2’,3’-dideoxy-d-β-riboside)-5’-5’-p1-p2-pyrophosphate (AZTp2AZT) has also
been demonstrated in vitro. This prodrug is converted inside erythrocytes into the pharmacologically
active AZT by sequential hydrolysis and dephosphorylation [185].

In [179,186,187], interesting results of combination therapy using oral AZT, AZT + DDI
(2′,3′-dideoxyinosine) and the additional administration of erythrocytes encapsulated with GSH
in each case were demonstrated. The experiments were performed on mice infected by the retrovirus
complex (LP-BM5). Studies have shown a decrease in proviral DNA in the brain by about 50% with
AZT + DDI treatment and 85% when GSH-loaded RBCs were added to AZT + DDI therapy. For bone
marrow, this decrease was about 37% and 60%, respectively [187]. The addition of GSH-loaded RBCs
to AZT monotherapy decreased proviral DNA in bone marrow by 60% [186].

RBCs encapsulated with fludarabine have become another possible approach for treating HIV-1
infection. As mentioned above, long-living macrophages in the infected body are the reservoir for the
HIV-1 virus. It was shown that chronic infection of human macrophages with this virus increases the
expression and phosphorylation of the protein STAT1, which is included in the regulation of many
macrophage functions, including cell growth and proliferation [188]. The nucleoside analogue of
9-(β-d-arabinofuranosyl)-2-fluoroadenin-5’-monophosphate (FaraAMP, fludarabine) is active against
STAT1-expressing cells and, in culture, is able to kill HIV-infected macrophages, but not uninfected
cells. To direct fludarabine to macrophages, it was encapsulated into RBCs, which were then processed
by the method described in [169], which causes clustering of the band 3 protein. The final concentration
of fludarabine in macrophages after a single 18-h exposure with erythrocytes loaded with fludarabine
was estimated at 10–20 µM. In that study, a powerful (>98%) and long-lasting (at least 4 weeks) effect
of inhibiting the release of the virus from HIV-infected macrophages was obtained [189].

4.3. Drugs Loaded into RBCs for the Treatment of Hepatitis C

To enhance the effectiveness of the therapeutic effect of drugs used in the treatment of hepatitis C,
and to minimize their side effects associated with an increase in the dose of drugs, Skorokhod et al.
were searching for new ways to simultaneously deliver interferon (INF-α) and ribavirin (RIBA) to
the liver [189]. Both drugs were loaded into human RBCs (RBCs-INF-α-RIBA) by the method of
hypoosmotic reversible lysis. Cells were opsonized for targeted delivery to macrophages and liver.
The entrapment efficiency was 40%. It was shown that RBCs-INF-α-RIBA were stored for up to
3 days at 4 ◦C without loss of antiviral activity. In vitro, monocyte activation by RBCs-INF-α-RIBA
was also demonstrated, as well as the induction of surface receptors of the major histocompatibility
complex type II (MHC class II) and Fc receptors that activate cell phagocytic activity. The authors
argue that encapsulating INF-α and RIBA into RBCs and targeting the liver helps: (1) to release large
amounts of INF-α and achieve higher therapeutically effective concentrations in the liver; (2) to induce
autocrine stimulation of macrophages of the liver (and spleen) using INF-α to enhance cellular antiviral
protection; (3) to control viral proliferation in macrophages. In this regard, it is advisable to further
study a potentially therapeutically effective system in animals.

Forezesh and Zarrin proposed encapsulating a more modern hepatitis C drug, boceprevir, into
RBCs in addition to interferon and ribavirin [190].

4.4. Macrophage Depletion

It is known that macrophages play an important role in the regulation of numerous biological
processes in the body. In addition, it has been repeatedly shown that macrophages contribute to
the development of pathologies such as autoimmune hemolytic anemia, immunothrombocytopenia,
rheumatoid arthritis and sepsis, and play a key role in the spread of viruses in HIV infections [191].
Tumor-associated macrophages create favorable conditions for cancer progression, promoting
angiogenesis and metastasis [192–194]. Rossi et al. studied the possibility of temporary depletion of
macrophages by incorporating bisphosphonates (clodronate, zoledronate) into RBCs and the targeted
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delivery of such carriers to macrophages. They showed that RBCs loaded with zoledronate are able to
deplete macrophages both in vitro and in vivo [160]. Balb/C mice were injected with 59 mg/mouse
of zoledronate encapsulated into RBCs. For targeted delivery to macrophages, loaded erythrocytes
were incubated in medium with BS3 and ZnCl2. After a single injection of encapsuled erythrocytes,
macrophage depletion was 29% and 67% for liver and spleen macrophages, respectively.

Another study evaluated the effect of macrophage depletion to prevent Langerhans islet cell
allograft rejection in diabetes mice [195]. Graft survival was 19–20 days for control groups of mice
receiving unloaded erythrocytes or saline, 25 days for mice receiving free clodronate and 35 days for
mice receiving clodronate in RBCs.

4.5. Antigens Loaded into Erythrocytes or Associated with Their Surface

4.5.1. Immunization

Binding antigens to the surface or encapsulating them inside the carrier erythrocytes opens up new
possibilities for using such erythrocytes for immunization as an alternative to adjuvants (substances
that adsorb antigen on their surface), namely, the possibility of delivering antigens directly to the
immune system into antigen-presenting cells—macrophages or dendritic cells (DCs). Dendritic cells
are believed to be most effective in initiating antigen-specific responses, but macrophages are also
able to facilitate the presentation of peptides to T lymphocytes [196]. Magnani et al. has repeatedly
shown that protein antigens (bovine serum albumin, porcine liver uricase, yeast hexokinase) and
glycoproteins B of herpes simplex virus type 1 (HSV-I), which are associated with the surface of
autologous RBCs via the biotin–avidin–biotin bridges, induce a higher immunological response
(higher antibody levels) in mice than the response obtained using Freund’s adjuvant, which is often
used in immunization [197,198]. Later, it was shown that the HIV-1 Tat protein, linked through the
biotin–avidin–biotin bridges to the erythrocyte surface (RBC-Tat), has immunotherapeutic potential.
This protein is important for virus replication and infectious activity (the presence of antibodies against
Tat correlate with slower progression of the disease). Tat protein is immunogenic [199]. Erythrocytes
associated with Tat (RBCs-Tat), in amounts 250 times less than the amount of soluble Tat in Freund’s
adjuvant, are capable of eliciting specific responses of anti-Tat T killers. Moreover, the production of
Tat neutralizing antibodies was observed in six out of six mice, in contrast to two out of six mice for Tat
in Freund’s adjuvant.

In other works [200,201], using bacterial toxoids, proteins and enzymes as antigens, it was shown
that immunization is also possible by encapsulating antigen in RBCs. In B6D2F1 and Balb/C mice, the
total titers of specific antibodies (binding, lysing and neutralizing the antigens) and only neutralizing
antibodies against introduced antigens were several times higher during immunization with antigens
loaded into RBCs than after immunization with free forms of antigens [200].

4.5.2. Cancer Immunotherapy

Cancer immunotherapy is the use of the immune system to kill tumor cells that have specific
tumor-associated antigens (TAA) [202]. Banz et al. proposed a strategy for using RBCs loaded with
tumor-associated antigens in cancer immunotherapy. Immunization against TAA induces TAA-specific
cytotoxic T lymphocytes (CTLs), which are capable of controlling tumor growth. Efficient and targeted
delivery of TAA in vivo to DCs can be effective in tumor immunotherapy since it induces strong CTLs
responses against the tumor [203]. It was shown in mice [204] that erythrocytes bearing an antigen
(in this case, ovalbumin) in combination with polyinosine–polycytidylic acid (Poly (I:C)) introduced
intravenously, can be effectively captured by antigen-presenting cells (APC). This causes antigen-specific
responses of CD4+ and CD8+ T cells, which are able to induce in vivo ovalbumin-specific cell lysis
even 30 days after CEs administration. Ovalbumin was loaded into RBCs by hypoosmotic dialysis
(RBC-OVA). To enhance the phagocytosis of these erythrocytes with antigen-presenting cells, they
were treated externally with antibodies (anti-TER119 mAb), and then were administered to C57BL/6
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mice intravenously. RBC-OVA was mixed with Poly (I:C) before injection to enhance the induction of
T-cell responses, as Poly (I:C) is a toll-like receptor III ligand that activates the CD4+ T cell response
specific for alloantigen of RBCs [205,206]. Ninety minutes after injection of RBC-OVA + Poly (I:C) to
mice, phagocytosis of the introduced RBCs by antigen-presenting macrophages and dendritic cells
was observed.

The effectiveness of such a tumor-associated antigen delivery system was also demonstrated in
two models of mice with melanoma [207]. The artificial ovalbumin antigen or tyrosinase 2 protein
antigen (TRP-2) was encapsuled into red blood cells and tested on E.G7-OVA and B16F10 tumor models,
respectively. The administration of a small amount of tumor-associated antigen (TRP-2) loaded into
RBCs treated with antigen anti-TER119 in combination with Poly (I:C) caused an antigen-specific T-cell
response and tumor growth control in mice, whereas the same amount of free TRP-2 did not cause a
similar response.

4.5.3. Induction of Immune Tolerance

The opposite of immunization is the stimulation of immune tolerance, that is, the “training” of
the immune system to create tolerance (resistance) to a particular antigen in order to prevent its attack.
Such stimulation can be used in autoimmune diseases, when the immune system attacks its own
antigens, during an allograft transplant, or in case of an allergy to a drug used in therapy. The induction
of immune tolerance is often carried out using molecules that inhibit the immune system, such as
rituximab (anti-CD20 monoclonal antibody), cyclophosphamide, and methotrexate, or by depleting B
cells necessary for the immune response. In [208], the authors proposed the use of erythrocytes for
the induction of immune tolerance. The drug, to which it was necessary to induce immune tolerance,
was loaded into RBCs. That study showed that the drug inside the cell-carriers does not interact
directly with antibodies, which may be present in plasma. The authors investigated the possibility of
obtaining immune tolerance in mice for the enzyme alglucosidase α (AGA), a recombinant analogue
of acidic α-glucosidase, which is currently used in enzyme replacement therapy for Pompe disease
(glycogen storage disease caused by α-glucosidase deficiency). For targeted delivery of the drug to
antigen-presenting cells of the liver and spleen, the erythrocytes loaded with the enzyme were treated
with BS3/ZnCl2.

As mentioned above, therapy for Pompe disease is carried out by frequent intravenous administration
of AGA, which ultimately causes a stable humoral response and leads to the need to discontinue treatment.
This work showed that erythrocytes encapsulated with AGA and then BS3/ZnCl2-treated have tolerogenic
properties, i.e., they are able to eliminate the humoral response to AGA and restore tolerance to replacement
therapy. First, the mice were injected intravenously with AGA-loaded RBCs (three times) and then they
were sensitized to AGA using different adjuvant molecules. Control animals received free AGA instead
of the encapsulated molecules. A strong decrease in the specific humoral response was observed in the
experimental group one-week after treatment with AGA-loaded RBCs. This effect was maintained for at
least two months without affecting the overall immune response [208].

The effectiveness of the induction of immune tolerance depends on several factors, such as the
route of administration and the dose of antigen (Ag), as well as the type of target antigen-presenting
cells [209]. DCs and macrophages ingest foreign antigens and present fragments of these antigens on
their own surface for recognition by T cells, and thereby, participate both in the induction of immunity
and in the stimulation of its tolerance. After B or T cells recognize Ag on the APC surface, the choice
between tolerance and immunity depends on the amount and type of Ag, type of APC and the number
of co-stimulation molecules CD80 and CD86 (which bind to the CD28 receptor on the membrane of
T-lymphocytes) on the DCs’ surface. The maturation status of DCs is a key factor in the development
of immunity or the induction of tolerance. Mature DCs induce immunity, while immature DCs
induce tolerance, since they are capable of expressing low levels of MHC class II surface antigens and
costimulatory molecules, which are necessary for the antigen presentation to T-lymphocytes [210].
The presentation of antigen to T-lymphocytes, in turn, stimulates the differentiation of immature
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T-lymphocytes into cytotoxic CD8+ cells or CD4+ helper cells. The liver plays an important role in the
induction of tolerance due to its specific composition of antigen-presenting cells. Liver DCs have an
immature phenotype and, therefore, are not able to elicit an Ag-specific T-cell response, but induce the
development of T-cell tolerance. Several subpopulations of DCs of the spleen are also involved in the
induction of tolerance [211]. Thus, the delivery of Ag to the corresponding DCs of the liver and spleen
is an attractive strategy for the induction of specific antigen tolerance.

An example is the work of Cremel et al., which demonstrated the possibility of inducing immune
tolerance in mice by administration of RBCs loaded with ovalbumin (OVA) as antigen and treated
with calcium ionophore or BS3 [209]. It was shown that intravenous injection of such erythrocytes
into mice sensitized to ovalbumin caused a strong decrease in specific humoral and cellular immune
responses (the appearance of 19%–22% of activated OVA-specific CD8+ T cells vs. 58%–64% for mice
without the induction of immune tolerance). Such a response was observed during, at least, 34 days
after the induction of tolerance and was antigen-specific, without causing complete suppression of the
immune system.

ERYTECH Pharma has patented both methods of using erythrocytes as carriers of antigens—in
cancer immunotherapy to stimulate a cytotoxic cell response directed against tumor cells expressing
an antigen [212], and as a system that induces a specific immune tolerance to enzymes, which are
used in enzyme-replacement therapy of diseases such as, for example, Pompe disease, Fabry disease,
mucopolysaccharidosis, hemophilia A and B, rheumatoid arthritis, multiple sclerosis, etc., requiring
stimulation of the immune tolerance to achieve a therapeutic effect [213].

5. Carrier Erythrocytes in the Diagnostics

5.1. Contrast Agents in Magnetic Resonance Imaging

MRI is a non-invasive method for visualizing the structure and function of tissues, which is widely
used in clinical practice. Despite the fact that MRI allows high-resolution anatomical images to be
obtained, the possibilities of this method can be significantly expanded with the help of contrast agents.
They are used to improve the differentiation of malignant and healthy tissues [214], as well as for MR
angiography, which reveals damage to blood vessels, primarily myocardial damage, atherosclerosis,
thrombosis, aneurysms and other vascular diseases [215]. The localized interaction of contrasting
agents with protons of water molecules in various tissues creates a contrast by decreasing the time
of their longitudinal (T1) and transverse (T2) relaxation (the time during which the protons return
to their equilibrium state after exposure to an electromagnetic pulse). This relaxation is different
in healthy and pathological tissues, and depends on the surrounding molecules and atoms. Based
on this difference, MRI images are constructed. Paramagnetic and superparamagnetic contrasting
agents increase relaxation rates (1/T), thereby enhancing contrast. A measure of the sensitivity of the
contrast agent is its longitudinal and transverse relaxivity (r1 and r2, respectively), which show how
the corresponding relaxation rate changes as the concentration of the contrast agent changes (C) (see
Equations (1) and (2)):

1/T = r × C (1)

r = 1/(T × C) (2)

Various metal derivatives, primarily gadolinium oxides, chelate complexes of lanthanides and
gold nanoparticles, as well as superparamagnetic iron oxide nanoparticles (SPIO) and ultrafine
superparamagnetic iron oxide nanoparticles (USPIO), can be used as contrasting agents. However, the
use of these nanoparticles in MR angiography is limited, since the surface of nanoparticles undergoes
opsonization upon intravenous administration, i.e., it adsorbs plasma proteins. This stimulates and
facilitates phagocytosis of these particles, so that their half-life in blood is 1–3 h (a decrease in the size
of nanoparticles increases the half-life), and the time interval for observation after bolus administration
of the drug is only a few minutes [216–220]. To date, as a result of these reasons, many SPIO and
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USPIO preparations in Europe and the USA are practically not used [221,222]. On the other hand, due
to the selective uptake and accumulation in RES cells, superparamagnetic iron oxide nanoparticles
have become very popular for imaging the liver and spleen [223,224].

In 2008, Antonelli et al. proposed the encapsulation of magnetic nanoparticles based on iron
oxide in RBCs in order to increase their lifetime in circulation [225]. This group has a large number of
works devoted to the study of the properties of various magnetic nanoparticles based on iron oxide,
both newly created and commercially known, such as Resovist (Bayer Schering Pharma), Sinerem and
Endorem (Guerbet, France) etc., loaded into RBCs [222,225–228]. It has been shown that not all iron
oxide-based nanoparticles can be successfully incorporated into erythrocytes. The result depends on
properties of nanoparticles, such as their size, nature of the dispersant and surface charge, that are
important to obtain monodispersed nanoparticles in suspension, as well as on the chemical properties
of particle surface coating [197]. On the other hand, SPIO encapsulation in RBCs can increase the
circulation time of these particles in the bloodstream by up to 12 days, which makes it possible to
use them in MR angiography for long-term imaging and long-term monitoring of cardiovascular
diseases [229].

It was demonstrated in [230] that the encapsulation of USPIO nanoparticles into RBCs leads to
an increase in their transverse relaxivity r2 and a very high ratio of relaxivities r2/r1, which makes
them promising for use as a negative contrast agent in the blood pool. Other studies have also
demonstrated the advantages of using carrier erythrocytes rather than suspensions for gadolinium
oxide nanoparticles [231], chelate complexes of lanthanides [232] and gold nanoparticles [233] as
contrasting agents for MRI.

5.2. Blood Analyte Biosensors

For long-term non-invasive in vivo monitoring of certain blood parameters (analytes), such as
glucose concentration or pH, Ritter et al. proposed the use of RBCs loaded with a fluorescent dye
that responds to changes in the concentration of an analyte in the bloodstream [33,234–236]. In this
case, autologous RBCs encapsulated with fluorescent dyes (sensors) are introduced into the patient’s
circulation for analytical monitoring. The fluorescent signal of the erythrosensors can be excited
and detected non-invasively through the skin when excited by an external light source in the visible
wavelength range (for example, a laser diode). It was shown in [34] that erythrocytes loaded with
fluorescein isothiocyanate (FITC), a pH-sensitive fluorescent dye, have an excellent ability to reversibly
monitor in vitro pH in the physiological range with a resolution of up to 0.014 pH units. According to
the authors, the fluorescence intensity increases with increasing extracellular pH, since RBCs quickly
balance pH with the external environment through a chloride–bicarbonate exchanger. However, it
turned out that for pH measurements in vivo in the physiological range, the sensitivity of such a
system is too low. Thus, the next step to facilitate the use of RBCs as biosensor carriers should be the
development a fluorescent sensor with higher sensitivity and optimization of RBCs loading to obtain a
higher signal level [35].

6. A Novel Trend in the Use of Red Blood Cells as a Delivery System

To use erythrocytes to deliver drug compounds, these compounds must be loaded into cells. There
are many different loading procedures, which have been developed for a long time and continue to
improve. Most often for this the RBC membrane is subjected to certain physical influences. Despite the
fact that the process is carried out under conditions which spare the cell, such procedures, of course,
reduce the quality of the resulting loaded cells compared to the original erythrocytes [237]. In addition,
the effectiveness of the encapsulation of a protein depends on its size and other physical properties,
and is far from being always sufficient. Against this background, the newest trend of using RBCs as
carriers of certain enzymes looks very interesting.

RubiusTherapeutics (Boston, USA) combined the successes of genetic engineering and the unique
properties of RBCs by developing a new class of cell drugs, which they called Red Cell Therapeutics™
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(RCTs) [238]. RCTs are allogeneic erythrocytes that express targeted biotherapeutic proteins (enzymes)
inside or on the surface of the cell. To obtain such RCTs, allogeneic hematopoetic progenitor cells
(CD34+) are first genetically modified using a gene cassette or lentiviral vector to provide expression
of one or more targeted therapeutic proteins. The converted cells are placed in a bioreactor for their
further maturation up to reticulocytes. The resulting cells have the same characteristics as normal
RBCs and contain, inside or on their surface, the target therapeutic protein for the treatment of the
suspected disease. Such RCTs can be used in enzyme-replacement and anticancer therapy (cancer
immunotherapy), as well as in the treatment of autoimmune diseases. Currently, the first phase of
clinical trials of RTX-134, erythrocytes carrying the AvPAL gene inside cells (the phenylalanine-ammonia
lyase gene Anabaena variabilis), is being conducted to treat adult phenylketonuria (NCT04110496) [239].
At conferences in Philadelphia and Boston in 2019, Zhang [240] and Moore [241] proposed interesting
ideas for creating artificial antigen-presenting cells, the genetically modified erythrocytes (RCT-aAPC),
which expresses immunomodulating signals that are directed against the tumor. Such cells, on the one
hand, are loaded with tumor-specific antigen and costimulatory molecules, and, on the other hand,
express proteins of the main histocompatibility class I complex on the surface to create an effective
tumor-specific T-cell response. Using this strategy in mice showed 60% inhibition of tumor growth on
day 7 after administration of RCT-aAPC to animals.

Thus, RubiusTherapeutics technology represents a new promising approach for the delivery of
therapeutic substances to patients using erythrocytes. These results are especially encouraging in light
of the fact that, in 2017, a method was developed to create an “immortal” line of erythrocytes from the
corresponding erythrocyte precursors [242].

If you have a culture of unipotent erythrocyte precursors, you do not need to worry about
managing their differentiation. However, unlike stem cells, the number of divisions of such cells is
limited; thus, they must be immortalized, i.e., modified so that their division can be endless. For this,
bone marrow, cells were genetically modified by adding a human papilloma virus gene to them, which
allows cells to divide unlimitedly. Then, the transition of the modified cells into erythrocyte precursor
cells was induced. Thus, a new cell line, BEL-A (Bristol Erythroid Line Adult), was created. The course
of these cells’ differentiation did not differ from the corresponding stages of development of pluripotent
stem cells. The results obtained appear promising for the possibility of scaling the process to obtain the
desired RBCs in sufficient quantities.

7. Limitations of the RBCs’ Use as Drug Carriers

Despite the fact that RBCs are very promising for use as drug carriers, their use has a number of
limitations. The source of RBCs is blood; thus, the use of allogeneic blood can lead to errors in choosing
the right blood type and to the transmission of various infections. However, these disadvantages are
common to all transfusion of blood products. These situations are very rare, and currently they are
not the principal barrier to transfusion of any blood products, including erythrocytes loaded with
drugs. In addition, production of carrier erythrocytes are associated with the need for sterile work
and the complexity of the large-scale production of such cells. Creating automatic devices can solves
these problems. Another disadvantage is related to the fact that if any crude method was used for
CEs preparation, the quality of the resulting cells may not be high enough. In this case, these CEs will
rapidly degrade in the bloodstream, and the drug may be released uncontrollably. This complicates
drug delivery and can lead to adverse side effects. However, the methods currently used are soft
enough and do not have a strong effect on RBCs.

There are also other restrictions. The first of them is that far from any substance can be incorporated
into RBCs. Some low molecular weight compounds that easily pass through the erythrocyte membrane
are not only easy to enter, but also just as easy to leave the cells, which makes it impossible to create a
long-term depot form of these compounds based on RBCs in the bloodstream [82,94,140]. To slow the
release of such substances from RBCs, the cells may be treated with different crosslinking agents (primarily
for NH2– or HS– groups on the membrane surface). This may be glutaraldehyde, BS3, etc. [166–169].
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However, although this slows the release of drug compounds from the cells, the membrane of such
erythrocytes changes so much that they are quickly recognized by RES cells and removed from the
bloodstream. Another way to retain a therapeutically effective substance that easily passes through
the erythrocyte membrane inside the cell is to encapsulate a prodrug in the erythrocytes, for example,
a phosphorylated form of this compound, which cannot pass through the cell membrane but can be
dephosphorylated by phosphatases of RBCs, turning it into a therapeutically active substance that
gradually leaves the cells. The opposite situation is also possible when for activation, the substance must
be phosphorylated inside the erythrocyte by the corresponding erythrocyte phosphokinases (as in the
case of dideoxynucleotides [169]). In all these cases, the limitation of the use of RBCs as drug carriers is
that the activity of the desired enzymes in the cells of different patients can vary greatly, which does not
allow to obtain stable results [243].

If RBCs are supposed to be used as bioreactors, then in a number of cases a second serious
limitation arises. This is due to the possible effect of the loaded enzymes on the erythrocyte metabolism,
primarily glycolysis. This overlap can lead to depletion of the pools of some metabolites (for example,
NAD(P) and NAD(P)H) if they are used simultaneously by glycolysis and enzymes built into RBCs.
In this case, a stationary state can be lost in glycolysis, which leads to rapid cell death in the bloodstream
(Protasov et al., unpublished data). A possible way to deal with this situation may be to calculate
the permissible doses of the loaded enzymes, which do not yet lead to the loss of a stationary state
in glycolysis (using mathematical models). Moreover, it is possible to encapsulate the necessary
cofactor and the target enzyme into RBCs together (provided that cofactor cannot quickly leave the
cell). Sometimes, the work of the enzyme inside the RBCs may be limited by the rate of transport for
the necessary substrate of the reaction into the cells. This happened, for example, when ammocytes
based on glutamate dehydrogenase [59,60,72] or glutamine synthetase [73,74] were created. In this
case, the researchers proposed for incorporation into the RBCs a new enzyme system consisting of
two enzymes that provided cyclic consumption and production of the necessary metabolites inside
the cell. This made the process independent of the transport of these metabolites [75]. Another area
of modern developments to improve the delivery of drugs that can affect the metabolism of RBCs is
associated with the replacement of RBCs with artificial RBCs or hybrid nanoparticles, the surface of
which contains fragments of the RBC membrane, to ensure their long lifetime in the bloodstream [9].
However, these are only scientific developments, which are far from clinical use.

Thus, there are real restrictions on the use of RBCs as drug carriers; however, they can be
circumvented in many cases, both by improving experimental methods of work, and by using
mathematical models of CEs to properly account for the effects of the loaded compounds on
RBCs metabolism.

8. Conclusions

Drug delivery using natural biological carriers is a fast-developing field. Due to their unique
biophysical properties, erythrocytes have great potential in this area. Recently, their use has been
increasingly expanding both in therapy and in the diagnosis of many diseases. The use of carrier
RBCs is very important to prevent unwanted immune responses after the introduction of protein
molecules, especially if repeated administration of these drugs is required. RBCs are able to provide
the necessary protection for the protein preparation from the immune system and plasma proteases,
increasing the lifetime of the drug in the bloodstream, and thereby enhancing its therapeutic effect.
In addition, special processing of the membrane of encapsulated RBCs allows targeted delivery of
drug-loaded cells to macrophages, dendritic cells, liver and spleen, which is also increasingly used in
various fields of medicine. In the case of a number of cytotoxic drugs, the greatest gain when loading
the drug into RBCs is achieved due to the fact that, as has been proven, RBCs allow the prolongation of
a drug’s therapeutical effect due to its gradual release into the bloodstream. Simultaneously, reducing
the peak concentration of free drug in plasma is achieved during administration, which is associated
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with a decrease in negative side effects, such as cardiotoxicity, with the introduction of anthracycline
antibiotics. In Table 1, we collected the drugs and substances encapsulated into RBCs since 1973.

Despite such positive properties and the widespread popularity of carrier erythrocytes in scientific
research, only a few drugs loaded into RBCs have now reached clinical use. Perhaps this is due to the
complexity of scaling the production of such drugs, since therapy with RBCs incorporated with drugs is
more likely to be personalized medicine and requires an individual approach. However, there are two
companies that have surpassed all the barriers and are actively promoting this method of drug delivery
in clinical practice. These are ERYTECH Pharma (France) and EryDel (Italy). ERYTECH is conducting
final clinical trials of erythrocytes loaded with asparaginase (Eryaspase) for the treatment of pancreatic
cancer and triple-negative breast cancer [244]. Methionine-γ-lyase loaded into RBCs (erymethionase)
for the treatment of solid tumors and the encapsulation of enzymes in RBCs for replacement enzyme
therapy and of antibodies for cancer immunotherapy are under development and in preclinical trials.

EryDel, in turn, focused on clinical trials of dexamethasone (EryDex) for the treatment of ataxia
telangiestasia [245]. A device developed by EdyDel was also used to prepare thymidine phosphorylase in
erythrocytes (EE-TP) for the treatment of mitochondrial neurogastrointestinal encephalomyopathy [246].

Erythrocytes encapsulated with phenylalanine-ammonia lyase for the treatment of phenylketonuria,
recombinant uricase for the utilization of uric acid and guanidine methyltransferase for enzyme replacement
therapy are currently at the preclinical stage. The European Medical Agency has already granted the
status of orphan drugs to dexamethasone phosphate for the treatment of cystic fibrosis [247] and to
l-asparaginase for the treatment of pancreatic cancer [248] and acute lymphoblastic leukemia [249].

Thus, it can be expected that in the near future, the carrier erythrocytes of drugs will be widely
used, particularly in enzyme replacement and antitumor therapy.

Table 1. Substances that were loaded into erythrocyte.

Active Substance Application References

β-Galactosidase - [21]

β-Glucocerebrosidase
(β-glucosidase) Gaucher disease [21,37,38,44–46,250]

β-Glucuronidase Syndrome Slaya [251]

l-Phenylalanine ammonia lyase
Phenylketonuria

[48,252,253]

Phenylalanine hydroxylase [50,254]

Uricase (uratoxidase) Uric acid removal [255,256]

Urease, urease + alanine
dehydrogenase Urea utilization [257–259]

Adenosine deaminase Severe combined immunodeficiency caused
by deaminase deficiency [27,55–58,260]

Thymidine phosphorylase Mitochondrial neurogastrointestinal
encephalomyopathy (MNGIE) [56,246,261,262]

Glutamate dehydrogenase

Hyperammonemia

[59,60,72]

Glutamine synthetase [73,74]

Glutamate dehydrogenase +
alanine aminotransferase [11,63]

Arginase Hyperammonemia due to arginase
deficiency [263]

Alcohol dehydrogenase

Alcohol and methanol intoxication

[59,60]

Alcohol oxidase [61]

Acetaldehyde dehydrogenase [62]

Alcohol dehydrogenase +
acetaldehyde dehydrogenase [11,63]
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Table 1. Cont.

Active Substance Application References

Formate dehydrogenase Methanol intoxication [264]

Cyanide sulfurtransferase
(rhodanase) Cyanide intoxication [65–70,265,266]

Catalase, PEG-catalase Antioxidant [267]

l-Asparaginase

Antitumor therapy

[16,22,24,83–86,237,268–284]

l-Methioninase [87,88,285,286]

Arginine deiminase [89,90]

Hexokinase, glucose oxidase
To decrease blood glucose (diabetes)

[287,288]

Insulin [138–140,289,290]

Inositol hexaphosphate (IHP) Sickle cell anemia [17,18,91–95,291–301]

Methotrexate

Cytotoxic drugs (antitumor antibiotics)

[138,171–176,302–304]

Mitaxantrone [112,113]

Doxorubicin, daunomycin [103–111,305–318]

Amikacin

Broad-spectrum antibiotics

[319–322]

Gentamicin [323]

Tetracycline [324]

Penicillin G [10]

Actinomycin D

Cytotoxic drugs (antitumor antibiotics)

[10]

Cytosine β-d-arabinoside [10,325]

Carboplatin [326]

Fluorouracil
(5-fluoro-2-deoxyuridine) [327,328]

Bleomycin [329]

Vincristine, vinblastine [120,121,330]

Paclitaxel [331]

Fludarabine phosphate
(2-Fluoro-ara-AMP) Cytostatic drug (antitumor therapy, HIV) [118,332–334]

Dexamethasone

Glucocorticosteroids (anti-inflammatory
drugs)

[10]

Dexamethasone-21-phosphate [129–133,135]

[335–343]

Betamethasone phosphate [344]

Prednisolone-21-phosphate [25,128,345]

Diclofenac Nonsteroidal anti-inflammatory drug [346]

Nucleoside reverse transcriptase
inhibitors

(2,3-dideoxytidine-5-triphosphate
(ddCTP), zidovudine (AZT),

(AZTp2AZT), didanosine (DDI))
in combination with reduced

glutathione (GSH)
Therapy of HIV, retroviral infections

[169,181–185,187,347–352]

Fludarabine + AZT + GSH [353]

Nucleoside protease inhibitors
(PNAPR2) [354]

Interferon + ribavirin
Hepatitis C therapy

[189,190]

Ribavirin [355]



Pharmaceutics 2020, 12, 276 23 of 44

Table 1. Cont.

Active Substance Application References

Antigens
Immunization [197–201,356,357]

Cancer immunotherapy [204,207,358]

Induction of immune tolerance [208,209,213]

Enalaprilat Angiotensin-converting enzyme (ACE)
inhibitor (arterial hypertension) [359–361]

Morphine
Opioid analgesia

[19,20,143–146]

Tramadol [362]

Factors IX and X Hemophilia [141,142]

Interleukins 2 and 3 Immunomodulators, antitumor therapy [363–368]

Superoxide dismutase Antioxidant [368–371]

DNA Gene therapy (gene delivery) [372–374]

Clodronate
Macrophage depletion

[195,375,376]

Zoledronate [191]

Valproate
Epilepsy

[156]

Phenytoin [377]

Primaquine Malaria [378,379]

Pravastatin Cardiovascular disease prevention,
treatment of abnormal lipids [158,380,381]

Cyclosporin A, tacrolimus Immunosuppressants [36]

Aminazine (Chlorpromazine) Antipsychotic (in psychiatric practice) [382]

Naloxone Opioid receptor antagonist (opioid
overdose) [383]

Ambroxol Respiratory diseases (fibrosis) [384]

Superparamagnetic nanoparticles Contrast agents in MRI [222,226–233,385–391]

Nanoparticles From drug delivery to fluorescence or
photoacoustic imaging

[151,152,154–156,158–162,
392–398]

Fluorescent dyes (FITC) Blood analyte biosensors (glucose, pH) [33–35,234–236]
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